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Abstract 

Information storage in the brain involves different memory types and stages which are 

processed by several brain regions. Cholinergic pathways through acetylcholine receptors 

actively participate on memory modulation and their disfunction is associated with cognitive 

decline in several neurological disorders. During the last decade, the role of α7 subtype of 

nicotinic acetylcholine receptors in different memory stages has been studied. However, the 

information about their role in memory processing is still scarce. In this review, we attempt 

to identify brain areas where α7 nicotinic receptors have an essential role in different 

memory types and stages. In addition, we discuss recent work implicating -or not- α7 

nicotinic receptors as promising pharmacological targets for memory impairment associated 

with neurological disorders.  
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Abbreviations 

ACh: acetylcholine 

BF: basal forebrain 

CINs: cholinergic interneurons 

CNS: central nervous system 

CS: conditioned stimulus 

HDB: horizontal limb of diagonal band of Broca 
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IPN: interpeduncular nucleus 

LDT: laterodorsal tegmental nucleus 

LTM: long-term memory 

LTP: long-term potentiation 

mAChR: muscarinic acetylcholine receptor 

mHb: medial habenula 

MLA: methyllycaconitine 

MS: medial septum 

mPFC: medial prefrontal cortex 

nAChR: nicotinic acetylcholine receptor 

NB: nucleus basalis magnocellularis 

PFC: prefrontal cortex 

PPT: pedunculopontine nucleus 

SI: substantia innominata 

STM: short-term memory 

US: unconditioned stimulus 

VDB: vertical limb of the diagonal band of Broca 
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1. Introduction 

Learning is the process by which we and other organisms acquire information about the 

world. Memory is the storage of that information and is not a unitary process: Information 

storage in the brain is a temporally graded process involving different memory types and 

stages. During these stages new information is consolidated and stored (Dudai, 2004; 

McGaugh, 2000; Medina et al., 2008). Memory processing has several stages including 

acquisition, consolidation, retrieval and its consequences, extinction and reconsolidation 

(Dudai, 2004; Kandel, 2001). In addition, according to duration, memory in mammals can be 

divided into at least two mechanistically and temporally distinct stages: 1-an early and short 

phase, which seems to depend on transient covalent changes of preexisting proteins such as 

phosphorylation of receptor subunits and ion channels (Kandel, 2001) and do not depend on 

de novo protein and RNA-synthesis; it lasts seconds to minutes to 1-3 hours (short-term 

memory, STM); 2- a long phase which depends on the activation of brain transcriptional and 

translational machinery (long-term memory, LTM) that lasts many hours, days, weeks or 

even a lifetime (Davis and Squire, 1984; McGaugh, 2000, 1966). During the last 20 years 

studies of the molecular basis of memory processing demonstrated that several signaling 

molecules are involved in several stages of memory. Specific signaling pathways and 

patterns of gene expression modulated by neurotransmitters are required in neurons and 

glia for the formation, stabilization and long-term persistence of synaptic and connectivity 

changes that underlie LTM (reviewed by Asok et al, 2019; Gonzalez et al., 2019; Josselyn and 

Tonegawa, 2020; Medina and Viola, 2018). 

Acetylcholine (ACh) is a key neuromodulator for learning and memory. It is also involved in 

arousal, attention, and plasticity (Picciotto et al., 2012). ACh acts through metabotropic 
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muscarinic (mAChRs) or ionotropic nicotinic receptors (nAChRs). mAChRs were not object of 

study in this review, but the reader is referred to recent articles addressing their role in 

memory processing (Fernández de Sevilla et al., 2021; Fuenzalida et al., 2021). Among 

ionotropic nAChRs, the α7 subtype is one of the most prominent in the central nervous 

system (CNS). The α7 nAChR subtype is highly expressed in cortical and limbic areas of the 

mammalian brain, where it is expressed in neurons (presynaptically and postsynaptically), 

and in no neuronal cells (Castro and Albuquerque, 1995; Fabian-Fine et al., 2001). 

Particularly important is the role of α7 nAChR in controlling the release of glutamate and 

dopamine in cortical and hippocampal nerve terminals (Cheng and Yakel, 2014; Dickinson et 

al., 2008; Koukouli and Maskos, 2015; Quarta et al., 2009). This receptor has the highest 

calcium permeability compared with other nAChRs subtypes, which make α7 nAChR subtype 

a key player in plasticity processes, such as long-term potentiation (LTP), and then, in 

learning and memory (Koukouli and Changeux, 2020). Indeed, activation of α7 nAChR 

facilitates LTP at the hippocampal-prefrontal cortex synapses in vivo (Stoiljkovic et al., 2016) 

and suppresses LTP induction in hippocampal slices (Nakauchi and Sumikawa, 2014). These 

contradictory findings also highlight the need to deepen the investigation of cellular and 

molecular mechanisms induced by the activation of α7 nAChRs. 

 

α7 nAChRs has been implicated in disorders associated with memory impairment such as 

Alzheimer's disease (AD), schizophrenia and substance use disorder (Ballinger et al., 2016; 

Koukouli and Changeux, 2020; Picciotto et al., 2012). Thus, α7 nAChRs are a pharmacological 

target of high therapeutic interest. In this article, we first reviewed cholinergic pathways in 

the CNS and potential mechanisms which might be associated with α7 nAChRs activation. 

Given the important role of α7 nAChRs in healthy individuals and their involvement in 
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several neurological disorders, the main goal of this review was to analyze the described 

role of α7 nAChRs in selected brain regions on different memory stages and its implication 

in neurological disorders.  

 

2. Cholinergic pathways in the central nervous system  

In the CNS, there are three primary groups of cholinergic neurons: 1) those originating in 

ventral areas of the forebrain, which form the region known as basal forebrain (BF); 2) those 

originating in the pons, which form brain nuclei known as the pedunculopontine (PPT) and 

the laterodorsal tegmental (LTD) nuclei; and 3) small interneurons in different brain areas 

(Woolf, 1991). Most of the regions of the mammalian brain are innervated by one of those 

cholinergic pathways, and many of them express α7 nAChRs, as was recently reviewed by 

several authors (Bertrand and Wallace, 2020; Bloem et al, 2014a; Letsinger et al, 2022; Wills 

et al, 2022). 

The BF innervates all cortical areas and limbic regions in the mammalian brain (Mesulam et 

al., 1983; Woolf, 1991). The BF is not a uniform structure, but rather is composed of several 

nuclei (Figure 1). The medial septum and the vertical limb of the diagonal band of Broca 

(VDB) comprise the anterior part of the BF and project mainly to the hippocampal formation 

and in a lesser extent to cortical areas including the retrosplenial cortex and the mPFC 

(Kondo and Zaborszky, 2016). Moreover, the BF projects to the neocortex in a layer-specific 

manner (Bloem et al., 2014a; Li et al., 2018; Obermayer et al., 2017). The horizontal limb of 

the diagonal band of Broca (HDB) and the nucleus basalis magnocellularis, which includes 

the substantia innominata, project to the neocortex and the amygdala (for references, see 

Solari and Hangya, 2018). A recent anatomical study elegantly showed in a whole brain scale 
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that BF cholinergic projections to the cortex are highly specific in neuronal types and 

connections (Gielow and Zaborszky, 2017). Additionally, by using genetic labeling and 

tomography-based whole-brain imaging technology, Li et al (2018) created a 3D atlas of the 

cholinergic system. BF cholinergic neurons were first recorded in behaving mice by Hangya 

et al (2015). Using optogenetics, they described that cholinergic neurons from the auditory-

projecting nucleus basalis and prefrontal-projecting HDB nuclei respond to innate rewarding 

(water) and aversive (air puff) stimuli. Interestingly, cholinergic neurons respond stronger to 

an unexpected than an expected reward. This posits the BF as a hub for integrating bottom-

up and top-down information.  The complexity of the BF is also related to its different 

neuronal types. The BF consists of cholinergic, glutamatergic, and GABAergic neurons, which 

form reciprocal connections within the BF (Xu et al., 2015; Yang et al., 2014). 

Pontine cholinergic nuclei comprise the PPT and the LDT nuclei, which innervate several 

structures throughout the brain (Figure 1). The PPT projects to the thalamus, the midbrain, 

the basal ganglia and also to the brainstem and spinal cord (Inglis and Winn, 1995; Oakman 

et al., 1995). LDT cholinergic neurons project to the ventral tegmental area and make 

excitatory synapses on meso-accumbens dopaminergic neurons (Bolton et al., 1993; Lammel 

et al., 2012; Omelchenko and Sesack, 2005). These synapses are involved in rewarding 

memory processing (Lammel et al., 2012). Additionally, PPT and LDT contain glutamatergic 

and GABAergic neurons (Clements and Grant, 1990; Wang and Morales, 2009). 

Cholinergic interneurons (CINs) have been described primarily in striatal areas, where they 

represent 1% of striatal neurons (Bolam et al., 1984; Wilson et al., 1990). Despite 

representing a minor percentage of local neurons, CINs control local circuit activity which 

can significantly influence behavior. CINs receive glutamatergic inputs from thalamostriatal 
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and corticostriatal afferents and dopaminergic inputs from the midbrain (Ding et al., 2010; 

Thomas et al., 2000). Although firing tonically, CINs pause in response to rewarding or 

aversive stimuli, mediating associative learning (Apicella, 2002; Zhang and Cragg 2017). This 

pause was termed the “conditioned pause response”. Acute silencing of cholinergic 

interneurons in the NAc by optogenetics disrupted cocaine-associated memory (Witten et 

al., 2010), highlighting their role in rewarding memory processing. Gabaergic projecting 

neurons of the VTA selectively innervate cholinergic interneurons in the NAc. This pathway 

has been proposed as a key player in associative learning (Brown et al., 2012). In cortical 

areas, CINs have also been described, where they represent about 1% of all cortical neurons 

(Eckenstein and Thoenen, 1983). Cortical CINs also express vasoactive intestinal peptide 

(VIP), indicating that they are a subclass of gabaergic VIP+ interneurons (Cauli et al., 1997; 

Eckenstein and Baughman, 1984). Cortical CINs have been less studied than striatal CINs. 

Recently, Obermayer et al (2019) reported that CINs directly excite interneurons and 

pyramidal neurons in the mPFC through the activation of nAChRs. These authors showed 

that mPFC CINs are involved in sustained attention. 

 

3. Potential mechanisms associated with α7 nAChRs activation: insights from cellular and 

molecular mechanisms of memory.  

In the last decades there have been significant advances in our understanding of the 

cellular and molecular mechanisms underlying synaptic plasticity and connectivity that 

subserve memory formation. Memory formation or consolidation involves different 

molecular events including the activation of several signaling cascades in specific brain 

regions (Izquierdo et al., 2006).  Typically, activation of these cascades in the dorsal 
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hippocampus, that occur during the acquisition and formation of one-trial avoidance task in 

rats, is initiated by receptor activation including AMPA, metabotropic and particularly 

NMDA glutamate receptors, BDNF and monoamines receptors (see for references Izquierdo 

et al., 2006). Similarly to what happens with LTP induction and maintenance in the 

hippocampal CA1 region, the activation of NMDA receptors causes an increase of 

intracellular calcium concentration, followed by the activation of some second messengers 

and protein kinases (CaMKII/IV, PKA, ERKs, PKC, mTORC1). Several waves of transcription 

and translation occur thereafter (Medina et al., 2008; Katche et al., 2013) to regulate 

protein synthesis expression necessary for functional changes at selected synapses. It is 

important to mention here that different molecular cascades in different sites of the brain 

control memory consolidation of avoidance training (Izquierdo et al., 2006). Moreover, 

different molecular components and sequence of events occur after appetitive, spatial, 

recognition, or other aversive tasks (Kandel, 2001; Tonegawa et al., 2018). 

Memory retrieval refers to the complex and active process of re-accessing previously 

stored information and its expression in the brain. There is a consensus that the neuronal 

activity and synapses that are reactivated when the animals are demanded to retrieve are 

those that have been changed through the molecular processes that underlie memory 

formation (Josselyn and Tonegawa, 2020; Frankland et al., 2019).  Memory recall has a very 

short timescale compared to other memory processes that could take from hours to days or 

even weeks like cellular or systems consolidation (Tonegawa et al., 2018; Pereyra et al., 

2021).  The information about the molecular mechanisms of memory retrieval is surprisingly 

scarce and fragmentary (see Lopez et al., 2015). AMPA receptors and some protein kinases 

including ERK1/2 and mTORC1 are critically involved in the hippocampus and amygdala to 

retrieve aversive information (Lopez et al., 2015; Pereyra et al., 2018, 2021).  
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 The cellular responses to α7 nAChR activation vary according to cell types and brain 

regions. For instance, α7 nAChR activation in hippocampal pyramidal neurons leads to LTP 

(Chen et al., 2006; Townsend et al., 2016), while α7 nAChR activation in GABAergic 

interneurons leads to long-term depression (Ji et al., 2001). In the prelimbic cortex, 

activation of these receptors induced inhibitory and excitatory effects on network 

integration and synaptic plasticity (Udakis et al., 2016). Moreover, contradictory findings 

were obtained when in vivo or in vitro conditions were applied.  Indeed, activation of α7 

nAChR facilitates LTP at the hippocampal-prefrontal cortex synapses in vivo (Stoiljkovic et 

al., 2016) and suppresses LTP induction in hippocampal slices (Nakauchi and Sumikawa, 

2014).  

The activation of α7 nAChRs leads to a net flux of calcium into neurons which induces the 

depolarization of the membrane (Dajas-Bailador and Wonnacott, 2004). This may trigger the 

activation of voltage-dependent calcium channels with the subsequent calcium influx raising 

cytoplasmic calcium levels even further. In addition, the increase in intracellular calcium 

levels may induce a process called calcium-induced calcium increase from two sources: the 

endoplasmic reticulum via the ryanodine receptors and IP3 receptors from intracellular 

stores (Tsuneki et al., 2000; Dajas-Bailador and Wonnacott, 2004; Shen and Yakel, 2009).   

Therefore, the activation of α7 nAChRs may trigger a plethora of calcium-dependent 

intracellular processes (Figure 2). Depending on the cell type (Cheng et al., 2021) and the 

spatial-temporal pattern of intracellular calcium concentration several protein kinases 

important for synaptic plasticity and memory processing may be activated. CaMKII, PKC, 

PKA, and ERK1/2 are a few examples of them (Dajas-Bailador et al., 2002; Moriguchi, et al., 

2020). On the other hand, modest increases in intracellular calcium concentration trigger 
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the activation of some phosphatases like calcineurin (Borroni and Barrantes, 2021). Based 

on some reports showing that α7 nAChRs interact with small G proteins like RhoA (King and 

Kabbani, 2016) which modulates cytoskeletal dynamics, Borroni and Barrantes (2021) 

postulated that α7 nAChRs may control dendritic spine shape and strength through 

modulation of actin dynamics.  

In summary, there is still scarce direct evidence about the precise cellular and molecular 

mechanisms associated with α7 nAChRs activation (Cheng et al., 2021; Cheng and Yakel, 

2014; 2015). However, some of the described molecular mechanisms of memory induced by 

the increase on calcium concentration might be related to those triggered by α7 nAChRs 

activation.  

 

4. The role of α7 nAChRs in brain regions involved in memory processing 

The homomeric α7 nAChR subtype is highly expressed in the hippocampus, the amygdala 

and the mPFC (Changeux, 2009; Gotti and Clementi, 2004; Wonnacott et al., 2005), three 

essential brain regions for memory processing. Due to their complex electrophysiology and 

rapid kinetic properties, it has been difficult to study their role in learning and memory 

processes. Functionally, nAChRs can exist in different conformational states (open, closed, 

or desensitized) and nAChRs agonists may induce a sustained desensitization of the target 

receptor (Couturier et al., 1990; Role, 1992). However, positive allosteric modulators which 

reinforce the endogenous cholinergic neurotransmission have been developed to solve this 

problem (Hurst et al., 2005). 
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Most pharmacological experiments assessing the role of nAChRs in memory processing 

have been performed by using agonist, antagonist or allosteric modulators via systemic 

administration (Palandri et al., 2021; Potasiewicz et al., 2021; Wang et al., 2020). However, 

α7 nAChRs are also expressed in peripheral cells, including lymphocytes, macrophages and 

endothelial cells (Ayala Peña et al., 2011; Sato et al., 1999; Zanetti et al., 2016). This could 

be a confounding factor in those experiments, considering that the relationship between 

the brain and peripheral systems as well as with the gut microbiota are increasingly relevant 

events that may influence cognitive functions (Chakrabarti et al, 2022). Thus, peripheral α7 

nAChRs may affect in some way the results obtained. Fewer studies assessed the role of 

nAChRs in specific brain areas. In this section, we reviewed the role of mPFC, hippocampal 

and amygdalar α7 nAChRs in memory processing, assessed by different behavioral tasks 

(summarized in Table 1).  

 

The role of α7 nAChRs in the mPFC: ACh phasic release in the mPFC is involved in the 

detection of environmental cues with rewarding and aversive emotional value (Gritton et 

al., 2016; Parikh et al., 2007). This mechanism is essential for acquiring and retrieving 

associative memories and guiding behavior. The mPFC is also involved in the consolidation 

of object recognition, a form of episodic memory (Tuscher et al., 2018), although the 

underlying mechanisms are not fully understood. α7 nAChRs are expressed through the 

mPFC in a layer-specific manner (Bloem et al., 2014b; Poorthuis et al., 2013), where they 

mediate ACh function. In this section, we summarize different types of memory tasks which 

were recently used to assess the role of prefrontal α7 nAChRs in memory processing (Table 

1).  
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Trace fear conditioning is a behavioral model for studying aversive associative memory, 

where a time gap is introduced between the end of the conditioned stimulus (CS) and the 

start of the unconditioned stimulus (US). This behavioral model is useful for evaluating the 

mental representation of the CS which the brain needs to form after the CS has ended. The 

mPFC and the hippocampus are involved in this process (Gilmartin and Helmstetter, 2010; 

Han et al., 2003; Raybuck and Gould, 2010; Runyan et al., 2004). As shown by the group of 

Gould, the infusion of the α7 nAChR selective antagonist methyllycaconitine (MLA) in the 

mPFC before the retention test decreased the contextual fear response (Raybuck and Gould, 

2010), describing a role for these receptors in fear conditioning memory retrieval. In 

addition, Miguelez-Fernández et al (2021) found no effect of mPFC MLA administration on 

trace fear conditioning retrieval. However, this discrepancy is likely related to the difference 

in the rodent model and MLA concentration used by those researchers. Miguelez-Fernández 

et al (2021) showed that prefrontal cortical α7 nAChRs are involved in trace fear 

conditioning acquisition in an age-dependent manner. By using MLA, these authors found a 

decrease of freezing behavior during conditioning in adults but not in adolescent rats, when 

MLA was infused in the mPFC before the conditioning session. Also only in adult rats, mPFC 

infusion of MLA enhanced the level of freezing response during extinction, which was 

suggested to be mediated by a disinhibition process (Miguelez Fernández et al., 2021), 

although more research is needed to clarify the meaning of those results. 

Associative memories between rewarding effects of drugs of abuse and the context in 

which they are consumed are critical for the development of substance use disorder (Berke 

and Hyman, 2000). These memories are well studied with the conditioning place preference 

(CPP) model (Tzschentke, 2007).  By using this model and a pharmacological approach in 

rats, prefrontal α7 nAChRs were found to be essential for the acquisition and retrieval of 
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cocaine-associated memory, but not for its consolidation (Pastor et al., 2021). Following 

extinction, drug-cue associative memory can be reinstated by the exposure to a 

subthreshold dose of the drug. With this approach, Wright et al (2019) found no 

involvement of prefrontal α7 nAChRs in morphine-associated memory reinstatement. 

Novel object recognition test is based on the rodents´ innate preference for novelty, which 

makes them spend more time exploring a novel object than a familiar one. This test is used 

for studying episodic memory in rodents (Dere et al., 2007). Nicotine administration 

increases the acquisition of object recognition memory in mice, an effect blocked by the 

prefrontal infusion of nAChRs antagonists, including the α7 subtype (Esaki et al., 2021). 

Thus, prefrontal α7 nAChRs are also involved in the acquisition of episodic memory. 

 

The role of α7 nAChRs in the hippocampus: nAChRs are involved in NMDA-independent LTP 

in the hippocampus (Griguoli et al., 2013; Nicholson and Kullmann, 2021). Pharmacological 

studies showed that hippocampal α7 nAChRs are involved in working memory (Nott and 

Levin, 2006) and in rewarding and aversive memory processing (Table 1). Regarding the 

acquisition of aversive memories, nicotine has been shown to increase trace and contextual 

fear conditioning in a dose-dependent manner. However, this effect was attributed to non-

α7 nAChRs activation in the dorsal hippocampus (Raybuck and Gould, 2010). In contrast, 

nicotine systemic administration along with blocking α7 nAChRs in the ventral hippocampus 

before training enhanced contextual fear conditioning (Kenney et al., 2012), suggesting that 

α7 nAChRs are involved in nicotine-induced modulation of fear memory acquisition. 

Following storage, retrieval may labilize a memory, which can be extinguished or re-

stabilized by a process called reconsolidation (Przybyslawski and Sara, 1997). In the dorsal 
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hippocampus, α7 nAChRs activation was necessary for aversive memory reconsolidation in 

an inhibitory avoidance task (Blake et al., 2013; Boccia et al., 2010). Hippocampal α7 nAChRs 

are also involved in rewarding memory processing. As was shown in a CPP task, the 

reinstatement of morphine-associated memory following extinction requires the activation 

of α7 nAChRs in the ventral hippocampus (Wright et al., 2019).  

 

The role of α7 nAChRs in the amygdala: The amygdala receives cholinergic inputs from 

brainstem nuclei and the BF (Woolf, 1991; Woolf and Butcher, 1982), and these two 

pathways were recently suggested to drive opposing learning behaviors (Aitta-aho et al., 

2018). The basolateral amygdala (BLA) is critical for associating environmental cues with 

appetitive or aversive stimuli (LeDoux et al., 1990). Cholinergic tone in the BLA contributes 

to associative learning in a fear conditioning paradigm, by inducing synaptic plasticity in 

cortical afferents (Jiang et al., 2016). α7 nAChRs were described in the amygdala, both in 

glutamatergic neurons and gabaergic interneurons, where they can increase or decrease 

their activity depending on which subregion of the amygdala is being analyzed (Klein and 

Yakel, 2006; Pidoplichko et al., 2013). Amygdalar α7 nAChRs were first found to modulate 

working memory (Addy et al., 2003), although their role in memory processing has not been 

extensively studied. In rats exposed to morphine, a conditioned place aversion (CPA) can be 

precipitated with the opiate antagonist naloxone. This behavior was decreased by the 

infusion of an agonist of α7 nAChRs in the central amygdala (Ishida et al., 2011). Moreover, 

naloxone-precipitated CPA was inhibited by intra-amygdala administration of nicotine, and 

this effect was reversed by the antagonism of α7 nAChRs in the central amygdala (Ishida et 
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al., 2011). These results suggest that the inhibition of α7 nAChRs in the central amygdala 

may promote aversive behaviors.  

Other brain areas involved in memory processing are also modulated by nAChRs. In the 

ventral tegmental area, α7 nAChRs are required for long-term memory persistence of a fear 

memory, an effect which seems to depend on hippocampal dopamine signaling (Lima et al., 

2013). The habenula is an epithalamic complex which consists of different subnuclei with 

diverse neuronal populations. For example, the interpeduncular nucleus receives strong 

cholinergic innervation from the medial habenula through the fasciculus retroflexus (Aizawa 

et al., 2012). This habenula-interpeduncular pathway is involved in drug-addiction, fear 

memory and depression (Kobayashi et al., 2013; Xu et al., 2018). A large diversity of nAChR 

subunits has been described in the habenula-interpeduncular circuit (Wills et al., 2022), 

including functional α7 nAChRs in GABAergic neurons of the interpeduncular nucleus (Jin 

and Drenan, 2022). However, the function of these neurons is not clear yet. Future studies 

on the role of α7 nAChRs in the habenula-interpeduncular pathway would add to the 

knowledge of pathophysiology of memory and emotional disorders. 

It is interesting to mention here that α7 nAChRs are also expressed in glial cells, although 

the knowledge about their function in memory processing is only recently starting to 

emerge. It was shown by an in vitro study that α7 nAChRs activation on astrocytes induced 

the recruitment of glutamatergic AMPA receptors in postsynaptic hippocampal neurons 

(Wang et al., 2013). These results suggest that glial α7 nAChRs may convert silent synapses 

to functional ones by promoting the insertion of AMPA receptors in the postsynaptic 

membrane. In the auditory cortex, Zhang et al (2021) found that aversive sensory 

stimulation activates α7 nAChRs in a subpopulation of astrocytes. These authors showed 
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that conditional genetic deletion of α7 nAChRs in astrocytes affected fear memory 

persistence.  

From what is observed in these preclinical studies reviewed here, it can be deduced that 

knowledge of the α7 nAChR function in memory processing is scarce and fragmented. 

Moreover, a limitation of the studies reviewed here is that they did not consider that 

different cognitive aspects (e.g., aversive and reinforcing memories) may involve 

overlapping brain regions. It seems not to constitute a coherent scenario that the available 

evidence can serve as a conceptual basis for understanding the pharmacological application 

of α7 nicotinic agents as therapeutic tools in mental illnesses like schizophrenia (Letsinger et 

al., 2022; Recio-Barbero et al., 2021; but see below in Section 5 the role of α7 nAChR as a 

promising target for the treatment of AD). 

 

5. α7 nAChR as a pharmacotherapy tool in memory deficits and cognitive decline 

Memory processing is impaired in AD and other neurological disorders such as 

schizophrenia (Khan et al., 2014). As we reviewed in Section 2, cholinergic pathways from 

the BF to the cortex and the hippocampus are important for memory processing and their 

impairment is associated with cognitive decline (Kuhl et al., 1996). Thus, the cholinergic 

system has been postulated to be responsible for the cognitive decline associated with AD 

and other neurological disorders (Hampel et al., 2018; Koukouli and Changeux, 2020). In this 

sense, the study of pharmacological strategies directed to modify cholinergic tone -such as 

anticholinesterase inhibitors- have dominated preclinical and clinical studies in the AD field.  
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 Although extensive research was intended to prevent cognitive decline associated with AD, 

there remains no effective treatment. In the last few years, a more specific approach 

targeting nAChRs has evolved. α7 nAChRs are localized to astrocytes, microglia, 

macrophages, and endothelial cells. In this way, cholinergic inputs via α7 nAChRs may 

regulate pro-inflammation states and several humoral factors controlling cerebral blood 

flow (Disney and Higley, 2020). Considering that neuroinflammation was postulated as a 

pathological mechanism in AD (Kinney et al., 2018), several studies attempt to point out that 

α7 nAChRs may be a key element in AD pathophysiology (Hoskin et al., 2019). Moreover, α7 

nAChRs influence the expression of glutamate receptors and neurotrophic factors, making 

them a key element for targeting cognitive decline in AD (Cai et al., 2022; Medeiros et al., 

2014; Roberts et al., 2021; Wei et al., 2022).   

Beta-amyloid (Aβ) has been recognized as one of the hallmarks of AD (Selkoe and Hardy, 

2016).  Despite existing evidence about molecular interaction between Aβ and α7 nAChRs 

(Wang et al., 2000), contradictory results have been reported about the contribution of α7 

nAChRs to the pathophysiology of AD (Dziewczapolski et al., 2009; Hernandez et al., 2010). 

Roberts et al (2021) showed in cell culture that selective co-activation of α7 and α4β2 

nAChRs reversed Aβ-induced reduction in AMPA receptor phosphorylation and surface 

expression in hippocampal neurons, and Aβ-induced disruption of LTP. Additionally, these 

authors provided direct molecular evidence for selective interaction of Aβ with α7 and α4β2 

nAChR subtypes. A recently described heteromeric α7β2 nAChR subtype has unique 

functional characteristics (Liu et al., 2009; Nielsen et al., 2018; Wu et al., 2016). Although 

their role has not been studied in detail, they were found to interact with Aβ in cholinergic 

neurons (George et al., 2021). Thus, Aβ may disrupt hippocampal synapses by modulating 

nAChRs function.  
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For modeling certain aspects of AD, Cai et al (2022) used intracerebroventricular 

administration of Aβ peptide to produce deposits in the hippocampus within 14 days of 

injection. These authors studied the effects of a Ras GTPase inhibitor on the impaired spatial 

memory and synaptic plasticity which is present in that rodent model. In addition to 

beneficial effects on spatial memory, they found an enhanced α7 nAChRs cell surface 

expression. Moreover, Ras GTPase inhibitor enhanced hippocampal brain-derived 

neurotrophic factor (BDNF) concentration, which was reversed by the antagonism of α7 

nAChRs (Cai et al., 2022). In line with this research, a mice model of perioperative cognitive 

disorder was used for assessing the effects of α7 nAChRs modulation on a hippocampal-

dependent spatial learning task (Wei et al., 2022). Following an aseptic laparotomy, these 

authors found a decrease of BDNF protein expression in the hippocampus, which was 

reversed by α7 nAChRs activation and promoted by their inhibition. Additionally, in a mice 

model of chronic hypoxia-induced cognitive dysfunction, systemic activation of α7 nAChRs 

improved cognitive impairment and increased BDNF protein expression in the hippocampus 

(Shen et al., 2021). These findings suggest that α7 nAChR-induced increase in BDNF may be 

linked to pro-cognitive effects of α7 nAChR activation. In summary, although cognitive 

improvement promoted by α7 nAChRs might be an indirect effect following the decrease on 

inflammation or the increase on neurotrophic factors, the evidence supports that α7 

nAChRs are promising pharmacological targets for neurological disorders such as AD 

(Greenfield et al., 2022). Moreover, the role of α7 nAChRs in impaired cognition may be 

related to their involvement in attention and not only in memory processing (Ballinger et al., 

2016). Even though attention is required for memory encoding (Muzzio et al, 2009), rodent 

studies analyzed in this review did not rule out attentional effects of drugs used for 

targeting α7 nAChRs. 
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Another neurological disorder where cognitive impairment is a core clinical symptom is 

schizophrenia (Green et al., 2019). Preclinical studies have shown that α7 nAChR agonists, 

partial agonists, and positive allosteric modulators have pro-cognitive effects in a variety of 

animal models (Terry and Callahan, 2020; Unal et al., 2021; Potasiewicz et al., 2021). Despite 

extensive preclinical and clinical research assessing the role of nAChRs as key elements on 

the pathophysiology of cognitive deficits in schizophrenia, it seems that there is no strong 

evidence to consider α7 nAChR agonists as add-on treatment to antipsychotics to improve 

cognition in schizophrenia (reviewed by Koola, 2021; Recio-Barbero et al, 2021; Letsinger et 

al, 2022). A combination of several factors has been put forward to explain why α7 nAChR 

agents have pro-cognitive effects in preclinical studies but fail to improve cognition in 

clinical trials.  For instance, polypharmacy and drug exposure history are not properly 

addressed and chronicity of the illness is not considered in preclinical rodent models 

(Bertrand and Terry, 2018; Terry and Callahan, 2020). 

  

6. Concluding remarks and future perspectives 

The study of mPFC, hippocampus and amygdala have dominated the assessment of several 

neurotransmission systems and their role in different types of memories. α7 nAChRs are 

known players in plasticity processes which are essential for learning and memory. 

However, from the information reviewed here, it is evident the paucity of information about 

the role of α7 nAChRs in specific brain regions involved in memory processing. More studies 

are needed to clarify the involvement of these receptors in different stages and types of 

memories. For instance, assessing brain overlapping regions which may be involved in 

different aspects of cognition, mapping their activation by the assessment of c-fos 
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expression, by calcium imaging or miniscope techniques, and exploring what are the pre- 

and postsynaptic signaling pathways and targets that calcium influx via α7 nAChRs activates 

or modulates would add valuable information about the cellular and molecular mechanisms 

associated with α7 nAChRs activation. Additionally, a deep knowledge about the crosstalk 

between α7 nAChRs and other neurotransmission systems is still lacking. It is important to 

note that nAChRs are highly expressed in presynaptic terminals, modulating other 

neurotransmitter release, such as dopamine or glutamate (Cheng and Yakel, 2015; Figure 2) 

For example, in the mPFC α7 nAChRs activation increases dopamine release (Livingstone et 

al., 2009). Moreover, a new mechanism of cholinergic modulation of dopamine release has 

been recently described in the striatum (Liu et al., 2022), where the activation of nAChRs in 

dopaminergic axons promotes action potentials independently of somatodendritic 

integration. Thus, studying different mechanisms of interaction between cholinergic and 

other neurotransmission systems would be of interest for deeper understanding on nAChRs 

function in memory processing and cognition, and improve therapy strategies for cognitive 

deficits.  
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Figure 1: Schematic representation of cholinergic pathways in the rodent brain and α7 
nAChRs involvement in memory processing. This figure depicts a simplified scheme of 
cholinergic pathways in the rodent brain, where wider arrows represent principal 
connections (see the text for details). The lower panel summarizes the studied role of α7 
nAChRs in the medial prefrontal cortex, the hippocampus and the amygdala, highlighting 
the memory types and stages which were described in the literature. HDB: horizontal limb 
of the diagonal band of Broca; IPN: interpeduncular nucleus; LDT: laterodorsal tegmental 
nucleus; mHb: medial habenula; MS: medial septum; NB: nucleus basalis magnocellularis; 
ND: non determined; PPT: pedunculopontine nucleus; SI: substantia innominata; VDB: 
vertical limb of the diagonal band of Broca. 
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Figure 2: Schematic representation of potential mechanisms underlying α7 nAChR-induced 
modulation of synaptic function. Presynaptic α7 nAChRs are highly permeable to calcium 
and thus facilitate the calcium-dependent release of many neurotransmitters (e.g., 
dopamine or glutamate). Postsynaptic nAChRs may mediate the calcium-dependent 
activation of different signaling pathways, including -but not limited to- those involving 
protein kinase A (PKA), protein kinase C (PKC), extracellular signal-regulated kinase (ERK), 
calcium/calmodulin-dependent kinase II (CaMKII); nitric oxide synthase (NOS); or protein 
phosphatases. 
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Table 1: Behavioral effects of α7 nAChRs modulation on different memory types and stages in adult rodents. CeA: central nucleus of the 

amygdala, CPA: conditioning place aversion, CPP: conditioning place preference, dHipp: dorsal hippocampus, mPFC: medial prefrontal cortex, 

vHipp: ventral hippocampus. 

 
 

Rodent model 
Memory stage assessed Brain 

area 
α7 nAChRs 
modulation 

Behavioral 
effect Acquisition Consolidation Retrieval Extinction Reconsolidation Reinstatement  

Raybuck 
and Gould, 

2010 

Male C57BL/6J 
mice 

Cued-Trace 
fear 

conditioning  
          mPFC antagonist increase 

Raybuck 
and Gould, 

2010 

Male C57BL/6J 
mice 

    
Cued-Trace 

fear 
conditioning  

      mPFC antagonist decrease 

Raybuck 
and Gould, 

2010 

Male C57BL/6J 
mice 

    
Context-

Trace fear 
conditioning 

      mPFC antagonist decrease 

Wright et al, 
2019 

Male Wistar 
rats 

          
Reinstatement 

of morphine 
CPP 

mPFC antagonist no effect 

Miguelez-
Fernandez 
et al, 2021 

Male SD rats 
Trace fear 

conditioning 
          mPFC antagonist 

decreased 
freezing during 

conditioning 

Miguelez-
Fernandez 
et al, 2021 

Male SD rats     
Trace fear 

conditioning 
      mPFC antagonist no effect 
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Miguelez-
Fernandez 
et al, 2021 

Male SD rats       
Trace fear 

conditioning 
    mPFC antagonist 

increased 
freezing during 

extinction 

Pastor et al, 
2021 

Male Wistar 
rats 

Cocaine CPP   Cocaine CPP       mPFC antagonist decrease 

Pastor et al, 
2021 

Male Wistar 
rats 

  Cocaine CPP         mPFC antagonist no effect 

Esaki et al, 
2021 

Male C57BL/6J 
mice 

Novel object 
recognition 

          mPFC antagonist 

decrease of 
nicotine-
induced 

enhancement 

Boccia et al, 
2010 

Male CF-1 
mice 

        
Inhibitory 
avoidance 

  dHipp antagonist decrease 

Kenney et 
al, 2012 

Male C57BL/6J 
mice 

Contextual 
fear 

conditioning 
          vHipp 

antagonist + 
systemic 
nicotine 

increase  

Kenney et 
al, 2012 

Male C57BL/6J 
mice 

Contextual 
fear 

conditioning 
          vHipp  antagonist no effect 

Kenney et 
al, 2012 

Male C57BL/6J 
mice 

    
Contextual 

fear 
conditioning 

      vHipp  antagonist no effect 

Wright et al, 
2019 

Male Wistar 
rats 

          
Reinstatement 

of morphine 
CPP 

vHipp  antagonist increase 
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Wright et al, 
2019 

Male Wistar 
rats 

          
Reinstatement 

of morphine 
CPP 

dHipp antagonist no effect 

Ishida et al, 
2011 

Male SD rats 

Naloxone-
precipitated 

morphine 
CPA 

          CeA agonist decrease 

 

Table 1: Behavioral effects of α7 nAChRs modulation on different memory types and stages in adult rodents. CeA: central nucleus of the amygdala, CPA: 

conditioning place aversion, CPP: conditioning place preference, dHipp: dorsal hippocampus, mPFC: medial prefrontal cortex, vHipp: ventral hippocampus. 
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Graphical abstract text 

 

Cholinergic pathways through acetylcholine receptors actively participate on memory modulation. α7 nicotinic acetylcholine receptors are involved in 

different memory types and stages. They may be promising pharmacological targets for some neurological disorders where memory deficits are present.    
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