
9.07.666

Current Understanding of the Roles
of Gut–Brain Axis in the Cognitive
Deficits Caused by Perinatal Stress
Exposure

Mara Roxana Rubinstein, Adriana Laura Burgueño, Sofia Quiroga, Miriam Ruth Wald and

Ana María Genaro

Topic Collection
How Perinatal Stress Affects Brain Plasticity in Ontogenesis

Edited by

Prof. Dr. Alexander V. Arutjunyan and Prof. Dr. Natalia V. Gulyaeva

Review

https://doi.org/10.3390/cells12131735

https://www.mdpi.com/journal/cells
https://www.scopus.com/sourceid/21100978391
https://www.ncbi.nlm.nih.gov/pubmed/?term=2073-4409
https://www.mdpi.com/journal/cells/stats
https://www.mdpi.com/journal/cells/topical_collections/brain_plasticity_ontogenesis
https://www.mdpi.com
https://doi.org/10.3390/cells12131735


Citation: Rubinstein, M.R.; Burgueño,

A.L.; Quiroga, S.; Wald, M.R.; Genaro,

A.M. Current Understanding of the

Roles of Gut–Brain Axis in the

Cognitive Deficits Caused by

Perinatal Stress Exposure. Cells 2023,

12, 1735. https://doi.org/10.3390/

cells12131735

Academic Editors: Alexander

V. Arutjunyan and Natalia

V. Gulyaeva

Received: 17 April 2023

Revised: 15 June 2023

Accepted: 19 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Current Understanding of the Roles of Gut–Brain Axis in the
Cognitive Deficits Caused by Perinatal Stress Exposure

Mara Roxana Rubinstein * , Adriana Laura Burgueño , Sofia Quiroga, Miriam Ruth Wald

and Ana María Genaro *

Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de
Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina,
Buenos Aires C1107AFF, Argentina; alburgueno@conicet.gov.ar (A.L.B.); sofiaquiroga93@gmail.com (S.Q.);
miriamruthwald@uca.edu.ar (M.R.W.)
* Correspondence: roxana.rubinstein@conicet.gov.ar (M.R.R.); amgenaro@yahoo.com.ar (A.M.G.);

Tel.: +54-11-4922-0200 (ext. 7114) (M.R.R. & A.M.G.)

Abstract: The term ‘perinatal environment’ refers to the period surrounding birth, which plays a
crucial role in brain development. It has been suggested that dynamic communication between the
neuro–immune system and gut microbiota is essential in maintaining adequate brain function. This
interaction depends on the mother’s status during pregnancy and/or the newborn environment.
Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical
window in which stress-induced immune activation and altered microbiota compositions produce
lasting behavioral consequences, although a clear causative relationship has not yet been established.
In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal
stress exposure. In this sense, early environmental enrichment exposure (including exercise) and
melatonin use in the perinatal period could be valuable in improving the negative consequences
of early adversities. The evidence presented in this review encourages the realization of studies
investigating the beneficial role of melatonin administration and environmental enrichment exposure
in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand,
direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this
treatment has not been fully demonstrated and should be explored in future studies.

Keywords: perinatal stress; cognitive deficit; gut–brain axis; environmental enrichment; melatonin

1. Introduction

The original epidemiological studies performed by David Barker in the early 1990s
showed a link between restrictions in intrauterine growth and the frequency of cardiovas-
cular diseases in adulthood. These findings led to a new field of research known as the
developmental origins of health and diseases (DOHaD), asserting that the environment in
the course of early life may influence the overall health status for a lifetime [1].

Several epidemiological studies on humans and experimental research on animals
have demonstrated that an adverse perinatal environment has late negative consequences
during life. These effects are mediated by epigenetic mechanisms, defined as heritable
changes in gene expression that do not alter the underlying nucleotide sequence. These
mechanisms include CpG methylation, chromatin remodeling, and regulatory noncoding
RNAs [2].

Maternal health status is crucial in the development of the offspring, including physi-
ological health and psychological functions. In the intrauterine stage, a fetus’ physiology
is influenced by the psychological state of the pregnant mother. Pregnancy is a complex
period full of changes, making women more vulnerable to stressful situations. Some
authors refer to pregnancy as a critical period with high psychological sensitivity. The
stress experienced by an individual during gestation is called prenatal stress (PS). During
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pregnancy, the mother’s endocrine, nervous, and immune systems adapt to promote a
successful pregnancy. Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis
has been a classical mechanism associated with the abnormalities induced by perinatal
stress exposure (PNS). Physiological adaptive changes in pregnant women include a trend
towards reduced stress responsiveness in the HPA axis and a switch in the immune system
to favor an anti-inflammatory profile [3]. During the fetal period, the placenta forms a
barrier against maternal glucocorticoids (GCs) through the activity of the glucocorticoid
receptor and 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2, the enzyme that con-
verts GCs into inactive metabolites [4]. On the other hand, the enzyme 11β-HSD type 1
transforms inactive GCs to active GCs. Both enzymes provide an optimal cortisol level at
the feto–maternal interface [5]. Stress-induced increases in maternal HPA axis activity may
affect fetal HPA development and set lasting effects of stress during development [6].

Nowadays, there is a substantial body of evidence showing that PS is associated
with detrimental health outcomes and neurobehavioral negative consequences in the
offspring [7]. Animal studies have shown that PS impairs learning and memory and
induces anxiety and depression-like behaviors in offspring. PS exposure has been described
as causing stable, long-term changes to the central and peripheral stress response systems,
increasing vulnerability to subsequent stress exposure in adulthood [8].

On the other hand, it was reported that the first thousand days of an infant’s life are
essential for the child’s overall development and adult mental health. These periods are of
significant vulnerability and may be influenced by internal and external risk factors [9].

Table 1 presents the articles, reviews, and meta-analyses performed in the last 10 years
that show the principal findings on cognitive deficit caused by PNS in both experimental
and clinical studies.

It is recognized that inflammation plays an important role in gene–environment
interactions in neurodevelopmental disorders. The immune responses to environmental
stimuli, such as stress in the perinatal period, can affect the neuro–immune signaling crucial
to brain development [10,11].

The gut microbiota of both mother and infant is considered an important underlying
contributor to fetal development. It is accepted that alterations in the commensal microor-
ganisms in the body, especially during the first three years of life, can leave a lasting and
potential footprint on health, contributing to the pathogenesis of multiple disorders [12].
Recently, the existence of a gut–brain axis was proposed as a bidirectional communication
system that includes neural, immune, endocrine, and metabolic signaling [13].

In this review, we show experimental and clinical evidence of the role of the gut–
brain axis in the early phase of brain development and, moreover, how PNS induces the
disruption of this communication system, affecting cognitive performance in the offspring.
Finally, we discuss potential early pharmacological and non-pharmacological treatments
for preventing the deleterious effects of PNS. In this sense, melatonin use in the perinatal
period and early enriched environment exposure could be valuable in reversing the negative
consequences of early adversities.
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Table 1. Overview of (a) articles, (b) meta-analyses, and (c) reviews from the last 10 years about
perinatal stress effects and cognitive deficits in the offspring.

(a)

Type of Paper Cohort Article Sex Affected Mechanism

Article

Animals

Suenaga et al. (2012) [14]
Different effect in
males and females

Changes in HP neuronal and
glial markers

Adler and Schmauss (2016) [15] Non-specified
↓ HDAC1 levels at promotors of
distinct plasticity-associated genes

Wang et al. (2016) [16]
Females more
affected than males

GluR expression changes within HP,
PFC, and mammillary body

Reincke and Hanganu-Opatz
(2017) [17]

Males more
affected than
females

Disturbed communication between
PFC and HP

de Azeredo et al. (2017) [18]
Females more
affected than males

Disruption of CDH adhesion
function in HP

Zhang et al. (2017) [19] Tested in males
↑ Autophagy level in the HP of
male-offspring

Pascuan et al. (2017) [8] Females
↓ BDNF, ↑ glucocorticoid receptors,
and an alteration of Th1/Th2
in the HP

Goodwil et al. (2018) [20] Females
↓ Expression and density of
interneurons parvalbumin and in
orbitofrontal cortex

Youssef et al. (2019) [21] Both sexes
Cognitive deficits dependent on the
estrous cycle phase in female

Chen et al. (2020) [22] Both sexes
↑ Level of interleukin-18 in the
dorsal and ventral HP

Li et al. (2020) [23] Non-specified
Oxidative phosphorylation disorders
in hippocampal neurons

Moura et al. (2020) [24] Both sexes
Interfering with dentate gyrus
assembly, affecting
hippocampal function

Reshetnikov et al. (2020) [25] Females
↓ The number of mature neurons
in CA3

Kajimoto et al. (2021) [26] Non-specified
↑ Hippocampal apoptotic response
and downregulation of central
serotonin pathway

Human

Laplante et al. (2018) [27]
Different effect in
males and females

Non-specified

McQuaid et al. (2019) [28]
No significant
sex-specific
differences

↑ Gray matter density in
bilateral PPC

Guo et al. (2020) [29]
No significant
sex-specific
differences

Non-specified

Cao-Lei et al. (2021) [30]
No significant
sex-specific
differences

Individual’s genotype alters their
susceptibility to the effects of PS



Cells 2023, 12, 1735 4 of 24

Table 1. Cont.

(b)

Type of paper Cohort Reference
N◦ of Studies
Included

N◦ of Participants
Included

Age
Principal
Findings

Meta-analyses

Animals

Bonapersona
et al. (2019)
[31]

212 8600 rodents 12 weeks

Promoted
memory
formation during
stressful learning,
but impaired
non-stressful
learning

Rocha et al.
(2021) [32]

45 451–763 rodents >25 days

Decreased
memory
dependent on
dorsal
hippocampus

Human

Tarabulsy
et al. (2014)
[33]

11
5903 mother–child
dyads

0–60 months

Relative low
relation between
PS and child
cognitive
outcome

Goodman
et al. (2019)
[34]

26
26,976 human
adults

Non-specified

Exposure to early
life stress
associated with
poorer working
memory

Delagneau
et al. (2022)
[7]

22 23,307 childrens
3 months–
9 years

Weak negative
association
between PS
and/or anxiety
exposure and
children’s general
intellectual
development

(c)

Type of Paper Reference Sex Affected Mechanism

Review

Krugers and Joëls (2014) [35] Non-specified
Alteration of the structure and function of the HP,
amygdala, and PFC areas

Glover (2014) [36] Non-specified
Increased exposure of the fetus to cortisol and serotonin,
raised levels of inflammatory cytokines

Glover (2015) [37] Non-specified Non-specified

Hodes and Epperson
(2019) [38]

Males
Lack of compensatory mechanisms and alterations in
epigenetic regulation and organizational effects of
hormones

Abbink et al. (2019) [39] Non-specified Astrocyte dysfunction

Lautarescu et al. (2019) [40] Non-specified Cortical thinning and an enlarged amygdala

Van den Bergh (2020) [41] Non-specified
Aberrations in neurodevelopment, functional and structural
brain connectivity, changes in HPA axis and autonomous
nervous system

Abbreviations used: ↓: decrease, ↑: increase, PPC: posterior parietal cortex, BDNF: brain-derived neurotrophic
factor, Th: T helper, CA3: Cornu Ammonis 3, HDAC: histone deacetylase, GluR: glutamate receptor, HP: hippocam-
pus, PFC: prefrontal cortex, CDH: cadherin. HPA: hypothalamic–pituitary–adrenal axis. PS: prenatal stress.
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2. Gut–Brain Axis Role in Physiological and Pathological States

Microbiota is the group of microorganisms (commensal, symbiotic, and pathogenic)
that are present in a defined environment [42]. Intestinal microbiota is involved in many
processes, such as vitamin and nutrient synthesis, fiber digestion, and intestinal epithelial
and mucosal barrier maintenance; additionally, it intervenes in intestinal defense against
pathogens and modulates the immune system, participating in its development and reg-
ulation of immune responses [43]. Alternatively, a disrupted gut microbiota (dysbiosis)
is associated with many diseases, including irritable bowel syndrome, allergies, cardio-
vascular disease, obesity, diabetes, and neurodevelopmental, behavioral and cognitive
disorders [44]. An increase in intestinal permeability has been shown in animals with
dysbiosis, leading to a rise in endotoxin circulation and immune activation [45].

Microbial exposure starts at birth or even in utero, but it is modified by factors such
as diet, age, host genetics, antibiotic use, lifestyle, and environmental factors [46]. Highly
variable microbial compositions and diversity have been demonstrated through sequencing
studies across populations. Nevertheless, the main microbial components have been
identified, but the relative proportions and species present may vary from one individual
to another [47,48].

The adult gut microbiota is composed mainly of the phyla Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, Verrucomicrobia, and Fusobacteria. Between 70 and 90%
of the total abundance is composed of the phyla Firmicutes and Bacteroidetes. Promi-
nent genera from Bacteroidetes phylum is represented by Bacteroides, Parabacteroides, and
Prevotella. In the phylum Firmicutes, Clostridium, Lactobacillus, Streptococcus, Enterococcus,
Eubacterium, and Ruminococcus, among others, are included. The phylum Actinobacteria
accounts for less than 10% of the total gut microbiota, and its prominent genera are Bifi-
dobacterium and Collinsella. The Proteobacteria phylum constitutes less than 2% of total
abundance, and Helicobacter and Escherichia are the principal genera. Phyla Fusobacteria
and Verrucomicrobia constitute less than 3% of the total gut microbial diversity and are
dominated by the Fusobacterium and Akkermansia genera, respectively [49]. In general, it
is accepted that Bifidobacterium and Lactobacillus strains provide benefits to the host and
are commonly used as probiotics [50]. Recently, new beneficial gut bacterial species have
been identified, including Faecalibacterium prausnitzii, Ruminococcus bromii, and Akkermansia
muciniphila [50]. Faecalibacterium prausnitzii has anti-inflammatory properties and is one of
the main producers of butyrate, Ruminococcus bromii is a fundamental species for degrading
resistant starch that allows other bacteria to utilize the breakdown products, and Akker-
mansia muciniphila is a mucin-degrading bacterium providing oligosaccharides from mucin
to other bacteria and produces acetate and propionate, which butyrate producers use. Its
decrease has been associated with obesity and other metabolic diseases. On the other
hand, pathobionts are opportunistic bacteria species with the potential to turn pathogenic
under adverse conditions [51]. Their expansion occurs when there is an imbalance in the
microbiota. Examples of pathobionts include Clostridioides difficile, Helicobacter hepaticus,
Helicobacter pylori, segmented filamentous bacteria (SFB), invasive Escherichia coli, Proteus
mirabilis, Klebsiella pneumoniae, Prevotellaceae, TM7, and vancomycin-resistant Enterococcus
spp [51]. The beneficial use of prebiotics (nutrients that are degraded by gut microbiota,
stimulating the growth of limited bacterial species) and probiotics (live microorganisms
that provide a benefit on the host) to restore microbial composition has been known for
many years. In general, probiotic intervention studies have used strains of bifidobacteria and
lactobacilli, as they are recognized as safe, and their administration has shown effectiveness
against many diseases, such as obesity, insulin resistance syndrome, type 2 diabetes, and
non-alcoholic fatty liver disease, among others [52].

Using germ-free animals, it was discovered that the gut microbiota participates in the
development, stabilization, and maturation of the immune system by shaping the immune
tolerance and promoting the differentiation of immune cells [53].

The gut–brain axis is defined as the bidirectional communication between the central
and enteric nervous systems. It consists of the autonomic nervous system (including the va-
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gus nerve), the HPA axis, the endocrine system, the immune system, and bacterial products
and metabolites [54]. Figure 1 shows the communication pathways in the gut–brain axis. It
has been shown that the gut microbiota contributes to neurodevelopment; germ-free mice
show a decrease in anxiety-like behavior [55–57], reduced social behavior [58,59], memory
deficits [60], and hyperreactivity on the HPA axis after restraint stress [61]. Furthermore,
the production of neuroactive molecules can be modulated by gut microorganisms in
both humans and mice [54]. The Lactobacillus, Bifidobacteria, Enterococcus, and Streptococcus
species influence serotonin, GABA, and acetylcholine, thus affecting brain physiology [54].
Moreover, microbial metabolites from dietary tryptophan, a serotonin precursor, can act on
microglia activation and astrocytes, modulating neuroinflammation [62]. Fermentation of
dietary fibers by microbiota produces short-chain fatty acids (SCFAs): butyrate, propionate,
and acetate. These products promote gut health by improving the integrity of the mucosal
barrier and mucus production and reducing inflammation. They can cross the blood–brain
barrier and participate in maintaining its integrity, preserving brain homeostasis [43,63,64].

Figure 1. Cross-talk of the gut–brain axis. Different pathways participate in the bidirectional com-
munication modulating gut–brain homeostasis. Gut dysbiosis affects neuropsychiatric health by
inducing alterations in the signaling pathways of the gut–brain axis. GABA: gamma-aminobutyric
acid, IL: interleukin, TNF: tumor necrosis factor, HPA: hypothalamic–pituitary–adrenal axis. SCFAs:
short-chain fatty acids. Figure was created with the BioRender.com.

In addition, many studies have demonstrated that stress can modulate microbiota
compositions and reduce the richness and diversity of the gut microbiota [65–67]. Even
a single 2 h exposure to a social stressor significantly changed the microbial profile and
reduced the proportion of the main phyla in mice [68].

Perinatal maternal health significantly affects the offspring’s development. Moreover,
it has been shown that PNS alters maternal microbiota and can be transmitted to the
progeny [69]. The initial community that colonizes a newborn is provided by maternal
vaginal and gut microbiota. Thus, any disturbance in maternal microbiota is transmitted
to the offspring, disturbing their neuro–immune development and eliciting cognitive
impairment and mood disorders, among other adverse health outcomes, in the progeny [69].
Accordingly, the mode of delivery (vaginal delivery or cesarean delivery) is fundamental,
but at four months postpartum, the microbial community in the infant’s gut is replaced by
microbial strains more similar to the maternal gut microbiota [70,71].

BioRender.com
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2.1. Perinatal Stress and Gut–Brain Axis

There has been an explosion of studies describing alterations in microbial compositions
at different life periods after PNS in both animals and humans. A dysbiotic microbiota has
been described in pregnant mice after stress exposure [72].

2.1.1. Animal Studies

Exposure of pregnant mice to chronic variable stress during gestational days one
to seven led to changes in fecal microbiota, showing a different shift in the microbial
community structure between early and late pregnancy in mice exposed to stress [73].
Regarding the vaginal microbiota, microbial structures and compositions were altered in
stressed dams, enabling the transmission of the altered communities during the delivery of
the newborns [73]. The vaginal abundance of Lactobacillus was reduced after PS, decreasing
this bacteria in the offspring [74]. The authors proposed that early PS may influence
offspring development through alterations in gut microbial composition during pregnancy
and the transmission of a dysbiotic vaginal microbiome at birth. Furthermore, a distinctive
colonic and plasma metabolome was found in PS pups vs. control [74]. To study the direct
role of maternal microbiota on offspring, the authors delivered control and PS pups by
C-section and colonized the newborns with microbiota from either control or stress-exposed
mothers [75]. The results showed a similar phenotype (altered microbiota compositions,
changes in body weight, and increased corticosterone responses to an acute stressor) in the
control offspring transplanted with vaginal microbiota from stress-exposed dams and in
stress-exposed offspring. In contrast, PS offspring transplanted with vaginal microbiota
from the control dams did not totally rescue the PS-exposed phenotype [75]. Thus, the
effects of PS on offspring are not only a result of altered vaginal and gut microbiota,
but instead a complex interplay between various factors, such as the impact of maternal
antibodies or metabolites on the fetal gut [75].

In another model, C57BL/6 pregnant mice were exposed to 2 h-a day restraint stress
between embryonic days 10 and 16. Microbial stool communities differed significantly
between the stressed and control dams [76]. In the placenta, despite a low bacterial load, the
sequences in the principal component analysis plotted differently between stressed and non-
stressed dams. Interleukin (IL)-1β levels were elevated and the brain-derived neurotrophic
factor (BDNF) was decreased in the placentas of stressed dams [76]. Intriguingly, different
results were found in male and female offspring. Increased IL-1β was found in the fetal
brains of PS female mice, while no changes were detected in the adult amygdalae. For BDNF,
no significant changes were found in the fetal brain, but a decrease in the adult amygdala
was observed in females born from stressed dams. These results were accompanied by
cognitive impairment [76]. Regarding the gut microbiota, adult females showed differences
in the overall microbial community and in the relative abundance of the main phyla,
Bacteroidetes and Firmicutes, between the PS and control offspring [76]. Males born from
stressed mothers did not show cognitive impairment, but they showed a reduction in social
behavior. Increased IL-1β and IL-6 levels were found in the cortex, and a different gut
microbial community with differences in the relative abundance of bacterial taxa were
found in the PS males [77]. The alterations described in these models showed an intricate
system where PS exposure leads to alteration in cognition that could be mediated through
modifications in microbiota and inflammation. This was confirmed using C-C motif
chemokine ligand (CCL2)−/− and germ-free mice [78]. Germ-free mice exposed to PS were
unable to induce placental and fetal brain inflammation (no increase in the chemokine CCL2
and IL-6). Thus, the immune process that occurs in utero after PS exposure is mediated
by maternal microbes. CCL2−/− mice exposed to PS failed to exhibit an increased IL-6
in the fetal brain, proving a complex interaction between the maternal microbiota and
inflammation [78].

PS has long-term effects on an offspring’s gut microbiota. C57BL/6 mice were sub-
jected to restrain stress from embryonic days 0.5 to 19.5, and their fecal microbiota was
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measured in 8-week-old offspring, showing alterations in richness, diversity, and commu-
nity structure [79].

In rats exposed to restrain stress from embryonic days 14 to 20, there was no difference
in microbial diversity or in relative abundance at the phyla level at four months of age [80].
Nevertheless, PS rats had a higher abundance in some families in the Clostridiales order
and a reduced abundance in some of the Lactobacillales order. These animals also showed
a hyperactive HPA axis response to stress, increased locomotor activity, and impaired
cognitive function [80]. However, using a model of chronic, unpredictable mild stress
during the 21 days of gestation in rats, a decrease in richness and diversity in maternal
and offspring gut microbiota was found [81]. Additionally, there was a reduction in
the abundance of Lactobacillaceae and an increase in Muribaculaceae in PS offspring. In
parallel, changes in hippocampal structure and a decreased expression and signaling of
BDNF/CREB were observed [81].

Regarding probiotic use, there are a few preclinical studies administrating probiotics
to the mother and/or the offspring in the context of PNS exposure. These studies showed a
reversal of behavioral deficits provoked by PNS exposure [82–85].

2.1.2. Clinical Evidence

Many authors have assessed the effects of stress during pregnancy on adverse out-
comes [86]. High levels of perceived stress or high cortisol levels were associated with
intrauterine growth restriction, low gestational age and anthropometric measures, and
poor infant neurodevelopment [86]. Interestingly, some studies have been performed on
the association between PS and gut microbiota in humans.

A project, part of the Finn Brain Birth Cohort study, was developed to study the role
of early life exposure on infant fecal microbiota [87]. For this project, 398 mothers were in-
cluded, and an infant stool sample was taken at 2.5 months of age. The mothers completed
questionnaires to evaluate maternal psychological stress during gestation. In addition, hair
cortisol levels were measured at gestational week 24. Positive associations were found
between maternal PS and bacterial genera from Proteobacteria phylum in infants, and a
negative association was found with Akkermansia. In contrast, hair cortisol levels were neg-
atively associated with Lactobacillus. There was no association with microbial diversity [87].
In a Dutch cohort of 56 vaginally born infants followed for 110 days after birth to study the
development of the infant intestinal microbiota [88], participants were divided into low
maternal stress and high maternal stress categories according to the scoring in the question-
naire responses of the mothers and their salivary cortisol measured at week 37 of pregnancy.
A high relative abundance of the Proteobacteria group and low relative abundance of lactic
acid bacteria and bifidobacteria were found in infants of mothers with high stress. The
change in microbial compositions was related to increased gastrointestinal symptoms and
allergic reactions reported by the mothers [88]. As part of the Healthy Babies Before Birth
(HB3) longitudinal study, 46 pregnant women from the USA were enrolled and interviewed.
Blood samples and medical records were collected at early, mid, and late pregnancy and at
4–8 weeks, 5–7 months, and 11–13 months postpartum [89]. Infant stool samples were taken
at the postpartum visits. High anxiety and stress reported by the mothers were associated
with reduced alpha diversity indices at 5–7 and 11–13 months postpartum. The taxonomic
analysis revealed a positive association between low anxiety and low perceived stress
with Bifidobacterium dentium, Bifidobacterium longum, and Lactobacillus rhamnosus, known as
beneficial microbes. Additionally, prenatal maternal cytokines IL-6, IL-8, and IL-10 and the
tumor necrosis factor (TNF)-α were associated with Bifidobacterium dentium, Bifidobacterium
longum, Lactobacillus rhamnosus, and Akkermansia muciniphila [89]. These results showed
that PS was associated with changes in the infant microbial community that may affect
offspring health, indicating which maternal factors may be involved.

A similar study was conducted on Galápagos’ San Cristóbal island, Ecuador, on
25 pregnant women [90]. The women completed surveys about food insecurity, social
support, depression, and stress, and salivary samples were taken for cortisol measurement
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during and after pregnancy. Infant stool samples were collected at two months of age.
Results showed an association between maternal depression, stress, and high cortisol levels
and a lower Shannon diversity index. Additionally, differences in beta diversity indices
were found when comparing low and high levels of maternal and infant cortisol [90]. In
addition, there is an added relevance to this study that lies in the sample’s origins: most
microbiota research is performed in industrialized countries from North America, Europe,
and China [91]; thus, few data come from South America as in this particular study.

In a very interesting longitudinal study [92], fecal samples from 89 one-year-old infants
were collected and used for microbial analysis. Cognitive testing was performed in the
participants at one and two years of age. A microbial cluster analysis identified three
groups of infants that differed significantly at the cognitive testing at age two. In addition,
a negative correlation was found between alpha diversity and cognitive performance (a
higher alpha diversity was associated with a lower cognitive performance) [92]. Although
this was a longitudinal study and no causal role can be attributed to this correlation, it
shows an association between microbial composition and cognitive performance in infants.

There have been a few trials studying the effects of probiotic supplementation on
prenatal maternal anxiety and depression. However, conflicting results were found; in
some, there was no difference between placebo and probiotic treatment [93,94], and in
others, a positive reduction in anxiety and depression was found [95]. Moreover, these
studies did not consider the effects of supplementation in children.

The evidence described above affirms the importance of the gut–brain axis interaction
in development and health. Psychological stress could be a factor that alters the dialogue
between gut and brain and may lead to cognitive impairment, among other disorders.
Future studies should evaluate the causality relations among PNS, microbial alterations,
and offspring development.

3. Environmental Enrichment

Environmental enrichment (EE) is defined as the environment causing brain stim-
ulation as a result of physical or social elements. EE, through higher physical, sensory,
cognitive, and social stimulation, induces anatomical and molecular changes within the
brain, resulting in significant improvements in sensorimotor and cognitive function in
animal models of disease [96].

Donald Hebb [97] was the first to describe the relationship between EE and cognition
and behavior. Hebb noted that the animals he had bought for his children, which were
free, performed better on subsequent behavioral tasks than the rats accommodated in the
laboratory cages. Then, there were a variety of variables, such as species, age, and sex,
contributing to different results [98].

Moreover, it was shown that EE induces changes in brain neurochemistry and physiol-
ogy. Several aspects of hippocampal function–such as neurogenesis, long-term potentiation
and dendritic spine growth, neurotrophin mRNA expression, and the activation of mitogen-
activated protein kinase (MAPK)–as well as cyclic adenosine monophosphate (cAMP) and
its response element-binding protein (CREB) are increased after EE exposure [99].

On the neuronal level, EE has increased the size of neuronal cell bodies and nuclei,
the number and size of dendrites and dendritic branching, and the number of dendritic
spines [100,101]. Additionally, EE has altered glial cells in the brain [102,103].

Rosenzweig et al. [104] described in animals for the first time that EE incremented the
activity of acetylcholinesterase (AChE), suggesting that EE impacts the cholinergic system.
Posterior studies have supported this observation and extended it to other neurotrans-
mitter systems with diffuse projections to the entire brain, such as the serotonergic and
norepinephrine systems [105].

3.1. Animal Studies

EE has been proposed as a treatment for enhancing cognitive performance in ro-
dents [106,107]. It is accepted that residing in EE conditions gives animals an optimal state,



Cells 2023, 12, 1735 10 of 24

leading to an improvement in their cognitive activities and enhancing exploration, social
interaction, and physical exercise [108]. This practice induces a positive neurobiological
change [109]. Thus, it has been shown that EE improved behavioral, cellular, and molecular
alterations in animal models of aging and neurological and mental disorders [108]. In
Table 2, the beneficial effects of EE exposure in animal models of PNS are shown.

As mentioned, a relationship between early-life stress and cognitive deficits in animals
and humans is widely documented. High cortisol levels, as induced by stress, have led
to reduced neuronal survival, neuronal processes, and neurogenesis in brain regions that
express a high density of glucocorticoid receptors, such as the hippocampus [110]. EE
exposure in adolescent rats has been described as abolishing the deleterious effect induced
by PS. Indeed, the animals exhibited improved social play behavior, the regularization of
several circadian rhythms, and decreased anxiety and HPA axis reactivity [111].

Maternal separation (MS) during the postnatal period is another model of PNS that
results in a greater response to stressors in adult life and the development of stress-related
disorders, including anxiety and depression. MS has been reported to induce social and
memory deficits in adult rodents. It has been shown that MS results in long-lasting HPA
axis hyperactivity and memory impairment. These results were associated with an increase
in arginine vasopressin expression due to DNA hypomethylation of the promoter region
of this gene [112]. Adaptation to stress hormones shapes the glutamatergic response and
hippocampal synaptic plasticity, thus modulating cognitive function [113]. In the MS model,
EE increased the expression of BDNF, promoting the growth and maturation of neurons.
It was demonstrated for MS that EE “rescued” neural plasticity and decreased anxiety by
normalizing the structural enlargement of the basolateral amygdala [114]. EE appears to
act as a developmental enhancer for balancing a previous lack of inputs or for boosting
“normal” development.

EE has been described as increasing the trafficking of glutamate receptor subunits to the
postsynaptic membrane in neurons of the hippocampus and other brain regions [115,116]. A
possible role for the hippocampal corticotropin-releasing hormone (CRH) was suggested [117]
in glutamatergic synaptic dysfunction and memory impairment in MS rats. When offspring
exposed to MS were treated with a CRH type 1 receptor blocker, the authors observed that
the escape latency time decreased, and the time spent in the target quadrant increased in the
Morris water maze test. These findings suggest that regulation of CRH signaling via the type
1 receptor mediates hippocampal glutamatergic synaptic dysfunction induced by MS and
memory impairment in rats. Furthermore, it was observed that histone hyperacetylation and
DNA hypomethylation might be responsible for the increased hippocampal Crh expression in
MS rats. The authors found similar cognitive improvements to those obtained by blocking
the CRH type 1 receptor when exposing MS rats to EE. Thus, they suggested that EE might
mitigate the hippocampal glutamatergic synaptic dysfunction and memory impairment
induced by MS through the epigenetic suppression of Crh [118].

Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the
brain, plays a master role in learning, memory [119], and synaptic plasticity [120]. In partic-
ular, GABAA receptors play a critical role in memory performance [121]. The hippocampus
possesses numerous types of GABAergic neurons [122]. It has been reported that the
administration of a GABAA receptor antagonist can enhance memory consolidation [123].
In addition, stress and corticosterone increased GABAergic transmission [124] and GABAA
receptor expression [125] in the hippocampus.

It has been reported that EE reduced GABAergic inhibition by compensating for cogni-
tive deficits and increasing synaptic plasticity in a murine model of Down syndrome [126].
Furthermore, it has also been reported that EE might reduce anxiety-related behaviors
through its action on the GABAergic inhibitory system [127].

Recently, using a model of prenatal noise stress [128], it was reported that GABAer-
gic agonist administration significantly decreased the effects of EE on spatial learning in
stressed animals. Furthermore, EE and GABAergic antagonist administration individually
enhanced hippocampal-dependent cognitive function. The authors proposed that there
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might be a cross interaction between EE and the suppression of GABAergic neurotransmis-
sion, as both improved hippocampal-dependent cognitive function.

It has been shown that GABAA antagonist administration can improve memory by in-
creasing BDNF expression in the hippocampus [123,129]. Through changes in postsynaptic
GABAA receptor expression and tonic GABAergic inhibition, corticosterone has also been
reported to alter GABAergic signaling [130].

BDNF is critical in synapse formation, neuronal survival, and neuronal growth. It
appears to be involved in mediating the effects of environmental manipulation on brain
functioning during early life stages [131]. Furthermore, BDNF expression is sensitive to
adverse life experiences [132,133]. It has been proposed that the BDNF profile of enriched
animals may represent the neurobiological correlate of their resilience phenotype in a
stressful situation [134].

Decreased BDNF levels have been reported in several brain regions of adult rats
exposed to MS [135–139]. In addition, an increase in BDNF expression levels induced by EE
was found in mice exposed to MS, restoring spatial memory deficits. This suggests that an
increase in BDNF may be a prerequisite for the observed behavioral effects [139]. However,
BDNF levels have been found to increase, decrease, or stay the same depending on the
brain area under study [118,140], the duration of MS exposure, and the developmental
period of that exposure. These findings show the complexity of the mechanisms affecting
synaptic plasticity in the face of an adverse early life event.

Finally, EE improved spatial memory and prevented the degradation of attention
performance in aged rats [141]. Moreover, EE was shown to increase the ability to acquire
and use spatial information and to promote neurogenesis restoration in aged rats, probably
as a result of the increased survival of neurons in the basalo–cortical system [142].

In a recent meta-analysis evaluating the effects of EE and stress on learning and
memory in rodents, EE ameliorated the detrimental effects of stress on learning and memory.
Moreover, there was a significant synergistic interaction between EE and stress, with EE
providing a significantly greater benefit in stressed individuals than in individuals not
exposed to stress manipulation [143].

The evidence mentioned above confirms the positive influence of EE exposure and
a clear relation between early life experience and later brain structure and function. The
relationship between childhood experience and normal brain development in humans is
less documented. However, it has been shown that social environments that are extremely
enriched or adverse can influence hippocampal volume [144].

3.2. Clinical Evidence

Clinical studies have shown that stimulation from both surrounding sources and EE
exert a direct impact on the structural networks of the human brain [145,146]. In humans,
it is impossible to control for all factors that might be considered as EE. Several authors
have shown that physical exercise can produce some of the beneficial effects of EE on the
brain and behavior [147]. Moreover, humans tend to live in environments rich in sensory
stimuli, and where a person lives may be associated with differences in brain structure. A
positive association has been observed between living near forests and amygdala integrity,
suggesting that geographical characteristics may play an essential role in environmental
enrichment [148]. In children, it was reported that, despite improving access to education
worldwide, there is still an association between a child’s socio–economic status and their
scores on performance tests and school grades [149]. Differences have also been observed
in the brain structures of children and adolescents from families with different income
levels, particularly in brain regions related to language, reading, executive function, and
spatial skills [150,151]. It was suggested that, from an early age, parents’ socio-economic
status could influence a child’s cognitive abilities, impacting their educational future [152].
Some authors have proposed that the socioeconomic differences observed are due to more
educated parents, who are better informed about protective or deleterious factors and can
ensure optimal child development as early as prenatal life [153,154]. The time parents spend
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with their children, in the form of physical or cultural activities with either or both parents,
is relevant, but so is their overall exposure to discussion and social interaction [155,156].
In addition, it was found that more positive feelings of family dynamics were associated
with large hippocampal CA1 and CA2/3 volumes, regardless of age and controlling for
socioeconomic status [144].

In the United States, there is an enrichment program called Head Start. It was launched
in 1965 to prepare low-income children (between three and five years old) for kindergarten
by providing school, social, health, and nutritional support. This program also incorporates
parents. The results of this program present evidence in favor [157] and against [158] the
program. The Head Start Impact Study (HSIS) is a randomized controlled trial that studied
4442 children aged three-to-four years through the third grade, and the results were recently
published. The authors found that the Head Start program had positive short-term effects
on several cognitive assessments but did not affect the social–emotional level [159].

The above findings highlight the potential of EE as an encouraging, non-invasive
strategy to prevent deficits in cognitive function induced by PNS. Moreover, accumulating
evidence suggests that the gut microbiome might be the key connection between positive
stimulus and cognitive function. It was observed that changes in gut microbiota improved
cognitive alteration induced by different noxas [160,161].

3.3. Exercise as a Promissory Approach to Improving the Effects of EE

Nowadays, it is completely accepted that physical activity is an effective way to
increase cognitive and emotional health in many psychiatric conditions. In particular,
several studies have demonstrated that physical activity significantly improved brain
function, counteracting the negative effects of aging on cognitive performance and reducing
the risk of dementia [162]. Interestingly, it was suggested that physical activity in humans
correlates with the gut microbiome, which could prevent the incidence and development
of Alzheimer’s disease [163]. However, there are no studies that have analyzed the effects
of physical activity on cognitive deficits induced by PNS.

In rodents, the effects of physical activity or EE on behavior, memory, neurobiology,
and underlying molecular biology were investigated individually but not in combination.
It was found in rodents that short-term EE improved age-related cognitive decline and
anxiety-like behavior without altering hippocampal gene expression [164]. In contrast,
physical activity had a detrimental effect on both cognitive- and affective-like behaviors at a
young age but not at a middle or late middle age, despite altering hippocampal gene expres-
sion [164]. Rodent models of aerobic exercise either use involuntary treadmill-running or
voluntary wheel-running paradigms. Using these models, it was observed that voluntary
exercise had beneficial effects and, on the contrary, involuntary exercise upregulated the
subject’s stress response, leading to a diminished neuroprotective effect [165,166].

The effects of EE with or without a running wheel were studied, and a memory
improvement due solely to the cognitive and sensory stimulation produced by EE was ob-
served with no additional effects of exercise [167]. However, the effects of physical activity
alone or in combination with EE in models of early life stress have not been exhaustively
analyzed. Campbell et al. (2022) [168] performed an interesting review of papers investi-
gating the ability of physical activity to reverse or mitigate the negative effects of early life
stress on BDNF expression. In general, it was found that rats exposed to early life stress
showed increased anxiety- and depressive-like phenotypes, and these phenotypes were
ameliorated by exercise [168]. This positive effect was found mainly in male rats exposed
to MS, with missing information on female rodent outcomes and sex differences. However,
there was some evidence that stress and exercise differentially affect both sexes. Thus,
exercise improved anxiety-like behaviors in male rats exposed to MS but aggravated these
behaviors in females exposed to MS. It is important to note that the timing and duration of
exercise exposure as a treatment intervention has not been standardized. However, results
have indicated that aerobic exercise may be a valuable treatment mechanism for neurode-
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velopmental, autoimmune, and psychological disorders [168]. The therapeutic benefits of
exercise on disease underline a promising future for exercise intervention models.

The effects of EE are built on a complex interaction between multiple environmental
factors rather than a single driver [169]. However, all EE treatments are likely to result
in increased exercise as a result of the enhanced physical activity from the use of items
added to the enclosures. This may explain why the inclusion of the running wheel results
in minimal variation in the observed benefits of EE exposure. In addition to the type of
exercise, the duration and age of exposure may play a role in its effectiveness [170].

Future studies should investigate sensitive periods of exercise exposure as well as
the sufficient duration of exposure for epigenetic and behavioral outcomes, as this will be
needed to develop standardized practices in the exercise intervention field.

Table 2. Beneficial effects of environmental enrichment after perinatal stress exposure.

Stress Type
Period of

Stress
Exposure

Period of
Enviromental
Enrichment

Behavioral Test Used
Age at

Behavioral
Test

Effects Observed after EE Exposure Reference

restraint GD13–GD19 P11–P30 Morris water maze test P45
↓ Latency time in finding the platform

[171]↓ Total swin distance
↓ Linear search strategy

bystander GD10–GD17 P22–P52 Morris water maze test P52 Non-beneficial impact on spatial memory
and learning [172]

broadband
traffic noise

GD15–GD21 P21–P51 Morris water maze test P22–P51
↓ Time finding the platform [128]
↓ Distance travelled

restraint GD12–GD18 P28–P49 Morris water maze test P57–P64 Foraging enviroment: ↑ time in target quadrant
in males [173]

maternal
separation P2–P20 P21–P54 8-arm radial maze

win-shift P38–P56 ↓ Overall errors in both sexes [174]

maternal
separation P2–P21 P21–P65 Morris water maze test P92 ↑ Time spent in target quadrant (EE vs. NE, all

groups) (MS had no effect.) [175]

maternal
separation P1–P10 P21–P77

Morris water maze test
P21–P77

↑ Time in the target quadrant [117]Novel object recognition ↑ Exploration time of novel object

maternal
separation P1–P21 P23–P65

Morris water maze test
P70–76

↑ Time spent in target quadrant and frequency
of entries [139]

Novel object recognition MS shows non difference vs. non MS.

maternal
separation P2–P15 P21–P50 Morris water maze test P52–P70 ↑ Time spent in target quadrant (males) [176]

maternal
separation P1–P21 P22–P34

Morris water maze test
P35–P39

EE eversed all parameters to control group levels. [177]Novel object recognition MS did not induce recognition memory impairment.

maternal
separation P1–P21 P21–P51 Morris water maze test P52–P58 MS increased memory, without effects of EE. [178]

Abbreviations used: ↓: decrease, ↑: increase.

4. Cognitive Deficits and Melatonin Treatment

Melatonin (MT), also known as N-acetyl-5-methoxytryptamine, is a neurohormone
primarily synthesized in the pineal gland. Lerner, in 1958, was the first to isolate melatonin
from a bovine pineal gland extract as a natural skin-lightening substance [179]. Afterward,
an expanding list of functions were discovered, indicating that MT is a hormone with
pleiotropic biological functions. Its classical function is a circadian rhythm regulator. MT
production is confined to the dark phase of the night, synchronizing the physiological and
behavioral relationship of an organism to the external daily and seasonal light/dark envi-
ronment [180]. Moreover, MT is essential in the regulation of energy metabolism, including
body weight, insulin sensitivity, and glucose tolerance [181]. In addition, MT plays a com-
plex role as a modulator of the immune system, restoring immunity in immunosuppression
and exhibiting anti-inflammatory properties during inflammation [182]. According to
its chemical characteristics, MT is an amphiphilic tryptophan-derived indoleamine with
antioxidant properties, which is of importance for mitochondrial functions [180]. The
presence of MT has been described in the gastrointestinal tract [183], where it is synthesized
independently from pineal production after L-tryptophan is incorporated into the gut from
the diet [184]. MT is highly enriched in the digestive tract, especially in the intestine, in
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higher concentrations than in circulation [185]. After synthesis, MT produces local and
systemic effects via its release into the bloodstream or by remaining in the gut lumen
and exerting numerous functions [186]. Concerning gut microbiota, there is a complex
interrelationship between MT and intestinal bacteria in maintaining homeostasis: bacteria
modulate the synthesis of MT in the gut and MT can regulate the composition of the micro-
biota. In general, it has been observed that MT has increased the richness and diversity
of intestinal microbiota, restored Firmicutes/Bacteroidetes ratio, reduced the amount of
certain harmful bacterial genera such as Proteobacteria Desulfovibrio, Peptococcaceae, and
Lachnospiraceae and increased the abundance of beneficial genera such as Bifidobacterium and
Lactobacillus [186,187]. Accumulating evidence shows that MT can modulate the abundance
of the gut bacterial population in normal circumstances, but does so especially in various
pathological states [188].

Since MT has direct access to the central nervous system, it can regulate general and
specific aspects of neuronal functions, acting as a neuroprotective hormone [180,189].

4.1. Animal Studies

MT has been described as preventing the decrease in adult hippocampal neurogenesis
and the deterioration of cognitive abilities after irradiation [190] and improving cognitive
memory in a rat model of post-traumatic stress disorder [191]. Concerning pregnancy,
although the circadian rhythm is modulated through MT and appears to be essential for
a successful pregnancy, experimental findings have indicated that MT administration in
pregnant animals provokes decreased birth weight [192], altered circadian rhythm [193],
and mortality [194]. However, it has been observed that maternal administration of MT
in rats has prevented the decrease in cognitive abilities in offspring related to the loss of
hippocampal neurons caused by prenatal irradiation [195], had a neuroprotective effect
in LPS-induced brain damage in mice [196], ameliorated oxidative stress, and promoted
normal brain structure and function in an ovine model of fetal growth restriction [197].

As described above, stress exposure during pregnancy affects the normal functioning
of the HPA axis, immune regulation, and the structure of the gut microbiome in the mother
and affects fetal and postnatal offspring neurodevelopment, behavior, and immunity. In a
PS study on rats, it was shown that treatment with the MT analog Piromelatine attenuated
the high anxiety level, reversed the stress-induced increase in plasma corticosterone levels
in both sexes, and decreased the increment of hippocampal–corticosteroid receptor levels
observed in males [198]. Another study on Piromelatine treatment in rats found a bene-
ficial effect on the PS-induced alteration of associative memory in both male and female
offspring. However, impairment of PS-induced, hippocampus-dependent spatial memory
was reversed only in PS-affected males and not females [199]. Moreover, MT treatment
prevented hippocampal damage induced by MS in infant rats [200].

4.2. Clinical Evidence

The relationship between physiological levels of MT and cognitive function has been
studied in an elderly population. A significant association between higher MT physiological
levels and a lesser prevalence of cognitive impairment was found [201]. A systematic review
of clinical trials assessed for the effects of MT treatment on cognitive function in patients
with Alzheimer’s disease suggested that daytime MT administration may be effective
for improving cognitive function in patients with a mild to moderate pathology [202].
In patients with mild cognitive impairment syndrome, it was found that MT treatment
improved performance [203]. In addition, animal and human studies have found that MT
administration exerted an anxiolytic effect [204]. Interestingly, a potential benefit of MT
has been found in its prevention of a delirious state in intensive care unit patients after
organophosphorus compound poisoning [205], severe sepsis, and septic shock [206], as
well as in an elderly patient with severe dementia [207] and in a healthy male patient after
a road traffic accident [208].
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Concerning pregnancy, a recent review of 15 clinical studies on the use of MT for
different clinical purposes during pregnancy and lactation did not suggest adverse maternal
or fetal events related to MT administration [209]. However, the authors pointed out a need
for robust clinical studies on pregnant and lactating populations.

5. Conclusions

In this review, we showed several lines of evidence indicating that PNS can induce
cognitive deficits via different pathways, and we discussed potential early treatments—EE
exposure and MT administration—for preventing the deleterious effect of perinatal stress
exposure (Figure 2). Nowadays, the interaction between gut microbiota and the brain is a
topic of great interest. Several studies have suggested that alterations in gut microbiota
induce an impairment in cognitive abilities in several pathological conditions. Although
experimental and clinical findings point to the outstanding role of the gut–brain axis in the
cognitive deficits induced by PNS exposure, there is no direct evidence linking changes in
microbiota with its consequences on cognitive performance. While there are a few reports
that have indicated that EE and MT treatments are able to improve the cognitive deficits
induced by PNS, the data showed in this review encourage the realization of studies that
investigate the beneficial role of MT administration and EE exposure. Taking into account
the multiple articles describing the influence of sex on different responses, these future
studies should be performed on males and females. On the other hand, direct evidence
of the restoration of microbiota as a primary mechanism behind the beneficial effects of
this treatment has not been fully demonstrated and should be explored in future studies,
including on prebiotic and probiotic administration.

Figure 2. Perinatal stress and cognitive deficits. The period around birth is a time of significant
vulnerability and may be influenced by internal and external risk factors that affect fetal and infant
development. Direct stress exposure in the offspring or indirect exposure due to changes in the
mother’s physiology might induce microbiota dysbiosis, leading to cognitive deficits through different
pathways. Environmental enrichment, through physical, sensory, cognitive, and social stimulation,
could revert the effects of stress exposure on cognitive performance. Alternatively, the administration
of melatonin to the mother could avoid the deleterious effects induced by stress exposure. Red
arrows indicate the deleterious effects of stress exposure. Green arrows indicate the positive effects of
melatonin treatment and environmental enrichment. The figure was created with the BioRender.com.
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