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A B S T R A C T

An analytical model is presented for estimation of the elastic parameters of lightweight cement pastes with
hollow glass microspheres (HGMS). The microspheres consist of a siliceous spherical outer shell filled with gas,
providing a density modification agent for the cement paste. The obtained lightweight cement paste is used
for cementing deep wells where it is necessary to guarantee the integrity of the cement sheath to avoid fluid
migration, contain the rock mass and protect the casing. The proposed micromechanical model, compared to
other alternatives, results in an easy-to-use approach for obtaining an estimation of the elastic parameters of
the HGMS lightweight cement. The elastic parameters are necessary for the design of the cement sheath and the
analysis of its performances. The model input parameters are the elastic parameters of the cement matrix and
the microspheres, as well as microspheres dimensions and volume fraction, which are easy to obtain. The model
predictions are compared to experimentally evaluated elastic parameters of lightweight cement pastes. A good
compatibility between predictions and experimental data is obtained, even when assuming a perfectly bounded
interface between the microspheres and the cement matrix.The model also permits to take into account an
imperfect interface between the microspheres and the cement matrix improving the model predictions with
respect to the experimental results. The model presents an engineering tool to design lightweight cement
slurries with hollow microspheres and to estimate their mechanical contribution to a cement sheath for drilling
operations.
1. Introduction

In the industries of geothermal energy, oil production, CO2 geo-
logical storage, among others, in which it is necessary to build deep
wells, it is important to accomplish adequate well cementing to satisfy
the required zonal isolation, formation support, and casing protection.
During the placement operations, the cement slurry should meet the
same density requirements as the drilling mud to ensure sufficient
pressure on formation, high enough to prevent excessive failure zones,
and low enough to avoid fracturing and fluid loss. In some situations,
particularly in rock formations with low fracture gradients, there is
a need to use lightweight cement, which permits applying a lower
pressure gradient on the formation [1]. There are a variety of solutions
to obtain lightweight and ultra-lightweight cement slurries, among
which one can mention the use of water extenders, foam cement, or
lightweight materials [2,3]. Water extenders are those materials that,
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when added to the slurry formulation, allow the incorporation of a
higher quantity of water without severely affecting the properties of the
hardened paste. Foamed cement, obtained via nitrogen injection, con-
tains nitrogen micro-bubbles which let the slurry reach a low specific
weight [4]. Lightweight materials are used as cement replacement, and
since their specific weight is smaller than that of cement, the specific
weight of the slurry is reduced. Depending on the lightweight material
used, the final properties of the hardened cement paste will vary.
Indeed, hollow glass microspheres (HGMS) are particularly interesting
among different lightweight materials. This material has a very low
specific weight, while it has a crush strength reaching 200 MPa. It
permits to obtain lightweight cement slurries without affecting the final
cement paste’s compressive strength [5]. Al-Yami et al. [6] compare the
solution of multistage cementing with traditional cement slurries and
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HGMS lightweight cement slurries. The equivalent circulating density
– and thus the lower circulation loss – achieved with HGMS cement
slurries is sufficiently low to avoid the technical difficulties related
to the multistage method. Moreover, the applicability of HGMS in
the deep well cementing industry is not as difficult as other possible
solutions [3]. Considering these advantages, the work presented in this
paper focuses on lightweight cement pastes prepared with HGMS and,
more particularly, on estimating their elastic parameters.

To design an efficient cementing in a deep well, compressive
strength is not the only important material property of the cement
paste. The elastic parameters are also of great importance. The de-
velopment of stresses in the cement sheath in interaction with the
surrounding materials, i.e., rock formation and casing, is directly
dependent on its elastic properties. Under the solicitations due to the
creeping or drainage of the rock formation, a cement sheath with
lower elastic moduli develops lower stress levels. It is, therefore, less
prone to risks related to the failure or development of plastic strains.
Similarly, the thermo-mechanical stresses developed in the cement
sheath following the temperature changes in the well, e.g., during mud
circulation or thermal stimulation, are less intense for the cement pastes
with lower elastic moduli. Using cement pastes with adequate elastic
moduli seems to have also some advantages during the perforation
operations [7–9]. These perforations are done with explosive charges
on the casing and the cement sheath, to begin with the oil production.
This activity is aimed at only affecting the intended reduced zone but,
depending on the hardened cement paste properties, this could not
always be the actual case. It is important to have a hardened cement
paste with high toughness and low elastic moduli to reduce crack
propagation.

It is, therefore, essential to have a good knowledge of the elastic
parameters of the cement paste and, in this paper’s particular case, the
ones prepared based on HGMS. The classical and the most usual way of
evaluating these parameters is by performing laboratory experiments
on prepared cement paste samples. In addition to these methods,
which need some experimental work and time for the preparation
and maturation of the samples, it is interesting to develop alternative
analytical or empirical methods permitting to estimate these properties
based on some basic information on the mix design and used materials.
The empirical relations can be obtained by performing a significant
number of experiments with various formulations and different ma-
terials and then trying to find mathematical relations between the
elastic parameters of the paste and other parameters of the slurry,
e.g., water to cement ratio (w/c), HGMS fraction, etc. It is clear that
this method, though interesting, is quite time-consuming and of limited
applicability as the evaluated relations are limited to the tested slurries.
An alternative solution can be found in micromechanical modeling and
homogenization techniques [10,11]. They consist of a mathematical
framework permitting to have an estimation of the macro-scale me-
chanical properties of a micro-heterogeneous material by knowing its
phase composition in terms of volume fractions, the individual mechan-
ical properties, shape and orientation of each microstructure phase and
the interactions between phases. These methods have been previously
successfully applied to cement-based materials for the evaluation of
the macro-scale properties and studying the effects of the hydration
progress, w/c ratio, various additives, clinker composition, etc. [12–
18]. Micromechanical modeling is applied here to provide a relatively
easy-to-use analytical method for estimating the elastic parameters of
the lightweight cement paste prepared with HGMS, based on some basic
information like the cement matrix elastic parameters, HGMS volume
fraction, thickness, and diameter. It should be emphasized that the
estimation of the elastic parameters of the HGMS cement paste in this
paper is based on existing micromechanical models proposed originally
by Hervé and Zaoui [19], for the model with perfect interfaces, and
Ghabezloo [20], for the one with imperfect interfaces. The contribution
of this paper is the application of these models to HGMS lightweight
2

cement pastes.
The paper is organized into six sections. After this introduction, Sec-
tion 2 is focused on presenting the lightweight cement pastes prepared
using HGMS. It is followed by Section 3, which presents the theoretical
framework and model equations. For simplicity, only the main equa-
tions are presented in this section, but a more detailed mathematical
development of the theoretical framework is presented in the appendix.
Section 4 is dedicated to some parametric and sensitivity studies using
the proposed model to show the influence of different parameters
on the elastic properties of the paste. The model is then verified in
Section 5 based on some application examples by comparison of its
predictions with experimental results. Finally, Section 6 is dedicated
to presenting some conclusions and perspectives.

2. HGMS lightweight cement

HGMS are manufactured from soda-lime borosilicate glass, with sili-
con dioxide (SiO2) being their principal component (60%–87%) [3,21].
Fig. 1 shows a Scanning Electron Microscopy (SEM) image of HGMS in
which the spherical shape of the outer glass shell can be distinguished.
Fig. 2 shows a SEM image of a broken HGMS where the small thickness
of the outer shell can be appreciated. Given this, the volume fraction of
the glass forming the outer shell results much smaller than the volume
fraction of the interior void space. The particles’ size varies between
20 and 70 μm. HGMS are thermally stable up to 600 ◦C, have low
densities that range from 100 to 800 kg/m3, and can withstand high
compressive stresses before breaking, leading to strength values ranging
from 20 to 200 MPa [4]. A decrease in HGMS’s strength is observed for
larger particle sizes and lower densities. These relatively low densities
and large strengths imply that HGMS can be used to obtain lightweight
cement pastes with satisfactory mechanical properties [3].

Compared to other solutions for obtaining lightweight cement pastes
(higher w/c ratios, foamed cement, etc.), the use of HGMS presents
various advantages conferred by their properties. Indeed, lightweight
cement pastes obtained by other means generally yield lower com-
pressive strength and greater interconnected porosity than a cement
paste with HGMS [3], leading to mechanical and transport properties
of the cement that might not guarantee the intended zonal isolation,
formation support and casing protection. HGMS admixture was first
used in a low fracture gradient offshore well in the Gulf of Mexico
in 1980 [22]. In this first field application, HGMS were added to the
mixture with a dosage of 27% by weight of cement to achieve a density
of 1115 kg/m3 with adequate mechanical properties.

After this first application, much research has been done with dif-
ferent approaches to optimize the HGMS content in cement pastes [23–
26]. Many properties of fresh and hardened cement pastes are affected
by this admixture, such as density, fluidity, water segregation, compres-
sive strength, and elastic properties, among others. In these research
works, it was found that the influence of HGMS on the mechanical
properties of cement pastes is related to the replacement/addition
percentage, the HGMS’s strength and HGMS’s density. It shall be men-
tioned that HGMS’s strength and density are related since a higher
density means a thicker outer shell and, therefore, a higher strength.
On the one hand, it was found that replacement/addition percentage
was more important than HGMS’s strength. Regardless of the HGMS’s
strength, increasing the addition percentage by weight of cement im-
plies a decrease in the mechanical properties of the hardened cement
paste. On the other hand, for identical addition percentages, the cement
paste with the HGMS of higher strength yields higher mechanical
properties.

In addition, in some previous research, the chemical compatibility
between HGMS and cement was studied [21]. It was found that HGMS
act as nucleation agent for cement hydration products. This means
that the addition of HGMS enhances to some extent, cement hydration,
which was verified by isothermal calorimetry and thermogravimetric
tests. In addition, HGMS were shown to present pozzolanic activity

by the modified Chapelle test, the strength activity index and the
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Fig. 1. Scanning Electron Microscopy image of HGMS.

Fig. 2. Scanning Electron Microscopy image of broken HGMS.

portlandite (CH) content measured by thermogravimetric analysis at
different curing ages. Fig. 3 shows a SEM image of a cement paste
modified with HGMS at 28 days of curing, where cement hydration
products forming around HGMS can be seen, which further verifies the
compatibility between these two materials.

3. Model framework

The aim of classical homogenization method is to replace an actual
heterogeneous complex body by a fictitious homogeneous one that
behaves macroscopically in the same way. The principles and main
equations of this framework are presented briefly in Appendix A.1. In
the current section, only the main equations needed for the particular
studied application are presented in scalar form. The homogenization
equations are developed for the REV (Representative Elementary Vol-
ume) of a heterogeneous material which is composed of 𝑛 different
3

Fig. 3. Scanning Electron Microscopy image of cement paste with HGMS.

phases, each phase 𝑘 having a volume fraction 𝑓𝑘. In the case of
isotropy of the solid phases, the elastic bulk and shear moduli of
a phase 𝑘 are represented by 𝑘𝑘 and 𝑔𝑘, respectively. Still, in the
isotropic case, the homogenized macro-scale bulk and shear moduli of
the material can be evaluated by the following relations (see derivation
in Appendix A.1):

𝐾hom =
𝑛
∑

𝑘=1
𝑓𝑘 𝑘𝑘 𝐴

𝑣
𝑘 ; 𝐺hom =

𝑛
∑

𝑘=1
𝑓𝑘 𝑔𝑘 𝐴

𝑑
𝑘 (1)

Eq. (1) shows that the effective elastic moduli are equivalent to
some weighted average of the elastic moduli of the constituents. The
coefficients 𝐴𝑣𝑘 and 𝐴𝑑𝑘 are volumetric and deviatoric strain localiza-
tion coefficients of each microstructure phase which play the role of
weighting factors. These coefficients depend on the elastic properties
of each phase and of the surrounding matrix, as well as the geometrical
properties of the concerned phase. For an elastic inclusion of ellipsoidal
geometry perfectly embedded in a reference elastic medium, the strain
localization coefficients can be evaluated based on Eshelby’s solu-
tion [27]. For the more complex geometry involved in HGMS cement
a solution developed by Hervé and Zaoui [19] and Ghabezloo [20]
will be adapted in the following part to evaluate the strain localization
coefficients.

3.1. Basic assumptions and choice of REV

The development of the micromechanical model for the HGMS
cement requires first the definition of an adequate REV to represent
the microstructure of the material. Based on the SEM images, the
considered REV for the HGMS cement is presented schematically in
Fig. 4. It consists of HGMS inclusions embedded in a cement paste
matrix. This choice of REV assumes the scale separation between
the cement matrix and the HGMS inclusions. Nevertheless, one may
notice that this condition is not rigorously satisfied, as the size of
the unhydrated clinker grains in the cement matrix, a few tens of
micrometers, is comparable to the size of HGMS. From this viewpoint,
a potentially more robust choice of REV would be a multi-scale model
similar to the ones used by Königsberger et al. [28] or Ghabezloo [15]
in which the HGMS can be considered in the same scale as the clinker
grains. However, considering the fact that the model in this paper is
applied to hardened cement pastes in which the clinker grains are
of relatively low volume fraction and smaller size, the assumption
of scale separation between the cement matrix and HGMS does not
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Fig. 4. Top: Schematic representation of the REV of the lightweight cement paste
based on HGMS, Bottom: multi-layer spherical geometry used for evaluation of the
strain localization coefficients.

seem to have important consequences on model predictions. The rel-
ative simplicity of the chosen REV is of great practical importance
in what concerns the number of model parameters and the facility
and accessibility of their experimental evaluation. The cement matrix
mechanical parameters can be measured on a hardened sample of a
slurry prepared with the same composition, without HGMS. The HGMS
dimensions and mechanical parameters are usually provided by the
manufacturer and the information related to the volume fraction of
the phases can be easily calculated from the slurry formulation, as
presented in the following parts of the paper. In comparison, a more
complex REV would need much more detailed information concerning
the cement microstructure phase composition, volume fraction and
mechanical properties of different phases that are more difficult to
evaluate [29,30].

It has been shown in our previous work [21] that there is an excel-
lent interaction between HGMS and cement matrix. HGMS are acting
as nucleation agents which implies that cement hydration products are
forming on their surface. Furthermore, HGMS present pozzolanic activ-
ity, which make them react with the calcium hydroxide formed during
cement hydration to form further calcium silicate hydrate. For these
reasons, considering a perfect interface between the HGMS and cement
matrix does not seem to be a strong assumption for the precision needed
for most practical applications. This being said, the effect of imperfect
interfaces between HGMS and cement matrix will also be presented and
briefly studied in the paper.
4

Fig. 5. SEM image of HGMS cement paste after 100 days of curing.

Another point that should be mentioned in relation to the poz-
zolanic activity of HGMS [21] is that it will consume the glass outer
shell to some extent. This will provide amorphous silica that will
react with the portlandite present in the cement paste to form calcium
silicate hydrate. This process will decrease the thickness of the spheres
and affect the chemical composition, microstructure and, eventually,
the mechanical parameters of the cement matrix in the vicinity of
the HGMS. It should be noted that, in general terms, the degree of
pozzolanic reaction is not 100% but rather less than 50% for most
cases [31,32]. This results in the pozzolanic additions not being com-
pletely consumed by this reaction, a matter that can be verified in
Fig. 5, where the existence of HGMS in the cement pastes tested in
this work can still be appreciated. To adequately take into account the
influence of pozzolanic reactions in the micromechanical model it is
necessary to obtain precise information on the zone influenced by the
pozzolanic reactions, including the kinetics of the reaction and its effect
on the HGMS thickness, the area of the influence zone in the cement
matrix and resulted changes in mechanical properties. The mechanical
properties of the influence zone may be evaluated by experimental
methods like nanoindentation. It is then possible to adapt the REV to
take into account the modifications resulted from pozzolanic reactions
in the model. This is however out of the scope of this paper and both
the HGMS and the cement matrix are assumed to keep their initial
dimensions.

The evaluation of the homogenized elastic parameters from Eq. (1)
needs the knowledge of the volume fraction of different microstructure
phases of the REV. The volume fraction of HGMS in the slurry, 𝑓HGMS,
can be evaluated by knowing the HGMS mass per unit volume of the
slurry and the HGMS density. The necessary volume fraction of the
three microstructure phases of the REV (void, glass and cement matrix),
can then be evaluated by knowing the HGMS internal and external
radii.

𝑓1 =
(

𝑟1
𝑟2

)3
𝑓HGMS ; 𝑓2 =

[

1 −
(

𝑟1
𝑟2

)3
]

𝑓HGMS ;

𝑓3 = 1 − 𝑓1 − 𝑓2 = 1 − 𝑓HGMS (2)

The density of the lightweight cement can be evaluated as:

𝜌
𝜌3

= 1 − 𝑓HGMS

[

1 −
𝜌2
𝜌3

(

1 −
(

𝑟1
𝑟2

)3
)]

(3)

where 𝜌 and 𝜌 are respectively the glass and cement matrix densities.
2 3
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3.2. Strain localization coefficients

Due to the particular geometry of the inclusions, i.e. hollow spheres,
the strain localization coefficients can no more be evaluated based on
the classical Eshelby’s solution [27]. Instead, the multi-layer spheres
solution developed by Hervé and Zaoui [19] is adapted based on
the three layer geometry shown in the bottom part of Fig. 4. This
solution is based on the assumption of the linear elastic behavior of
the cement matrix and the glass material, as well as the existence
of a perfect contact between the HGMS and the cement matrix. The
presence of an imperfect interface between the cement matrix and
HGMS inclusions will be taken into account based on an extension of
Hervé and Zaoui [19] model by Ghabezloo [20].

A detailed mathematical development of the strain localization
coefficients is given in the appendix of the paper. The essential final
equations for a numerical application of the model are presented below,
in a way that the strain localization coefficients can be calculated
without referring to the appendix. The presentation is done first by
assuming perfect interfaces between HGMS and cement matrix. An ex-
tension is then presented to take into account the influence of imperfect
interfaces.

3.2.1. Perfect interface between HGMS and cement matrix
The coefficients 𝐴𝑣𝑘 and 𝐴𝑑𝑘 to be used in Eq. (1) are given by the

following expressions:

𝐴𝑣𝑘 =
𝐻𝑣
𝑘

∑𝑛
𝑘=1 𝑓𝑘𝐻

𝑣
𝑘

; 𝐴𝑑𝑘 =
𝐻𝑑
𝑘

∑𝑛
𝑘=1 𝑓𝑘𝐻

𝑑
𝑘

(4)

The coefficients 𝐻𝑣
𝑘 and 𝐻𝑑

𝑘 can be evaluated by knowing the
geometrical properties of the REV, mainly the radii 𝑟1 and 𝑟2 (cf. Fig. 4),
and the elastic properties of glass and cement matrix, respectively
referred to by superscripts 2 and 3 (e.g. 𝑘2 is the bulk modulus of glass
and 𝑔3 is the shear modulus of the matrix). The coefficients 𝐻𝑣

𝑘 are
given by the following expressions:

𝐻𝑣
1 =

(

4𝑔2 + 3𝑘2
) (

4𝑔3 + 3𝑘3
)

12
(

𝑟1
𝑟2

)3
𝑘2

(

𝑔3 − 𝑔2
)

+ 4𝑔2
(

4𝑔3 + 3𝑘2
)

(5)

𝐻𝑣
2 =

4𝑔2
(

4𝑔2 + 3𝑘2
)𝐻𝑣

1 (6)

𝑣
3 = 1 (7)

It is interesting to note that the 𝐻𝑣
𝑘 parameters, and consequently

he homogenized bulk modulus evaluated from Eq. (1), depend only on
he ratio 𝑟2∕𝑟1 of the HGMS and are independent of the actual values
f 𝑟1 and 𝑟2. For obtaining the expressions of 𝐻𝑑

𝑘 , it is necessary to
alculate the 𝐏(2) matrix, which is a 4 × 4 matrix given by:
(2) = 𝐋−1

3
(

𝑟2
)

𝐋2
(

𝑟2
)

𝐋−1
2

(

𝑟1
)

𝐋1
(

𝑟1
)

(8)

here the matrices 𝐋𝑘 (𝑟) are given by:

𝑘(𝑟) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟 −
6𝜈𝑘

1 − 2𝜈𝑘
𝑟3 3

𝑟4
5 − 4𝜈𝑘
1 − 2𝜈𝑘

1
𝑟2

𝑟 −
7 − 4𝜈𝑘
1 − 2𝜈𝑘

𝑟3 − 2
𝑟4

2
𝑟2

𝑔𝑘
3𝜈𝑘

1 − 2𝜈𝑘
𝑔𝑘𝑟2 −12

𝑟5
𝑔𝑘

2(𝜈𝑘 − 5)
1 − 2𝜈𝑘

𝑔𝑘
𝑟3

𝑔𝑘 −
7 + 2𝜈𝑘
1 − 2𝜈𝑘

𝑔𝑘𝑟2
8
𝑟5
𝑔𝑘

2(1 + 𝜈𝑘)
1 − 2𝜈𝑘

𝑔𝑘
𝑟3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

Note that the superscript (2) in 𝐏(2) is not a power. In accordance
ith the notations of Hervé and Zaoui [19] it is used to attribute

he matrix to the phase 2. The mathematical expressions obtained by
alculating each of the components of the 𝐏(2) matrix are considerably
ong. Since they can be obtained from a multiplication of matrices, the
quations of the 𝐻𝑑 expressed in terms of the components of matrix
5

𝑘

(2), 𝑃 (2)
11 , 𝑃 (2)

12 , 𝑃 (2)
21 , 𝑃 (2)

22 , as presented below. It should be noted that
hese components do not all have the same physical unit. 𝑃 (2)

11 and 𝑃 (2)
22

ave no unit, while 𝑃 (2)
12 has unit 𝐿2 and 𝑃 (2)

21 has unit 𝐿−2.

𝑑
1 =

21𝑃 (2)
21 𝑟

2
1 + 5𝑃 (2)

22

5
(

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

) (10)

𝑑
2 =

𝑃 (2)
21

5
(

𝜈2 − 1
)

(

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

)

[

𝑃 (2)
22

(

5𝜈2 − 7
)

3𝑃 (2)
21

+ 7𝑟21
(

𝜈2 − 1
)

−
84

(

𝑟51 − 𝑟
5
2
)

5
(

𝑟31 − 𝑟
3
2
)

]

(11)

𝐻𝑑
3 = 1 (12)

In the above equations 𝑟1 and 𝑟2 are respectively the internal and
xternal radii of HGMS. 𝑘𝑘, 𝑔𝑘 and 𝜈𝑘 stand respectively for bulk modu-
us, shear modulus and Poisson’s ratio of the 𝑘 phase (with void space,
ilicate glass and cement matrix indexed from 1 to 3, respectively).
ote that the elastic parameters of the phase 1 (void space) should be
onsidered equal to zero.

Considering the complexity of the equations of 𝐻𝑑
𝑘 parameters, one

an numerically verify that, similarly to what was mentioned above for
𝑣
𝑘 parameters, these coefficients and consequently the homogenized

hear modulus evaluated using Eq. (1) are independent of the numerical
alues of 𝑟1 and 𝑟2 and depend only on the ratio 𝑟2∕𝑟1. It can also

be verified that by considering similar elastic parameters for phases 2
and 3, the above equations are reduced to the ones given by classical
Eshelby solution for a simple porous medium.

It should be noted that considering the phase number 3 as the ce-
ment matrix corresponds to the Mori–Tanaka homogenization scheme.
A different choice could be the self-consistent scheme in which the
reference medium is the homogenized medium. In this latter case,
the elastic parameters of the matrix are not known in advance. Con-
sequently, iterative calculations should be used to evaluate the ho-
mogenized elastic parameters. Considering the microstructure of the
HGMS lightweight cement, Mori–Tanaka scheme seems to be more
appropriate. However, comparison tests were performed between the
two methods for a variety of parameters. For usual volume fractions
of HGMS, the results of these two methods are extremely close to-
gether. Therefore, in the following, Mori–Tanaka scheme is used for
the calculations since it has the advantage of being easier to apply, in
accordance with the main objective of obtaining an easy to apply model
for estimating the elastic properties of lightweight cement pastes based
on HGMS.

3.2.2. Imperfect interface between HGMS and cement matrix
The above mathematical framework can be extended to take into

account the presence of an imperfect interface between the micro-
spheres and the cement matrix. The imperfect interface, characterized
by its compliances, results in displacement jumps across the interface.
The micromechanical models with imperfect interface has been previ-
ously developed and used in the literature [e.g.33–37]. Ghabezloo [20]
presented an extension of the micromechanical model of Hervé and
Zaoui [19] to take into account imperfect interfaces between phases.
This model is used in the following.

The displacement jump at the interface is assumed to be propor-
tional to the traction vector 𝜎𝑖𝑗𝑛𝑗 which is continuous across the inter-
face. The following general equation is postulated for the displacement
jump across the interface [34,38,39]:

𝛥𝑢𝑖 = 𝜂𝑖𝑗𝜎𝑗𝑘𝑛𝑘 (13)

where 𝜂𝑖𝑗 is a second-order tensor representing the compliances of the
interface. 𝜂 = 0 corresponds to a perfectly bounded interface. A simple
𝑖𝑗
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form of 𝜂𝑖𝑗 with one tangential and one normal compliance, 𝜂𝑡 and 𝜂𝑛

respectively, can be given as [34,38,39]:

𝜂𝑖𝑗 = 𝜂𝑡𝛿𝑖𝑗 +
(

𝜂𝑛 − 𝜂𝑡
)

𝑛𝑖𝑛𝑗 (14)

In the presence of imperfect interfaces, the strain localization coef-
ficients of each phase 𝐴𝑣𝑘 and 𝐴𝑑𝑘 can be written as [20]:

𝐴𝑣𝑘 =
𝐻𝑣
𝑘

∑𝑛
𝑘=1 𝑓𝑘

(

1 + 3𝜆𝑘
)

𝐻𝑣
𝑘

(15)

𝐴𝑑𝑘 =
𝐻𝑑
𝑘

∑𝑛
𝑘=1 𝑓𝑘

(

1 + 2𝜉𝑘
2𝜓𝑘+3

5

)

𝐻𝑑
𝑘

(16)

The following dimensionless parameters have been introduced to
simplify the presentation of the equations:

𝜆𝑘 =
𝑘𝑘𝜂𝑛𝑘
𝑟𝑘

; 𝜉𝑘 =
𝑔𝑘𝜂𝑡𝑘
𝑟𝑘

; 𝜓𝑘 =
𝜂𝑛𝑘
𝜂𝑡𝑘

(17)

The coefficient 𝐻𝑣
1 is given by the following expression:

𝐻𝑣
1 =

(

4𝑔2 + 3𝑘2
) (

4𝑔3 + 3𝑘3
)

12
(

𝑟1
𝑟2

)3
𝑘2

[

𝑔3
(

1 − 4𝜉2𝜓2
)

− 𝑔2
]

+ 4𝑔2
[

4𝑔3
(

1 + 3𝜆2
)

+ 3𝑘2
]

(18)

The coefficient 𝐻𝑣
2 can be evaluated as a function of 𝐻𝑣

1 using
Eq. (6) and 𝐻𝑣

3 = 1, same as Eq. (7). One can easily verify that for
a perfect bounding between the HGMS and cement matrix, i.e. 𝜆2 =
𝜉2 = 0, Eq. (18) is reduced to Eq. (5). To evaluate 𝐻𝑑 coefficients the
matrix 𝐏(2) can be evaluated as follows:

𝐏(2) = 𝐋−1
3

(

𝑟2
) [

𝐋2
(

𝑟2
)

+ 𝐋′
2
(

𝑟2
)]

𝐋−1
2

(

𝑟1
)

𝐋1
(

𝑟1
)

(19)

where the matrix 𝐋′
𝑘 (𝑟) is given by:

𝐋′
𝑘(𝑟) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔𝑘𝜂𝑛𝑘
3𝜈𝑘

1 − 2𝜈𝑘
𝑔𝑘𝑟2𝜂𝑛𝑘 −12

𝑟5
𝑔𝑘𝜂𝑛𝑘

2
(

𝜈𝑘 − 5
)

1 − 2𝜈𝑘
1
𝑟3
𝑔𝑘𝜂𝑛𝑘

𝑔𝑘𝜂𝑡𝑘
7 + 2𝜈𝑘
1 − 2𝜈𝑘

𝑔𝑘𝑟2𝜂𝑡𝑘
8
𝑟5
𝑔𝑘𝜂𝑡𝑘

2
(

𝜈𝑘 + 1
)

1 − 2𝜈𝑘
1
𝑟3
𝑔𝑘𝜂𝑡𝑘

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

The matrices 𝐋𝑘 (𝑟) are given by Eq. (9). The coefficients 𝐻𝑑
1 , 𝐻𝑑

2
and 𝐻𝑑

3 are then evaluated using Eqs. (10), (11) and (12) respectively.

4. Sensitivity analysis

To understand the model parameters and their influence on the
evaluated elastic parameters, a sensitivity analysis is undertaken. For
this purpose, it is useful to recall Eq. (1) showing that the homogenized
elastic parameters will depend on the volume fraction of each phase,
𝑓𝑘, the elastic properties of each phase, 𝑘𝑘 and 𝑔𝑘, and the localization
coefficients, 𝐴𝑣𝑘 and 𝐴𝑑𝑘 , which play the roles of some weighting factors.
As shown in Eqs. (5) to (12), these parameters depend on the elastic
properties of each phase and on the radii ratio 𝑟2∕𝑟1. It is obvious that
using a cement matrix with higher elastic parameters results directly in
a cement paste with higher parameters. This is the same for the HGMS
material, an increase in its elastic parameters is directly reflected on
the elastic parameters of the paste, though with a less important effect
as compared to cement paste due to its lower volume fraction.

It is interesting to see the effect of the ratio 𝑟2∕𝑟1 and HGMS
volume fraction on the homogenized elastic parameters of the HGMS
lightweight cement while keeping constant the other parameters. The
Young’s modulus and the Poisson’s ratio of the silica glass and the
cement matrix are given the values of 𝐸2 = 64 GPa, 𝜈2 = 0.2, 𝐸3 =
22 GPa and 𝜈3 = 0.25. The needed values of bulk and shear moduli
can be evaluated using 𝐾 = 𝐸∕[3(1 − 2𝜈)] and 𝐺 = 𝐸∕[2(1 + 𝜈)]. A
6

Fig. 6. Effect of HGMS volume fraction and the radii ratio 𝑟2∕𝑟1 of HGMS on the
homogenized bulk modulus (perfect interface is assumed between HGMS and cement
matrix).

Fig. 7. Effect of HGMS volume fraction and the radii ratio 𝑟2∕𝑟1 of HGMS on the
homogenized shear modulus (perfect interface is assumed between HGMS and cement
matrix).

perfect interface is assumed between the cement matrix and HGMS. The
results of sensitivity analysis are presented as contour graphs in Fig. 6
for the bulk modulus and in Fig. 7 for the shear modulus for different
values of 𝑓HGMS and 𝑟2∕𝑟1 ratio. The homogenized elastic parameters
are normalized with respect to the elastic parameters of the cement
matrix. The normalized cement slurry density corresponding to each
case can be evaluated using Eq. (3).

One can see in Figs. 6 and 7 that the results are in agreement with
expectations. For constant HGMS volume fraction, both bulk and shear
moduli increase with increasing 𝑟2/𝑟1 ratio, which implies increasing
the glass (phase 2) to void (phase 1) proportion in the composite
medium. If the volume fraction of glass increases and the void volume
fraction decreases, greater amounts of stiff material will increase the
stiffness of the composite material. Therefore using thicker HGMS re-
sults in higher elastic moduli, but also, in higher density of the cement
paste, which is less desirable. At constant HGMS dimensions, higher
HGMS volume fraction results in a lighter cement paste, but also in
lower elastic parameters. Recalling Figs. 1 and 2, it is clear that HGMS’s
void volume fraction is much larger than the borosilicate glass volume
fraction. Increasing the HGMS volume fraction implies increasing the
void space, which decreases the homogenized elastic parameters.
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Fig. 8. Effect of interface normal compliance on the homogenized bulk modulus.

It is also interesting to see how the existence of an imperfect inter-
face between the cement matrix and HGMS can influence the evaluated
elastic moduli. For this analysis the internal and external radii of the
HGMS are fixed respectively equal to 𝑟1 = 18 μm and 𝑟2 = 20 μm.
HGMS volume fraction is taken equal to 0.24. The homogenized bulk
and shear moduli are evaluated for a wide range of interface normal
and tangential compliances. The homogenized bulk modulus depends
only on the normal compliance and is independent of the tangential
compliance. Its variations with the normal compliance are plotted in
Fig. 8. The evaluated bulk moduli are normalized with respect to the
matrix bulk modulus. 𝜂𝑛 = 0 corresponds to a perfect interface. The re-
sults show that the bulk modulus decreases by increasing the interface
compliance, but tends towards an asymptotic value. Generally, it seems
that the presence of an imperfect interface between HGMS and cement
matrix has a limited influence on the bulk modulus. For the parameters
used in the sensitivity analysis the ratio 𝐾hom∕𝐾3 is reduced from 0.736
for the perfect interface to 0.696 for a highly compliant interface.

The influence of interface normal and tangential compliances on
the homogenized shear modulus is presented in Fig. 9 in the form of a
contour plot. One can see a complex interaction between the effects of
normal and tangential compliances on the homogenized shear modulus.
An important difference between the two compliances, e.g. big 𝜂𝑛 and
small 𝜂𝑡 or inverse, results in lower shear modulus. In the particular
case of 𝜂𝑛 = 𝜂𝑡 an asymptotic influence can be observed. For the
parameters used in the sensitivity analysis the ratio 𝐺hom∕𝐺3 is reduced
from 0.76 for the perfect interface to an 0.54 for a highly compliant
interface.

5. Application

In this section, the proposed model is applied to some particular
formulations of cement pastes with addition of HGMS. A comparison
between laboratory and model results is performed.

5.1. Sample preparation

The cement used for this purpose is a class G moderate sulphate-
resistant portland cement [40] provided by Petroquímica Comodoro
Rivadavia (Argentina), mixed with HGMS27 and HGMS41 from 3M,
polycarbonate-based superplasticizer (SP) (ADVA 570, GCP Applied
Technologies) and deionized water. HGMS27 and HGMS41 have re-
spectively crush strengths of 27 and 41 MPa, densities of 280 kg/m3

and 460 kg/m3, and mean particle size (D50) of 30 μm and 40 μm.
Cement slurries were designed with two water to solids weight

ratios (w/s) of 0.44 and 0.60 and HGMS were added as 10% in
weight cement replacement. The classifications and dosages of cement
7

Fig. 9. Effect of interface normal and tangential compliances on the homogenized shear
modulus.

Table 1
Slurries classification, dosages and densities.

Slurry Cement HGMS27 HGMS41 Water SP 𝜌
[kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3] [kg/m3]

CS0044 1320.2 – – 580.9 – 1988
CS2744 829.0 92.1 – 405.3 2.8 1388
CS4144 952.5 – 105.8 465.6 2.1 1601
CS0060 1313.8 – – 788.3 – 1803
CS2760 828.3 92.0 – 552.2 – 1287
CS4160 950.6 – 105.6 633.7 – 1472

slurries are presented in Table 1. CS refers to cement slurry, the two
following numbers correspond to HGMS (00: no HGMS, 27: HGMS27,
41: HGMS41) and the two last numbers correspond to the w/s (0.44
and 0.60).

Cement samples were prepared following the guidelines of the
American Petroleum Institute (API) Recommended Practice [41]. For
this purpose, a specially designed mixing machine with the capability of
reaching the high revolutions per minute required was used. According
to the API, water shall be added to the mixing machine followed by the
cement, which is added while the mixing machine is working. Then the
mixing time is reached and the molds are filled with the cement slurry.

For CS27 and CS41, given the important difference in density be-
tween HGMS and cement, these materials needed to be mixed before.
Therefore, the necessary amount of each of them was poured into a
vessel and mixed by hand until reaching a homogeneous dry material.
Due to the decrease in fluidity that HGMS generate for cement slurries
CS2744 and CS4144 it was necessary to add some superplasticizer. With
this additive it was feasible to reach an homogeneous wet mixture by
applying the specified mixing energy [21].

For evaluation of the mechanical parameters, for each formulation
six cylindrical molds were filled with the cement slurry. The molds
have a diameter of 3.8 centimeters and a height of 10 centimeters.
The samples were immersed in water saturated with lime for 28 days
and subsequently stored in isolation until they reached the age of 100
days. The cement hydration is expected to have reached the asymptotic
stage at this age. The samples were then cut using a diamond wire saw
to obtain specimens with a height-to-diameter ratio of 2, remove the
exposed faces formed during the initial curing process, and achieve flat
and parallel faces.

5.2. Experimental evaluation of elastic parameters

Ultrasonic wave velocity measurements were conducted on the
six samples of each paste to obtain their elastic parameters, which
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Table 2
Measured ultrasonic wave velocities.
Paste 𝑉𝑝 𝑉𝑠

Mean SD Mean SD
[m/s] [m/s] [m/s] [m/s]

CS0044 3800 41.80 2210 70.34
CS2744 3340 32.56 1980 11.88
CS4144 3580 15.20 2070 22.68
CS0060 3370 28.04 1880 22.17
CS2760 3090 15.05 1760 7.86
CS4160 3270 25.65 1840 6.73

Table 3
Elastic properties (determined from ultrasonic wave velocities).
Slurry 𝐸 𝐾 𝐺 𝜈

[GPa] [GPa] [GPa] [–]

CS0044 24.1 15.7 9.7 0.24
CS2744 13.4 8.3 5.4 0.23
CS4144 17.1 11.4 6.8 0.25
CS0060 16.3 12.0 6.4 0.27
CS2760 10.1 6.9 4.0 0.26
CS4160 12.7 9.1 5.0 0.27

are expected to be comparable to those from quasi-static mechani-
cal tests, with some possible differences arising from factors such as
poromechanical effects or creep [28,42,43].

The measured wave velocities are shown in Table 2, with mean val-
ues and standard deviation (SD) for each slurry. From these results, the
elastic parameters of each slurry were deduced according to Eq. (21).
The needed densities are given in Table 1. These were obtained by
measuring the mass and the volume of each saturated cement sample.
To determine the mass densities, the mass of each sample was measured
using a calibrated analytical balance with a resolution of 0.001 g. The
volume of each sample was measured using a calibrated Vernier caliper
with a resolution of 0.01 mm, measuring the diameter at three different
heights and taking the average. The height was also measured three
times, with the sample rotated slightly each time to ensure that the
measurements were representative of the entire sample.

All measurements were conducted under controlled laboratory con-
ditions to minimize environmental influences on the data. Using these
precise instruments and procedures, we obtained mass density results
with a standard deviation of 20 kg/m3 or less.

𝐺 = 𝜌𝑉 2
𝑠 ; 𝐾 = 𝜌

(

𝑉 2
𝑝 − 4

3
𝑉 2
𝑠

)

(21)

Eq. (21) for calculating 𝐾 and 𝐺 is valid for homogeneous, isotropic
nd linear elastic materials, but they could be applied to heterogeneous
aterials as long as the size of the representative elementary volume
𝑑) is much smaller than the wavelength of the ultrasonic pulse used
𝜆) [44]. This is known as the separation of scale requirement, and it
hould be verified since lightweight cement pastes used in this research
re heterogeneous materials. For the measurements in this study, the
requency of the ultrasonic pulse was 500 kHz. With the measured
elocities, presented in Table 3, the evaluated wavelength is at least
.5 mm, which is significantly larger than the microspheres and the
EV of the material (see Fig. 5) to consider that the separation of scale
equirement is satisfied (𝑑 ≪ 𝜆).

By evaluation of the bulk and shear moduli, the other elastic pa-
ameters (𝐸 and 𝜈) can then be evaluated using classical relationships
etween elastic parameters. The measured values of elastic parameters
re shown in Table 3. It can be seen that, as expected, higher w/s
atio (CS0044 vs. CS0060, CS2744 vs. CS2760 and CS4144 vs. CS4160)
esults in pastes with lower elastic moduli. Furthermore, pastes with
GMS (CS2744, CS4144, CS2760, CS4160) have lower moduli as com-
ared to plain cement pastes (CS0044, CS0060) with the same w/s
atio.
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Table 4
Model parameters for different cement pastes.

Parameter CS2744 CS4144 CS2760 CS4160

𝑟1 (μm) 14.344 18.518 14.344 18.518
𝑟2 (μm) 15.000 20.000 15.000 20.000
𝑓HGMS 0.329 0.230 0.287 0.197
𝑓1 0.288 0.183 0.251 0.156
𝑓2 0.041 0.047 0.036 0.041
𝑓3 0.671 0.770 0.713 0.803
𝐸2 (GPa) 64.0 64.0 64.0 64.0
𝐸3 (GPa) 24.1 24.1 16.3 16.3
𝜈2 0.20 0.20 0.20 0.20
𝜈3 0.24 0.24 0.27 0.27

5.3. Model predictions considering perfect interface

For applying this homogenization model to cement pastes with
HGMS, it was considered that the matrix of these pastes was composed
of cement paste with the same elastic properties as those of CS0044
and CS0060 for each w/s ratio, respectively. In addition, Table 4 shows
all the necessary parameters for different cement pastes. The HGMS
volume fractions are evaluated from the slurries composition, specified
in Table 1 and the density of each component. The volume fractions of
phases are then evaluated using Eq. (2). The outer radius 𝑟2 is given
s the 𝐷50 of the HGMS, while the inner radius 𝑟1 is determined by
nowing the density of the HGMS (𝜌HGMS27 = 0.28 g/cm3, 𝜌HGMS41 =

0.46 g/cm3) and the borosilicate glass (𝜌2 = 2.23 g/cm3) using the
following equation:

𝑟1 = 𝑟2

[

1 −
𝜌HGMS
𝜌2

]1∕3
(22)

Finally, the properties of the borosilicate glass forming the outer
shell are obtained from the literature [45,46]. It should be emphasized
that no parameter calibration or fitting is done.

A perfect interface is first assumed between the HGMS and the
cement matrix. Figs. 10 and 11 present comparisons between the
evaluated and experimentally measured bulk and shear moduli for dif-
ferent cement pastes. It can be appreciated that the model predictions
assuming the perfect interface, needless of any calibration, are in quite
good agreement with those of laboratory tests, with differences lower
than 15%. The biggest difference between the model prediction and
experimental results is related to cement paste CS2760, which is the
lightest paste among all that were studied given the higher w/s ratio
and the lower specific weight of HGMS27 as compared to HGMS41. It
is interesting to notice that the model predictions for all the studied
pastes are slightly higher than the laboratory results.

5.4. Effect of interface between HGMS and cement matrix

The difference between the model predictions and the experimental
results, which is less than 15% for the studied samples, is probably neg-
ligible for most practical applications. This can be due to simultaneous
effects of various factors and simplifications assumptions related to the
homogenization method, the configuration of the REV, and the perfect
interface between HGMS and cement matrix. Considering the over-
estimation of the elastic parameters compared to the measured values,
as can be seen in Figs. 10 and 11, it is interesting to see if the model
predictions can be improved by considering an imperfect interface
between the HGMS and the cement matrix. The interface parameters
can be fitted to minimize the error between the model predictions
and experimental results. The studied samples have different w/s ratios
and different HGMS dimensions. Consequently, the interfaces in these
samples are not necessarily similar. However, for the sake of simplicity,
it is assumed that the interfaces in all samples have the same normal
and tangential compliances.
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Fig. 10. Comparison between experimentally evaluated bulk moduli of different
samples and model predictions considering perfect and imperfect interfaces.

Fig. 11. Comparison between experimentally evaluated shear moduli of different
samples and model predictions considering perfect and imperfect interfaces.

The fitting of interface parameters is done by evaluating the error,
defined in Eq. (23), between the model predictions and experimental
results by varying the interface parameters, 𝜂𝑛 and 𝜂𝑡, in a large span.

Error =
4
∑

𝑖=1

⎡

⎢

⎢

⎣

(

𝐾hom
𝑖 −𝐾exp

𝑖

𝐾exp
𝑖

)2

+

(

𝐺hom
𝑖 − 𝐺exp

𝑖

𝐺exp
𝑖

)2
⎤

⎥

⎥

⎦

(23)

The results are presented in the contour plot of Fig. 12. The mini-
mum error is found equal to 7.66 × 10−3 for the interface parameters
𝜂𝑛 = 1.215 μm/GPa and 𝜂𝑡 = 2.527 𝜇m/GPa. The fact that for the
fitted values 𝜂𝑛 < 𝜂𝑡 is compatible with the available information in
the literature [38,47,48]. It is interesting to mention that the evaluated
error for the case of perfect interfaces is 115 × 10−3.

The model predictions for the fitted interface parameters are pre-
sented in Figs. 10 and 11. Obviously the predictions are much closer to
the experimental values, with very small differences in bulk modulus
and almost perfect predictions for shear modulus.

6. Conclusion

An analytical model, based on the homogenization theory, is pro-
posed to predict the elastic properties of light-weight cement pastes
9

Fig. 12. Fitting of the interface parameters. Contour plot of error for different values
of normal and tangential compliances.

prepared with hollow glass microspheres. The model is simple and
needs the knowledge of the elastic properties of the cement matrix,
as well as the volume fraction of HGMS, their dimensions and elastic
properties. The existence of an imperfect interface between the micro-
spheres and the cement matrix can also be taken into account in the
model. A sensitivity analysis showed that the model results depend
particularly on the changes in the ratio of external to internal radii of
microspheres and also to cement matrix properties. The existence of an
imperfect interface between the microspheres and the cement matrix
has a limited effect on the predicted bulk modulus, but depending
on the interface parameters, can have a more important effect on the
predicted shear modulus. The model predictions have been compared
to experimental data, showing a very good comparison. Without any
parameter calibration for the case of perfect interface, the model pre-
dictions, with less than 15% difference with experimental values, are
adequate for most practical applications. The fitting of a single pair of
interface parameters, normal and tangential compliances, for all tested
slurries, permitted to significantly improve the model predictions. This
model is a useful tool for engineers in the design of lightweight cement
slurry formulations based on hollow glass microspheres.
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Appendix. Theoretical framework of the model

This appendix is dedicated to the presentation of the theoretical
framework of the model. The final equations are presented in the main
text, in a way that the model can be used without referring to the
appendix. It should be emphasized that no originality is claimed con-
cerning the equations presented in this appendix, most of the content
can be found in Hervé and Zaoui [19] and Ghabezloo [20]. However we
think that a unified presentation of this framework permits the paper
to be almost standalone and easier to read and to understand. The
model framework is presented for a general case including the effect of
imperfect interface between phases. It can be reduced to the case with
perfect interfaces by setting the interface compliances equal to zero.

A.1. Homogenization method

The aim of classical homogenization method is to replace an ac-
tual heterogeneous complex body by a fictitious homogeneous one
that behaves globally in the same way. The theoretical framework
of micromechanics modeling and homogenization method has been
presented in different papers and textbooks, e.g. [10,11]. The principles
and main equations of this framework are presented briefly in the
following.

The volume 𝑉0 of the REV (Representative Elementary Volume)
of a heterogeneous material is composed of 𝑛 different phases with
volumes 𝑉𝑘, 𝑟 = 1. . . n, and volume fractions 𝑓𝑘 = 𝑉𝑘∕𝑉0. The tensors of
elastic moduli of each phase is denoted by 𝐜𝑘. In the case of isotropy
of the solid phases, the tensor of elastic moduli can be written as
the sum of a volumetric and a deviatoric part, 𝐂𝑘 = 3𝑘𝑘𝐉 + 2𝑔𝑘𝐊,
where 𝑘𝑘 and 𝑔𝑘 are the bulk modulus and shear modulus of the
phase 𝑘 respectively. 𝐉𝑝𝑞𝑟𝑠 = 1

3
𝛿𝑝𝑞𝛿𝑟𝑠 is the volumetric part of the

ourth-order symmetric unit tensor 𝐈 and 𝐊 = 𝐈 − 𝐉 is the deviatoric
art. 𝐈 is defined as 𝐈𝑝𝑞𝑟𝑠 = 1

2
(

𝛿𝑝𝑟𝛿𝑞𝑠 + 𝛿𝑝𝑠𝛿𝑞𝑟
)

and 𝛿𝑝𝑞 stands for the
Kronecker delta. The homogenization equations for the effective elastic
properties can be derived on a REV submitted to a homogeneous strain
boundary conditions. The homogeneous strain boundary conditions are
associated to prescribed displacements 𝑢 at the boundary of the REV
as 𝑢 = 𝐄 ∶ 𝑥, where 𝑥 is the microscopic position vector and 𝐄 is
he macroscopic strain tensor. It can be shown that 𝐄 is equal to the
olume average of the microscopic compatible (i.e., derived from a
isplacement field) strain field 𝛆

(

𝑥
)

in the REV [11], 𝐄 = ⟨𝛆⟩𝑉 where
𝑧⟩𝑉 = (1∕𝑉 ) ∫𝑉 𝑧

(

𝑥
)

𝑑𝑉 stands for the volume average of quantity z
ver domain 𝑉 .

In the framework of linear elasticity, the local strain field 𝛆
(

𝑥
)

is
elated to macroscopic strain 𝐄 through fourth-order localization tensor
(

𝑥
)

:
(

𝑥
)

= 𝐀
(

𝑥
)

∶ 𝐄 (A.1)

Using the equality 𝐄 = ⟨𝛆⟩, one obtains ⟨𝐀⟩ = 𝐈. The tensor of overall
effective moduli 𝐂hom of the heterogeneous porous material is given as:

𝐂hom = ⟨𝐜 ∶ 𝐀⟩ (A.2)
10

∫

The above equation is classical and has been presented in many
different papers [e.g.10,11]. In the isotropic case, this equation is
reduced to the following forms:

𝐾hom =
𝑚
∑

𝑘=1
𝑓𝑘𝑘𝑘𝐴

𝑣
𝑘 ; 𝐺hom =

𝑚
∑

𝑘=1
𝑓𝑘𝑔𝑘𝐴

𝑑
𝑘 (A.3)

The evaluation of the effective elastic moduli needs an estimations
of the strain localization tensor 𝐀. This needs the knowledge of the
stress and strain fields in an inclusion embedded in an infinite medium
and subjected to homogeneous strain 𝐄0 at infinity. The general form
of the solution can be considered as follows:

𝜀(𝑘) = 𝐇𝑘 ∶ 𝐄0 (A.4)

where the tensor 𝐇𝑘 is a function of the elastic moduli of the inho-
mogeneity and the reference medium, 𝐂𝑘 and 𝐂0, respectively and the
geometry of the inclusion. Eshelby [27] gives the solution for the stress
and strain fields inside an ellipsoidal inhomogeneity perfectly bounded
to an infinite elastic reference medium.

As explained by Zaoui [11], the strain localization tensor can be
estimated by estimating the average mechanical state in each phase 𝑘 of
the RVE subjected to the macroscopic strain 𝐄 as that of an ellipsoidal
inhomogeneity with the same moduli, embedded in an infinite matrix
with arbitrary moduli 𝐶0 subjected to some adequate uniform strain at
infinity 𝐄0. The stress and strain field in the phase 𝑘 are thus estimated
by Eq. (A.4). The strain tensor 𝐄0 can be determined knowing that
𝐄 = ⟨𝜀⟩:

𝐄 = ⟨𝜀⟩ = ⟨𝐇⟩ ∶ 𝐄0 (A.5)

Inserting 𝐄0 from this relation in Eq. (A.4) and comparing with
Eq. (A.1), the strain localization tensor of the phase 𝑘 can be identified:

𝐀𝑘 = 𝐇𝑘 ∶ ⟨𝐇⟩

−1 (A.6)

A.1.1. Average strain in a REV with imperfect interfaces
This approach could be extended by considering the existence of an

imperfect interface between a phase and its surrounding medium. The
presence of imperfect interface results in a displacement jump given
by 𝛥𝑢𝑖 = 𝜂𝑖𝑗𝜎𝑗𝑘𝑛𝑘, where 𝜂𝑖𝑗 is interface compliance tensor. 𝜂𝑖𝑗 can be
expressed in terms of 𝜂𝑛 and 𝜂𝑡, which are respectively normal and
tangential compliances. [20,34,39].

𝜂𝑖𝑗 = 𝜂𝑡𝛿𝑖𝑗 +
(

𝜂𝑛 − 𝜂𝑡
)

𝑛𝑖𝑛𝑗 (A.7)

The average strain over the REV considering displacement jumps at
he interfaces is given by:

𝛆⟩𝑉 = 1
𝑉 ∫𝑉

𝛆
(

𝑥
)

𝑑𝑉 =
𝑚
∑

𝑘=1
𝑓𝑘𝛆𝑘 +

1
2𝑉

𝑚
∑

𝑘=1
∫𝑠

(

▵ 𝑢𝑖𝑛𝑗+ ▵ 𝑢𝑗𝑛𝑖
)

𝑑𝑠 (A.8)

The strain tensor 𝐄0 can be determined knowing that 𝐄 = ⟨𝛆⟩, by
inserting Eq. (A.4) in Eq. (A.8):

𝐄 = ⟨𝛆⟩𝑉 =
𝑛
∑

𝑟=1
𝑓𝑘𝐇𝑘 ∶ 𝐄0 +

1
2𝑉

𝑚
∑

𝑘=1
∫𝑠

(

▵ 𝑢𝑖𝑛𝑗+ ▵ 𝑢𝑗𝑛𝑖
)

𝑑𝑠 (A.9)

The term 𝛥𝑢 in Eq. (A.9) can be replaced with the expression of the
displacement jump to find:

𝐄 =
𝑚
∑

𝑘=1
𝑓𝑘𝐇𝑘 ∶ 𝐄0 +

1
2𝑉

𝑚
∑

𝑘=1
∫𝑠

(

𝜂𝑖𝑚𝜎𝑚𝑘𝑛𝑘𝑛𝑗 + 𝜂𝑗𝑚𝜎𝑚𝑘𝑛𝑘𝑛𝑖
)

𝑑𝑠 (A.10)

Considering the difficulty of the evaluation of the integral term in
he above equation, an ad hoc approximation can be formulated by re-
lacing the stress on the interface by its average over the inclusion [20,
4,37,39].
(

𝜂𝑖𝑚𝜎𝑚𝑘𝑛𝑘𝑛𝑗 + 𝜂𝑗𝑚𝜎𝑚𝑘𝑛𝑘𝑛𝑖
)

𝑑𝑠 ≃ �̄�𝑚𝑘
(

𝜂𝑖𝑚𝑛𝑘𝑛𝑗 + 𝜂𝑗𝑚𝑛𝑘𝑛𝑖
)

𝑑𝑠 (A.11)

𝑠 ∫𝑠
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∫

g

w

∫

d

𝑢

𝜎

The calculation of the integral in Eq. (A.11) needs the evaluation of
the integral ∫𝑠 𝜂𝑖𝑗𝑛𝑘𝑛𝑙𝑑𝑠. Using Eq. (A.7) this can be written as:

𝑠
𝜂𝑖𝑗𝑛𝑘𝑛𝑙𝑑𝑠 = ∫𝑠

[

𝜂𝑡𝛿𝑖𝑗 +
(

𝜂𝑛 − 𝜂𝑡
)

𝑛𝑖𝑛𝑗
]

𝑛𝑘𝑛𝑙𝑑𝑠 (A.12)

The above integral can be calculated using the following two inte-
rals evaluated over a spherical inclusion:

1
𝑠 ∫𝑠

𝑛𝑖𝑛𝑗𝑑𝑠 =
1
3
𝛿𝑖𝑗 ;

1
𝑠 ∫𝑠

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙𝑑𝑠 =
1
15

(

𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

(A.13)

Using Eqs. (A.12) and (A.13), the integral term in Eq. (A.11) can be
ritten as:

𝑠

(

𝜂𝑖𝑚𝑛𝑘𝑛𝑗 + 𝜂𝑗𝑚𝑛𝑘𝑛𝑖
)

𝑑𝑠 = 𝑠
15

[(

2𝜂𝑛 + 3𝜂𝑡
) (

𝛿𝑖𝑚𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑚𝑗
)

+2
(

𝜂𝑛 − 𝜂𝑡
)

𝛿𝑖𝑗𝛿𝑚𝑘
]

(A.14)

Knowing that 𝐈𝑖𝑗𝑚𝑘 = 1
2

(

𝛿𝑖𝑚𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑗𝑚
)

and 𝐉𝑖𝑗𝑚𝑘 = 1
3 𝛿𝑖𝑗𝛿𝑚𝑘, the

above equation can be re-written as:

∫𝑠

(

𝜂𝑖𝑚𝑛𝑘𝑛𝑗 + 𝜂𝑗𝑚𝑛𝑘𝑛𝑖
)

𝑑𝑠 = 𝑠
[

2𝜂𝑛

3
𝐉 + 4𝜂𝑛 + 6𝜂𝑡

15
𝐊
]

(A.15)

Using Eqs. (A.11) and (A.15), 𝑠 = 4𝜋𝑟2, 𝑉 = 4
3𝜋𝑟

3 for a spherical
inclusion of radius 𝑟 and 1∕𝑉 = 𝑓𝑘∕𝑉𝑘, Eq. (A.10) can be re-written as:

𝐄 =
𝑚
∑

𝑘=1
𝑓𝑘

(

𝐇𝑘 ∶ 𝐄𝟎 + 𝛔(𝑘) ∶ 𝐏(𝑘)) (A.16)

where

𝐏(𝑘) = 1
𝑟

[

𝜂𝑛𝑘𝐉 +
4𝜂𝑛𝑘 + 3𝜂𝑡𝑘

5
𝐊
]

(A.17)

By knowing that 𝛔(𝑘) = 𝐂𝑘 ∶ 𝛆(𝑘) and 𝛆(𝑘) = 𝐇(𝑘) ∶ 𝐄0 the following
can be obtained:

𝐄 =
𝑚
∑

𝑘=1
𝑓𝑘

(

𝐈 + 𝐂𝑘 ∶ 𝐏(𝑘)) ∶ 𝐇𝑘 ∶ 𝐄𝟎 =
⟨(

𝐈 + 𝐂𝑘 ∶ 𝐏(𝑘)) ∶ 𝐇𝑘
⟩

∶ 𝐄𝟎

(A.18)

Inserting 𝐄𝟎 from this equation into the 𝛆(𝑘) = 𝐇𝑘 ∶ 𝐄0 the strain
localization tensor of the phase k is identified as:

𝐀𝑘 = 𝐇𝑘 ∶
⟨(

𝐈 + 𝐂𝑘 ∶ 𝐏(𝑘)) ∶ 𝐇𝑘
⟩−1 (A.19)

Using Eqs. (A.17) and (A.19) the strain localization coefficients 𝐴𝑣𝑘
and 𝐴𝑑𝑘 in Eqs. (15) and (16) are found.

The following section is dedicated to the evaluation of the coeffi-
cients 𝐻𝑣 and 𝐻𝑑 for the REV considered in this study.

A.2. Evaluation of strain localization parameters

This part is dedicated to the derivation of the elastic strain field
in an infinite medium constituted of a 2-layered spherical inclusion,
embedded with an imperfect interface, in a matrix subjected to uniform
strain conditions at infinity. This solution is used to calculate the strain
localization coefficients for the proposed micromechanical model. The
considered model is presented in Fig. A.13. A spherical coordinate
system (𝑟, 𝜃, 𝜙) is used. The presentation of the equations follows the
same steps as in the original formulations of Hervé and Zaoui [19] and
their extension to consider imperfect interfaces by Ghabezloo [20], but
in a relatively concise manner. The interested reader may refer to the
original papers for more details.

Considering the isotropy and spherical symmetry of the model, the
general solution can be obtained by superposing the solutions of two
elementary problems: hydrostatic pressure and simple shear applied at
11

infinity
Fig. A.13. The 2-layered spherical inclusion embedded in an infinite matrix.

A.2.1. Hydrostatic pressure
A displacement in the following form is applied to the boundary of

the model:

𝑢0 =
𝜃0
3
𝑟𝑛 (A.20)

where 𝑛 is the outward normal vector to the boundary. Due to the
spherical symmetry, the problem is one-dimensional. The solution of
the displacement component 𝑢𝑟 is given in each phase by the following
form in which 𝐹𝑘 and 𝐺𝑘 (𝑘 = 1, 2) are constants which should be
etermined for each layer:

(𝑘)
𝑟 (𝑟) = 𝐹𝑘𝑟 +

𝐺𝑘
𝑟2

(A.21)

The non-zero components of the stress tensor are thus found to be:

(𝑘)
𝑟𝑟 = 3𝑘𝑘𝐹𝑘 − 4𝑔𝑘

𝐺𝑘
𝑟3

(A.22)

𝜎(𝑘)𝜃𝜃 = 𝜎(𝑘)𝜙𝜙 = 3𝑘𝑘𝐹𝑘 + 2𝑔𝑘
𝐺𝑘
𝑟3

(A.23)

The continuity of the radial stress and displacement at the interface
between phases 𝑘 and 𝑘 + 1 with radius 𝑟, considering a compliant
interface given by the tensor 𝐉′𝑘, implies that (𝑘 = 1, 2):
[

𝐉𝑘
(

𝑟𝑘
)

+ 𝐉′𝑘
(

𝑟𝑘
)]

𝐕𝑘 = 𝐉𝑘+1
(

𝑟𝑘
)

𝐕𝑘+1 (A.24)

where

𝐕𝑘 =
[

𝐹𝑘, 𝐺𝑘
]𝑇 ; 𝐉𝑘(𝑟) =

⎡

⎢

⎢

⎣

𝑟 1
𝑟2

3𝑘𝑘 −4
𝑔𝑘
𝑟3

⎤

⎥

⎥

⎦

;

𝐉′𝑘(𝑟) =
[

3𝑘𝑘𝜂𝑛𝑘 − 4
𝑟3
𝑔𝑘𝜂𝑛𝑘

0 0

]

(A.25)

The relation between vectors 𝐕𝑘+1 and 𝐕𝑘 is given by:

𝐕𝑘+1 = 𝐍(𝑘)𝐕𝑘; 𝐍(𝑘) = 𝐉−1𝑘+1
(

𝑟𝑘
) [

𝐉𝑘
(

𝑟𝑘
)

+ 𝐉′𝑘
(

𝑟𝑘
)]

(A.26)

The vectors 𝐕𝑘+1 are related to the vector 𝐕𝑘 by:

𝐕𝑘+1 = 𝐐(𝑘)𝐕𝑘; 𝐐(𝑘) =
𝑘
∏

𝑙=1
𝐍(𝑙) (A.27)

Given that in the particular case of this research there only poten-
tially exists an imperfect interface between phases 2 and 3 (HGMS and
cement matrix), 𝐉′𝑘

(

𝑟𝑘
)

will be a non-zero tensor only for 𝑘 = 2, which
stands for the contact between these phases:

𝐍(1) =

⎡

⎢

⎢

⎢

⎢

4𝑔2 + 3𝑘1
4𝑔2 + 3𝑘2

−
4(𝑔1 − 𝑔2)

𝑟31
(

4𝑔2 + 3𝑘2
)

−
3𝑟31(𝑘1 − 𝑘2) 4𝑔1 + 3𝑘2

⎤

⎥

⎥

⎥

⎥

(A.28)
⎣ 4𝑔2 + 3𝑘2 4𝑔2 + 3𝑘2 ⎦
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𝐹

𝑢

s
a
t

a
t
𝐵
i
i
𝑢
T
[

𝐵

a

𝐖

A

𝐞

𝐞

𝐍(2) =

⎡

⎢

⎢

⎢

⎢

⎣

4𝑔3𝑟2 + 3𝑘2𝑟2 + 12𝑔3𝑘2𝜂𝑛2
𝑟2

(

4𝑔3 + 3𝑘3
) −

4(𝑔2𝑟2 − 𝑔3𝑟2 + 4𝑔2𝑔3𝜂𝑛2 )

𝑟42
(

4𝑔3 + 3𝑘3
)

3𝑟22(𝑘3𝑟2 − 𝑘2𝑟2 + 3𝑘2𝑘3𝜂𝑛2 )
4𝑔3 + 3𝑘3

4𝑔2𝑟2 + 3𝑘3𝑟2 − 12𝑔2𝑘3𝜂𝑛2
𝑟2

(

4𝑔3 + 3𝑘3
)

⎤

⎥

⎥

⎥

⎥

⎦

(A.29)

To avoid a singularity at 𝑟 = 0, we should have 𝐺1 = 0. Also, given
the applied displacement at infinity, 𝐹3 =

𝜃
3

. It permits to find:

1 =
1
𝑄(2)

11

𝐹3; 𝐹2 =
𝑄(1)

11

𝑄(2)
11

𝐹3 (A.30)

𝐺2 =
𝑄(1)

21

𝑄(2)
11

𝐹3; 𝐹3 =
𝑄(2)

21

𝑄(2)
11

𝐹3 (A.31)

A.2.2. Simple shear
New boundary displacements are applied for this condition, reading

in spherical coordinates:

𝑢0𝑟 = 𝛾𝑟 sin2 𝜃 cos 2𝜙 (A.32)

𝑢0𝜃 = 𝛾𝑟 sin 𝜃 cos 𝜃 cos 2𝜙 (A.33)

𝑢0𝜙 = −𝛾𝑟 sin 𝜃 sin 2𝜙 (A.34)

The displacement field in phase 𝑖 is given by:
(𝑘)
𝑟 = 𝑢(𝑘)𝑟 (𝑟) sin2 𝜃 cos 2𝜙 (A.35)

𝑢(𝑘)𝜃 = 𝑈 (𝑘)
𝜃 (𝑟) sin 𝜃 cos 𝜃 cos 2𝜙 (A.36)

𝑢(𝑘)𝜙 = 𝑈 (𝑘)
𝜙 (𝑟) sin 𝜃 sin 2𝜙 (A.37)

where 𝑈𝑟, 𝑈𝜃 and 𝑈𝜙, given below, are functions of 𝑟:

𝑢(𝑘)𝑟 (𝑟) = 𝐴𝑘𝑟 − 6
𝜈𝑘

1 − 2𝜈𝑘
𝐵𝑘𝑟

3 + 3
𝐶𝑘
𝑟4

+
5 − 4𝜈𝑘
1 − 2𝜈𝑘

𝐷𝑘

𝑟2
(A.38)

𝑈 (𝑘)
𝜃 (𝑟) = 𝐴𝑘𝑟 −

7 − 4𝜈𝑘
1 − 2𝜈𝑘

𝐵𝑘𝑟
3 − 2

𝐶𝑘
𝑟4

+ 2
𝐷𝑘

𝑟2
(A.39)

𝑈 (𝑘)
𝜙 (𝑟) = −𝑈 (𝑘)

𝜃 (𝑟) (A.40)

Eqs. (A.35) to (A.40) represent the boundary displacement for the
imple shear condition and the resulting displacement in each phase
s a function of radius 𝑟. In these equations, the terms associated with
he constants 𝐶𝑘 and 𝐷𝑘 are divided by the radius 𝑟. For phase 1, the

initial value of the radius (𝑟 = 0) would lead to a singularity, so 𝐶1 = 0
nd 𝐷1 = 0 to avoid this singularity. Moreover, in phase 𝑛+1 the radius
ends to infinity, so the displacement values also tend to infinity, unless
𝑛+1 = 0. Then 𝐴𝑛+1 = 𝛾, so it is possible to represent the displacement

mposed in the boundary region by applying Eqs. (A.35) to (A.37) . The
nterface conditions between phases 𝑘 and 𝑘+1 imply the continuity of
𝑟, 𝑢𝜃 , 𝑢𝜙, 𝜎𝑟𝑟, 𝜎𝑟𝜃 , 𝜎𝑟𝜙, but only four of these conditions are independent.
he continuity conditions are written as:

𝐋𝑘
(

𝑟𝑘
)

+ 𝐋′
𝑘
(

𝑟𝑘
)]

𝐖𝑘 = 𝐋𝑘+1
(

𝑟𝑘
)

𝐖𝑘+1 (A.41)

where

𝐖𝑘 =
[

𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘
]𝑇 ;

𝐋𝑘(𝑟) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑟 −
6𝜈𝑘

1 − 2𝜈𝑘
𝑟3 3

𝑟4
5 − 4𝜈𝑘
1 − 2𝜈𝑘

1
𝑟2

𝑟 −
7 − 4𝜈𝑘
1 − 2𝜈𝑘

𝑟3 − 2
𝑟4

2
𝑟2

𝑔𝑘
3𝜈𝑘

1 − 2𝜈𝑘
𝑔𝑘𝑟2 −12

𝑟5
𝑔𝑘

2(𝜈𝑘 − 5)
1 − 2𝜈𝑘

𝑔𝑘
𝑟3

𝑔𝑘 −
7 + 2𝜈𝑘 𝑔𝑘𝑟2

8 𝑔𝑘
2(1 + 𝜈𝑘) 𝑔𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(A.42)
12

⎣ 1 − 2𝜈𝑘 𝑟5 1 − 2𝜈𝑘 𝑟3 ⎦
and 𝐋′
𝑘 stands for the compliant interface between two phases and can

be defined as:

𝐋′
𝑘(𝑟) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔𝑘𝜂𝑛𝑘
3𝜈𝑘

1 − 2𝜈𝑘
𝑔𝑘𝑟2𝜂𝑛𝑘 −12

𝑟5
𝑔𝑘𝜂𝑛𝑘

2
(

𝜈𝑘 − 5
)

1 − 2𝜈𝑘
1
𝑟3
𝑔𝑘𝜂𝑛𝑘

𝑔𝑘𝜂𝑡𝑘
7 + 2𝜈𝑘
1 − 2𝜈𝑘

𝑔𝑘𝑟2𝜂𝑡𝑘
8
𝑟5
𝑔𝑘𝜂𝑡𝑘

2
(

𝜈𝑘 + 1
)

1 − 2𝜈𝑘
1
𝑟3
𝑔𝑘𝜂𝑡𝑘

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.43)

Once more, by considering the imperfect interface between phases 2
and 3 (HGMS and cement matrix), the tensor 𝐋′

𝑘 (𝑟) will be not-zero only
for the contact between them (i.e. 𝑟 = 𝑟2, 𝑘 = 2). Then, the relationships
between vectors 𝐖𝑘+1 and 𝐖𝑘 are given by:

𝐖𝑘+1 = 𝐌(𝑘)𝐖𝑘 ; 𝐌(𝑘) = 𝐋−1
𝑘+1

(

𝑟𝑘
) [

𝐋𝑘
(

𝑟𝑘
)

+ 𝐋′
𝑘
(

𝑟𝑘
)]

(A.44)

The vectors 𝐖𝑘+1 are related to 𝐖1 by:

𝐖𝑘+1 = 𝐏(𝑘)𝐖1 ; 𝐏(𝑘) =
𝑘
∏

𝑙=1
𝐌(𝑙) (A.45)

As mentioned before, we have 𝐶1 = 0, 𝐷1 = 0, 𝐵3 = 0 and 𝐴3 = 𝛾.
Therefore we can obtain:

𝐴1 =
𝑃 (2)
22 𝐴3

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

(A.46)

1 = −
𝑃 (2)
21 𝐴3

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

(A.47)

nd we can obtain 𝑊2 as:

(2) =
𝐴3

𝑃 (2)
22 𝑃

(2)
11 − 𝑃 (2)

12 𝑃
(2)
21

𝐏(1)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 (2)
22

−𝑃 (2)
21

0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.48)

.2.3. Average strains in phase k
When uniform strain conditions 𝜀0 = 𝜃0

3 𝐈 + 𝐞0 apply at infinity, the
following volume and deviatoric strains in each phase write as follows:

�̄�(𝑘) =
𝐹𝑘
𝐹𝑛+1

𝜃0 (A.49)

̄(𝑘) = 1
𝐴𝑛+1

[

𝐴𝑘 −
21
5

𝑟5𝑘 − 𝑟
5
𝑘−1

(

1 − 2𝜈𝑘
) (

𝑟3𝑘 − 𝑟
3
𝑘−1

)
𝐵𝑘

]

�̄�0 (A.50)

By developing Eqs. (A.49) and (A.50) the following equations are
obtained:

�̄�(1) =

(

4𝑔2 + 3𝑘2
) (

4𝑔3 + 3𝑘3
)

𝑋
𝜃0 (A.51)

�̄�(2) =

(

4𝑔2 + 3𝑘1
) (

4𝑔3 + 3𝑘3
)

𝑋
𝜃0 (A.52)

�̄�(3) = 𝜃0 (A.53)

𝑋 =
(

4𝑔2 + 3𝑘1
)

(

4𝑔3 + 3𝑘2 +
12𝑔3𝑘2𝜂𝑛2

𝑟2

)

+ 3
(

𝑘1 − 𝑘2
)

(

4𝑔2 − 4𝑔3 +
16𝑔2𝑔3𝜂𝑛2

𝑟2

)(

𝑟1
𝑟2

)3
(A.54)

̄(1) =
21𝑃 (2)

21 𝑟
2
1 − 10𝜈1𝑃

(2)
22 + 5𝑃 (2)

22
(

5 − 10𝜈
)

(

𝑃 (2)𝑃 (2) − 𝑃 (2)𝑃 (2)
) �̄�0 (A.55)
1 11 22 12 21
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𝜃

𝜃

s

h
u

R

�̄�(2) =

−
𝑃 (2)
22
3
𝑌1 −

𝑃 (2)
21

2𝜈1 − 1
𝑌2 +

3
(

𝑟51 − 𝑟
5
2
)

5
(

𝑟31 − 𝑟
3
2
)
𝑃 (2)
21 𝑌3

5𝑔2
(

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

)

(

𝜈2 − 1
)

�̄�0 (A.56)

�̄�(3) = �̄�0 (A.57)

𝑌1 = 8𝑔1 + 7𝑔2 − 5𝜈2
(

2𝑔1 + 𝑔2
)

(A.58)

𝑌2 = 𝑟21
[

−7
(

𝑔1 − 𝑔2
)

+ 7𝜈2
(

2𝑔1 + 𝑔2
)

+ 3𝜈1
(

3𝑔1 − 24𝑔2
)]

(A.59)

𝑌3 = 7
(

𝑔1 + 4𝑔2
)

+ 5𝜈1
(

𝑔1 − 8𝑔2
)

(A.60)

If we replace the elastic properties of phase 1 with 0 (corresponding
to the void space inside the hollow microsphere), we can obtain some
reduced expressions of 𝐻𝑣

𝑘 and 𝐻𝑑
𝑘 for the REV considered in the lower

part of Fig. 4.

�̄�(1) =

(

4𝑔2 + 3𝑘2
) (

4𝑔3 + 3𝑘3
)

𝑋
𝜃0 (A.61)

̄(2) =
4𝑔2

(

4𝑔3 + 3𝑘3
)

𝑋
𝜃0 (A.62)

̄(3) = 𝜃0 (A.63)

𝑋 = 4𝑔2

(

4𝑔3 + 3𝑘2 +
12𝑔3𝑘2𝜂𝑛2

𝑟2

)

− 3𝑘2

(

4𝑔2 − 4𝑔3 +
16𝑔2𝑔3𝜂𝑛2

𝑟2

)(

𝑟1
𝑟2

)3

(A.64)

�̄�(1) =
21𝑃 (2)

21 𝑟
2
1 + 5𝑃 (2)

22

5
(

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

) �̄�0 (A.65)

�̄�(2) =
𝑃 (2)
21

5
(

𝜈2 − 1
)

(

𝑃 (2)
11 𝑃

(2)
22 − 𝑃 (2)

12 𝑃
(2)
21

)

[

𝑃 (2)
22

(

5𝜈2 − 7
)

3𝑃 (2)
21

+ 7𝑟21
(

𝜈2 − 1
)

−
84

(

𝑟51 − 𝑟
5
2
)

5
(

𝑟31 − 𝑟
3
2
)

]

�̄�0 (A.66)

�̄�(3) = �̄�0 (A.67)

Finally, having obtained the expressions of 𝐻𝑣
𝑘 and 𝐻𝑑

𝑘 , by con-
idering Eq. (A.19) and recalling the definition of 𝐂𝑘 = 3𝑘𝑘𝐉 + 2𝑔𝑘𝐊,

it is possible to obtain 𝐀𝑘 as shown in Eqs. (15) and (16). Thus, the
omogenized parameters of the composite material can be obtained by
sing Eq. (1).
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