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stract 

Laboratory studies were performed to assess the impact of acute arsenic (As) exposure on th

huelche scallop Aequipecten tehuelchus from San José gulf (Patagonia, Argentina). The A

cumulation in gills, digestive gland and muscle of A. tehuelchus was analyzed after 96 hours 

posure at different concentrations (0, 4, 5, 6.3 and 7.9 mg As/L). Accumulation in all tissu

reased linearly with the exposure concentration, evidencing no As saturation. A 96 hour media

hal concentration (LC50) value of 7.1 mg As/L was determined, characterizing this species 

atively tolerant to As. The potential effects of As were studied through the production of reactiv

ecies, enzymatic activities of catalase and glutathione-S-transferase, metallothioneins, lip

roxidation, and lipid-soluble antioxidants. In presence of As, the 2',7

hlorodihydrofluorescein diacetate oxidation rate and thiobarbituric acid reactive substanc

ntent did not show changes in any tissues. Catalase and glutathione S-transferase activities raise

gills and digestive gland and remained unchanged in muscle. Metallothioneins increased in gil

d digestive gland and a decreasing pattern of α-tocopherol was observed in gills and muscl

allops were slightly affected by As exposure, especially at high levels, being able to countera

 effects by the induction of biotransformation pathways and antioxidant defense mechanisms.

Keywords 

Acute toxicity; Antioxidant defence system; Biomarkers; Lethal Media Concentratio

etalloid accumulation; Mollusk. 

1. INTRODUCTION 

Exposure to contaminants can induce a wide variety of effects in organisms includin

chemical, immunological, physiological, and bioenergetics responses to stress, impaire
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wth, and reproductive alterations, among others. Depending on nature, temporal and spati

le of the biological response, impacts on individuals may have implications at the populatio

mmunity, and ecosystem level (Marsden and Cranford, 2016). Among the most commo

ntaminants in aquatic environments, arsenic (As) is a naturally occurring element released b

tural events (for example volcanism, weathering of minerals and ores, leaching and solubilisatio

Earth’s crust) but principally by human activities such as pesticide application, coal combustio

od combustion, and waste incineration (Lamela et al., 2019). High levels of this metalloid 

ter can lead to harm marine life by increasing oxidative damage, interfering with cell events an

en causing cell death (Rank et al., 2007). In seawater, the species of dissolved As are limited 

enate, arsenite, and the organoarsenic compounds, monomethylarsonic acid (MMA) an

ethylarsinic acid (DMA) (Kalia and Khambholja, 2015; Mandal and Suzuki, 2002; Smedle

d Kinniburgh, 2002). The latter three species are derived from biological activity (Aziz

hman et al., 2012; Caumette et al., 2012; Jenkins et al., 2003; Khokiattiwong et al., 2001). Th

icity of As is related to its oxidation states and its chemical forms (Lai et al., 1999). Marin

anisms bioaccumulate As from water, mainly in non-toxic organic forms containing As residu

ging from < 1 to 100 mg/kg, which are found as arsenosugar (in algae) or arsenobetain (

ertebrates and fish) (Francesconi, 2010; Krishnakumar et al., 2016; Mania et al., 2015; Mead

al., 2004; Vieira et al., 2011). Organisms show different sensitivity to different As species, bein

valent As (AsIII) compounds more toxic than pentavalent As (AsV) (Hughes, 2002; Neff, 199

arma and Sohn, 2009). For example, both AsIII and AsV affect the growth of phytoplankton an

rine periphyton and some of these impacts appear to occur at concentrations close to those foun

seawater, particularly when environmental phosphate levels are low (Kalia and Khambholj

15). However, some methylated organic forms are also toxic and may produce adverse effec

mparable to those produced by inorganic As (Fattorini et al., 2006). 
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There are previous studies related to metal accumulation and its effects in bivalves (Giarratan

al., 2014, 2013; Gil et al., 2006; Vázquez et al., 2007), crabs and  gastropods (Giarratano et a

16, 2015; Marinho et al., 2016; Primost et al., 2017) habiting in Northern Patagonia coast

osystems, but just a few studies have focused on metalloids. In that regard, As levels have bee

orted in several species of bivalves, in gastropods and fishes (Urtubey et al., 2016) an

croalgae Undaria pinnatifida (Gil et al., 2015). Sturla Lompré et al. (2019) confirmed th

sence of As in different tissues of Tehuelche scallop. The results of the mentioned studi

hlight the presence of As in edible tissues of bivalves from San José gulf (Península Valdés) 

els close to or even greater than the limit of total As of 1 µg/g in fresh weight established by th

gentinian Food Code  (CAA, 2012) for human consumption. In Australia there is a limitation 

 allowed level of inorganic As in seaweed and mollusks of 1 µg/g in fresh weight (Austral

w Zealand Food Standards Code, FSANZ, 2012). In sediment from this gulf, Sturla Lompré 

 (2019) reported values between 3.41 ± 0.11 to 4.55 ± 0.22 μg/g dw in winter and summe

pectively. San José gulf is a small, shallow and semi-enclosed basin located on the north coa

Argentine Patagonia and its anthropogenic activity is limited to artisanal and small-sca

mmercial shellfish fisheries. There are no adjacent cities, industries or ports that allow th

istence of an anthropogenic source of As to be assumed. The As in this gulf would have a natur

gin related to its biogeochemistry and volcanic activity in the southern Andes Mountain

amela et al., 2019). Another source could be the deep water from ascending coastal currents ne

 San José gulf entering into the gulf (Pisoni et al., 2014; Tonini and Palma, 2017). Due to the

h commercial value, scallops have received considerable attention in studies of accumulatio

tribution and biological effects of pollutants both in pristine (Peake et al., 2010; Saavedra et a

08) as contaminated areas (Guo et al., 2017; Milinkovitch et al., 2015). 
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The harmful effect of As has been widely investigated in mollusks, particularly in bivalves fro

ferent aquatic ecosystems (Diniz et al., 2008; Guo et al., 2017; Marsden and Cranford, 201

ilinkovitch et al., 2015; Rank et al., 2007; Zhang et al., 2019). Metal(loids)s, such as As, ca

talyze the formation of reactive species (RS) that can damage proteins, lipids, and DNA, causin

ll injury or cell death. Reactive species may cause lipid peroxidation (LPO), a complex proce

t destroys lipids in the membrane, destabilizing the structure and function of the cell and i

anelles, which can lead to cell death (apoptosis) (Rank et al., 2007). There are different cellul

tection mechanisms to avoid or decrease the oxidative damage that RS can cause, including th

tivity of antioxidant enzymes (such as superoxide dismutase - SOD, catalase - CAT an

tathione-S-transferase - GST), non-enzymatic antioxidants (such as α-Tocopherol - α-T) an

uction of metallothionein (MT) expression (Milinkovitch et al., 2015; Viarengo et al., 1999

e balance between free radical damage and antioxidant protection in the lipid phase can b

aluated using the LPO/α-T ratio. This index assumes that higher levels of biomarkers indica

h tissue damage (Lattuca et al., 2009).  

However, data provided by a wide battery of biomarkers is difficult to interpret without a

egrated overview that globally assesses the potential influence of the pollutant under stud

ertrand et al., 2015). The Integrated Biomarker Response Index (IBR) constitutes a practical an

ust tool to assess the susceptibility of exposed organisms integrating the response of multip

markers (Beliaeff and Burgeot, 2002; Devin et al., 2014). 

This study was focus on scallop A. tehuelchus from Península Valdés, a protected are

signated World Heritage Site by UNESCO in 1999 (UNESCO, 1999) due to its remarkab

diversity and ecosystemic richness, and also for being one of the most important areas f

roduction and breeding of the southern right whale (Eubalaena australis). In addition, in Sa
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se gulf the scallop has historically represented the main species that supports the artisan

ellfish activity for the small settlement of artisanal fishermen of the gulf (Narvarte, 2001). Th

sent study not only evaluated the mortality of the shellfish resource caused by As, but als

alyzed the effects on each tissue of interest separately (not pooled). Studies describing th

chemical effects of As on individual tissues are rare and even less in muscle, which is 

rticular importance due to human consumption. However, there is evidence of a differenti

sues accumulation of this metalloid in bivalves (Chandurvelan et al., 2015; Maher et al., 201

avedra et al., 2008; Xu et al., 2022). Therefore, it is important to analyze toxicological effec

d accumulation of As (and its correlation) in tissues separately.  

Hence, this study aimed to determine the level of acute As toxicity in Tehuelche scallop 

uelchus (96 h LC50) collected from San Román (Northern Patagonia Argentina) in August 201

d to evaluate biomarkers of exposure and damage related to oxidative stress. Finally, to obtain

re holistic view of the biological responses and to evaluate the association between the respons

d the exposure concentrations tested, an integrated biomarker response (IBR) was calculated. 

2. MATERIALS AND METHODS 

 Sampling collection and experimental design  

Samples were collected in winter (August 2016) in San Román (42°14′ S–64°13′ W) in the Sa

sé gulf located in Northern Patagonia Argentina (42 ° 20'S, 64 ° 20'W). This area has favorab

ographical and ecological conditions for the settlement of natural resources of great fishin

erest. There, the main artisanal fisheries’ product is the Tehuelche scallop (A. tehuelchus

llected Tehuelche scallop (n=135) were transported to the laboratory in cold-thermic containe

d individuals with 60-70 mm of shell height were cleaned of epibionts and acclimated for 6 da
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a 30-L aquarium in 1-mm-filtered and UV treated seawater (Biolight Technologies: 2,000 L h

40 W). The salinity was set at 34 ± 1 g/L (refractometer Arcano FG-211 Salinity/ATC 0–100

 at 8.12 ± 0.05 (pHmeter Consort C931), temperature at 13.0 ± 1.0 °C, continuous aeratio

ssolved oxygen > 90%, multiparameter probe YSI model 556) and 12 light:12 dark photoperio

awater was renewed every two days and organisms were not fed either during acclimatization 

ring exposure. 

2.2 Survival test   

For exposure tests, sodium arsenite [NaAsO2 solutions, As (III),] was chosen for being the mo

ile and biotoxic state. Firstly, to define the As exposure range, a tolerance test was assayed usin

r concentrations (0, 10, 25 and 50 mg As/L). Acute exposures were conducted during 96 h 

-L plastic aquaria with six organisms in 5 L of test solutions and covered with plastic wrap 

vent evaporation. The mortality was examined at 24 h, 48 h, 72 h, and 96 h. All animals die

er 24 h of exposure in 25 and 50 mg As/L treatments, meanwhile, in 10 mg As/L 50% of anima

d after 72 h exposure and all died at 96 h.  

According to the results of the described experiment mentioned above, an acute toxicity test f

eriod of 96 h was done with 0; 4; 5; 6.3; 7.9 and 10 mg As/L in triplicate design. Each replica

nsisted of 6 organisms per aquarium with 5 L of contaminated seawater, whereas another grou

3 replicates was kept as control (exposed to clean seawater). Physical and chemical condition

re the same as those of the acclimation period, which were checked daily. The mortality w

amined every 24 h. The death of scallops was confirmed by their inability to respond 

chanical stimulus. Median lethal concentration (LC50) was calculated according to the EP

nited States Environmental Protection Agency) using Probit 5.1 software. 
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At the end of the exposure period, three live scallops from each tank (i.e. individuals th

tively closed their valves upon mechanical stimulation) were sacrificed to dissect their gill

estive gland, and adductor muscle resulting in three independent replicates per concentration

 Quantification of As 

For the determination of As, one composite sample of each tissue from three organisms w

de per aquarium (n = 3 per condition). Each tissue was carefully excised, thoroughly washe

th deionized water, and dried with tissue paper. Scallop’s tissues were freeze-dried for 96 h an

mogenized with a grinder. Samples of 0.5 g were digested using 10 mL of concentrated nitr

id in a NOVAWAVE SA microwave, using a time-temperature program of 180 °C for 10 m

S EPA 1996). After digestion, samples were filled up to 50 mL with deionized water befo

alysis with an Agilent 720 inductively coupled plasma optical emission spectrometer (ICP-OES

th axial configuration and multi-element simultaneous detection.  

Three replicates of standard reference materials of oyster tissue (NIST-SRM 1566, Nation

titute of Standards and Technology, Standard Reference Material) were analysed for quali

ntrol of data. Precision expressed as coefficient of variation was 5%. Accuracy, expressed as

rcentage of recovery, was 90.5%. The detection limit was 0.7 µg/g dry weight (DW). The resul

re expressed in μg per g of DW.  

 Biochemical markers  

From each condition, three organisms were taken for the biomarkers determination (n = 3 p

ndition). The gills, digestive gland, and muscle were carefully excised and individually stored 

 °C.  
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Production of RS was evaluated after homogenization with buffer solution (1:5 w/v) at pH 7.7

cording to Gallagher et al. (1992). The fluorescent probe 2´,7´ dichlorofluorescein diaceta

CFH-DA) was added to the homogenate and it was incubated at 40 °C during 30 min befo

ding. Thereafter, the nonfluorescent compound DCFH was oxidized by RS to the fluoresce

mpound DCF, which is detected spectrofluorometrically at λexc = 488 nm and λem = 525 n

iarengo et al. 1999). Production of RS was expressed as units per minute per milligram 

teins (U/min/mg prot). 

For enzyme assays, samples were homogenized in a 1:3 (w/v) ratio of a buffer solution with p

justed to 7.6 according to Bainy et al. (1996). CAT activity was evaluated by the decompositio

e of hydrogen peroxide (H2O2) at 240 nm (Beutler, 1982). One unit of CAT was defined as th

ount of enzyme catalyzing the elimination of 1 mmol H2O2 per minute. GST activity w

termined by incubating reduced glutathione with 1-chloro-2,4-dinitrobenzene as substrate at 2

 and measuring the increase in absorbance at 340 nm (Habig et al., 1974). One unit of GST w

fined as the amount of enzyme catalyzing the formation of 1 mmol of 2,4 dinitrophenyl-S

tathione per min. Proteins were measured by the method of Lowry et al. (1951), with bovin

um albumin as standard. Results of all enzymes were expressed as units per milligram 

teins (U/mg prot.). All determinations were measured by spectrophotometry using a micropla

der Varikosan LUX except catalase that was measured using a spectrophotometer Jasco UV/V

50. 

MT were homogenized in buffer solution at pH 8.6 (1:3 p/v) and analysed by the reaction wi

’-dithio-bis-2-nitrobezoic acid (DTNB) according to Viarengo et al. (1997). MT were quantifie

 the spectrophotometric assay using glutathione (GSH) as standard and expressed as nmol-S

r milligram of proteins (nmol-SH/mg prot).  
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Thiobarbituric acid reactive substances (TBARS) are formed as a by-product of lip

roxidation (LPO). The amount of TBARS were measured based on Guerra et al. (2013) at 53

, using malondialdehyde (MDA) as standard and were expressed as TBARS pmol equivalen

r mg of protein (pmol/mg prot.). 

Content of α-T was quantified by reverse-phase HPLC with electrochemical detection using

oanalytical Systems LC-4C amperometric detector with a glassy carbon-working electrode at a

plied oxidation potential of 0.6 V. Samples were homogenized in deionized water, butylate

droxytoluene and sodium dodecyl sulfate. Then, α-T was extracted with methanol and hexan

solved in methanol:ethanol (1:1, v/v) and injected for HPLC analysis according to Desai (1984

L-α-tocopherol was used as standard and the results were expressed as nmol per mg wet weig

ol/mg WW).  

 Data analysis 

2.5.1 Integrated Biomarker Response (IBR) index 

A general stress index, called “Integrated Biomarker Response” was calculated with biologic

ponses measured in exposed organisms. Variables with strong correlation (r ≥ 0.8, p < 0.0

re excluded to keep non-redundant biomarkers. Then, to select an adequate number of biologic

ponses (no more than eight, Devin et al. 2014) a discriminant analysis was applied to sele

markers with higher capacity to separate exposure concentrations. Finally, several IBR we

lculated changing the order of the biomarkers using R Studio and the median of all the inde

lues was informed as the final index value (Bertrand et al., 2018; Devin et al., 2014). 

2.5.2 Statistical treatment 

The data are presented as the mean ± standard error (N = 3). Statistical analyses were performe

th Statsoft STATISTICA (v. 9.1). Statistical differences in As concentrations and biochemic
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rameters in soft tissues were evaluated using two-way ANOVA (Statistica 7.0) considering A

ncentrations (0, 4, 5 and 6.3 µg As/L) and tissues (gills, digestive gland and muscle) as ma

tors. Tukey’s post hoc test was used to analyze the significant differences among A

ncentrations for each tissue and among tissues for each As concentration. Correlations betwee

 levels and biomarkers in each tissue were determined through the Pearson’s correlatio

efficient. A Kruskal-Wallis test was carried out to identify IBR differences between exposu

els. The level of significance for all tests was set at p < 0.05.  

3. RESULTS AND DISCUSSION 

 Acute toxicity test 

No mortality was observed in controls and treatments of 4 and 5 mg As/L during the experimen

50 could not be calculated for 24 and 48 h due to the mortality was less than 50%. At 96

posure, 18% mortality was registered in 6.3 mg As/L and 78% in 7.9 mg As/L exposure (Fi

 Mortality reached 100% in the highest dose (10 mg As/L). The 72 and 96 h LC50 was 10.5 an

 mg As/L with 95% confidence intervals ranged between 9.50 and 15.2 and 6.7 y 7.9 mg As/

pectively.  

The results obtained in this study indicated that As presented low acute toxicity for A. tehuelchu

mpared with LC50 value of 3.4 mg As/L reported for Argopecten irradians by Nelson et a

76). However, those experiments were carried out at 20 °C in contrast with this study at 13 °C

e metabolism of animals is closely related to temperature and that could be the reason for th

arkable difference between the species. Besides, other factors such as size, sex, sexual maturi

d inherent differences in defense pathways may explain these variations in LC50 values (Brya

al. 1985). Since A. tehuelchus from San José gulf are exposed to the natural presence of As ma
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ve developed tolerance to As, as reported Azizi et al. (2018). Even though the high LC50 valu

uld indicate that A. tehuelchus is less sensitive to As than other bivalve species, this tox

ment could affect at the cellular level, threatening the health of the organisms as well as th

stainability of the related shellfish activity.  

. 1 Dose-response curves for Aequipecten tehuelchus (n=3; bars correspond to error standard) 

 Arsenic accumulation 

At all levels of exposure, the three tissues showed a similar pattern of accumulation, in th

lowing decreasing order: gills > digestive gland > muscle (Fig. 2) being the accumulatio

nificantly higher than in control and in all assayed concentrations. Comparing A

ncentrations, in gills and digestive gland, there were significant differences between 4 and 7

 As/L and no differences were found among 5, 6.3 and 7.9 mg As/L. Similarly, As accumulatio

muscle with 4, 5 and 6.3 mg As/L was significantly lower than with 7.9 mg As/L. In control
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 levels in the three tissues were similar, while in the As traetments, gills and glands ha

nificantly higher levels of As than muscle. 

  

. 2 As accumulation in gills, digestive gland and muscle of Aequipecten tehuelchus after 96 h exposur

ta are presented as mean ± SEM (N=3). Uppercase, lowercase and italic letters represent significa

ferences among treatments for gills, digestive gland and muscle, respectively. Asterisks indicate 

nificant difference among tissues within each treatment (Tukey's test; p < 0.05). 
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This differential tissue accumulation pattern is consistent with that reported for bivalves fro

er non-contaminated sites such as the scallop Pecten maximus (Saavedra et al., 2008) and th

m Ruditapes philippinarum (Chen et al., 2018). However, tissue distribution in A. tehuelch

fers from that of scallop Chlamys farreri also exposed to As in laboratory where simil

accumulation was found among digestive gland, gill and mantle (Zhao et al., 2021). 

The higher accumulation showed by gills than digestive gland and muscle may be related 

ir role as the main route by which metals are incorporated from the dissolved phase in the aquat

anisms, while in the other tissues the exposure is intermittent and indirect via haemolymph an

d (Saavedra et al., 2008). A few authors found higher concentrations of total As in the gills tha

other tissues of exposed bivalves such as Pecten maximus, Crassostrea virginica and Mercenar

rcenaria (Leatherland and Burton, 1974; Lebordais et al., 2021; Saavedra et al., 2008). The A

els tend to reflect the As content in the diet due to transfer from phytoplankton to filter-feeder

ce inside the organism, this metalloid can be translocated to other excretory organs (kidney

d/or digestive gland) (Hédouin et al., 2010; Marsden and Cranford, 2016; Metian et al., 2008

rthermore, As appears to be actively secreted into the byssus of mussels, and this may be

nificant pathway for the excretion of the element in such species (Ünlü and Fowler, 1979; Ya

al., 2005). 

Arsenic acute 96 h exposure resulted in a significant linear increase in the accumulation of A

the three tissues compared to the control, being the correlation coefficients higher than 0.93 f

 tissues (Table 1). Similar trend (dose-dependent manner) concerning As absorption fro

water was exhibited by clam Asaphis violascens (Zhang et al., 2019). This behavior sugges

t A. tehuelchus is not able to regulate the internal As concentrations, contrary to other bivalv

ch M. galloprovincialis and Isognomon isognomon (Hédouin et al., 2010). Such a trend sugges
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t Tehuelche scallop would be a good biomonitor organism of dissolved levels of As. Tehuelch

llop from San José gulf is naturally exposed to As, which enabled them to generate resistanc

adaptation to counter As exposure. As occurs in seawater predominantly as the inorganic form

arsenate and arsenite, being these As species more toxic than organic forms to living organism

eff, 2002). Since marine organisms cannot avoid exposure to the potentially toxic inorganic A

ecies, they have evolved biotransformation and detoxification strategies producing less-tox

ano-arsenic compounds which predominate in their tissues (Fattorini et al., 2006; Neff, 2002

e distribution of more than twenty-five As species occurring in marine systems varies marked

ong the four marine compartments, namely seawater, sediment/porewater, algae, and anima

attorini et al., 2006). Direct comparisons between native populations collected from differe

as should be made considering not only the exposure history but also the chemical form in whic

 is present. 

ble 1. Relationship between acute As exposure level (96 h, 0–7.9 mg As/L) and As accumulation in gil

estive gland and muscle of scallops A. tehuelchus after acute As exposure (96 h, 0 – 6.3 mg As/L) 

 Biochemical markers 

Reactive species, evaluated through the oxidation rate of DCFH-DA, did not register significa

ferences at any tissues compared to the control neither among exposure treatments (Fig. 3 a

ese results indicate that, although there was an increase in As levels in tissues, the antioxida

Tissue 
Person’s correlation 

coefficient (R2) 
Equation of the line of best fit 

Gills 0.958 y = 19.042 x + 13.186 

Digestive gland 0.973 y = 17.074 x + 11.743 

Muscle 0.932 y = 8.569 x + 16.022 
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fense mechanisms would be preventing the generation of RS. Comparing RS levels amon

sues, significant differences were recorded in control and treatment 4 mg As/L registering th

hest levels in the gill, followed by the digestive gland and muscle. In control, the three tissu

fered significantly between them, while in treatment 4 mg As/L, the gills and digestive glan

re different from muscle. In gills, the highest CAT activities were registered in the lowe

ncentration, followed by treatments with 5 and 6.3 mg As/L, while in digestive gland increase

nificantly in all the treatments compared with control, with no significant differences among A

posures. On the contrary, in the muscle no significant differences were found among A

ncentrations. Comparing tissues, only catalase activity showed significant differences bein

estive gland the tissue with the highest CAT activities followed by gills and muscle (Fig. 3 b

ilarly, GST activity in gills, digestive gland and muscle presented the same pattern than CA

tivity; but there were no differences among tissues for any treatment (Fig. 3 c). A significa

rease of MT was detected in digestive gland in 5 and 6.3 mg As/L treatments compared 

ntrol but with no differences between control and 4 mg As/L (Fig. 3 d). Nevertheless, n

nificant differences were found between 5 and 6.3 mg As/L, which may suggest that the capaci

sequester the metalloid is diminished as the result of an excess of total As, as also suggeste

niz et al. (2008) in clams. In muscle, MT content decreased significantly in all As exposure

th no differences among them. The mechanisms by which MT act against the presence of toxi

ve been extensively studied and it is probable that As will initially bind to these sequesterin

teins or be incorporated into lysosomes (Viarengo and Nott, 1993). Conversely, the opposi

nd was observed in the muscle, being the maximum levels in control and decreasing significant

all As treatments. However, further tests should be performed to explain the particular effects 

 on MT synthesis on this specific tissue. Comparing tissues, in control and the lowe
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ncentration tested significant differences were observed, being MT levels in muscle significant

her than in gills and digestive gland. 

Fig. 3 Oxidation of DCFH-DA (a), catalase (b), glutathione-S-transferase (c) and metallothioneins (

gills, digestive gland and muscle of Aequipecten tehuelchus following 96 h exposure. Data are present

mean ± SEM (N=3). Uppercase, lowercase and italic letters represent significant differences amon

atments for gills, digestive gland and muscle, respectively. Asterisks indicate a significant differen

ong tissues within each treatment (Tukey's test; p < 0.05). 
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The TBARS content did not show significant differences in any tissues among A

ncentrations. Regarding tissue comparisons, TBARS in digestive gland for all As treatmen

re significantly higher than in the other tissues with no significant difference between the latt

o (Fig. 4 a). These results are in line with the finding of no induction of RS, which are known 

uce lipid peroxidation. Comparing treatments at each tissue, the content of α-T in gills an

scle of the organisms exposed to the highest concentrations, decreased significantly compare

the control and exposure of 4 mg As/L. In particular, gills showed a significant decrease 

atment 5 and 6.3 mg As/L exposures  (significantly different between them) compared to contr

d treatment 4 mg As/L exposures  (with no significant difference between them), but in muscl

 differences were registered among treatments with As. In opposite, no significant changes we

served in the digestive gland (Fig. 4 b). The decreasing pattern of α-T is expected due to i

nsumption in the presence of xenobiotics. Non-photosynthetic organisms such as scallops a

t able to synthesize this non-enzymatic antioxidant, which must be incorporated from dieta

urces (Fujisawa et al., 2010). In all As treatments, gills were the tissue with the highest α-

lues, followed by muscle and then by digestive gland, although without significant differenc

tween the latter two. The balance between oxidative damage and antioxidant protection in th

id phase can be described through the TBARS/α-T ratio, which assumes that higher leve

icate greater tissue damage (Lattuca et al., 2009). In this case, no significant differences we

served in this index either in the digestive gland or in the muscle, while in gills an increase 
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 highest concentration was found compared to the control, probably because the possib

mages were not mitigated by the α-T (Fig. 4 c). 

. 4 Lipid peroxidation (a), α-tocopherol levels (b) and LPO/α-T ratio (c) in gills, digestive gland an

scle of Aequipecten tehuelchus following 96 h exposure. Data are presented as mean ± SEM (N=3

percase, lowercase and italic letters represent significant differences among treatments for gil

estive gland and muscle, respectively. Asterisks indicate a significant difference among tissues with

h treatment (Tukey's test; p < 0.05). 
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 Correlation between As tissue accumulation and biomarkers 

Table 2 presents the correlation coefficients between biomarkers and As levels in each tissu

 accumulated in gills was significantly positively correlated with α-T. In digestive gland, CA

d GST activities and MT levels correlated positively with As accumulation, while α-T leve

owed a negative correlation. In muscle, CAT activity was positively correlated, while MT an

 levels were negatively correlated. In presence of a toxic element such as As, it was expecte

uction of antioxidant enzymes to counteract the possible damage caused by RS as well as th

nsumption of other non-enzymatic antioxidants such as α-T. In that sense and in agreement wi

se results, Coppola et al. (2018) found an increment of GST in mussel Mytilus galloprovincial

posed to As contributing to prevent higher LPO. Although processes of As transformations 

toxification have not been clearly stated, it is possible that an oxidative response could b

oided by the transformation of inorganic As to less-toxic forms such as organo-arsen

mpounds, which have been reported with no ecotoxicological implication (Fattorini et al., 2006

me authors found that subcellular partitioning of As Regarding the positive correlation betwee

cumulated As and MT in the digestive gland, it can be explained taking into account that th

pression of MT is activated as a specific response to metal(loid) toxicity and also as a

tioxidant defense to sequester the ions metal (Viarengo et al., 1999). Zhao et al. (2021) studie

bcellular partitioning of As in five different tissues of scallop C. farreri and found that most 

 was storage in the non-toxic form in the metallothionein like protein fraction. 
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ble 2. Pearson’s correlation coefficient between biomarkers and As accumulation in gills, digestive glan

d muscle of A. tehuelchus after acute As exposure (96 h, 0 – 6.3 mg As/L). Significant correlations p 

5 with asterisk  

 

 

ll these correlation analyses were statistically significant (p < 0.001) 

 IBR and correlation with accumulated As 

According to discriminant analysis, six biomarkers were selected in exposed organisms: CA

d α-T in gills; MT and α-T in digestive gland and in muscle. In Fig. 5 a, obtained values a

own in a star plot, where the grey area integrates the IBR values for each concentration teste

nificant differences in IBR values were observed among all exposure concentrations and contr

ig. 5 b).  

According to Potet et al. (2018), IBR is able not only to evidence stress levels but also, it cou

 interpreted as the capacity of organisms to cope with pollutants. In agreement, previous fie

dies with organisms exposed to complex contaminant mixtures (including metals, metalloid

d organic compounds) reported IBR values from 9 to 15 (Bertrand et al., 2018; Bocquené et a

04). Furthermore, Brooks et al. (2018) obtained IBR values from 4 to 13 in Mytilus sp expose

mine discharge and As concentrations in soft tissues similar to those recorded in the prese

rk. Even when comparison with studied carried out in field and with other species is not th

re suitable option in the present study IBR values of A. tehuelchus exposed to As surpassed

lue of 9. Moreover, the pattern of IBR values was, in most of the tested conditions, similar wi

 Biomarkers 

 
RS CAT GST MT TBARS α-T 

Gills -0.318 0.423   0.223 0.425 0.231  0.950* 

Digestive gland 0.130  0.881*  0.643*  0.667* 0.195 -0.809* 

Muscle -0.304  0.701* 0.096  -0.877* -0.149 -0.808* 
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 accumulation pattern which suggests an association between the measured concentration of th

talloid in tissue and the values of IBR. However, at the higher exposure concentration (6.3 mg/L

 IBR value decreased while the accumulated levels of As were similar than those measured at

/L. This could be due to a variation in the subcellular distribution of the metalloid in analyze

sues (Bertrand et al., 2015). Probably, an increase in the precipitated As: soluble As ratio wou

ntribute to a slight decrease in stress levels or need to cope the metalloid exposure.  

 

Fig. 5 (a) Star plot of Integrated Biomarker Response (IBR) values at different exposure concentratio

Aequipecten tehuelchus exposed to As. (b) Mean, median, standard deviation (SD), minimal (Min), an

ximal (Max) values for calculated IBR are shown. Different letter indicates significant differences (p 

5) among treatments. 

 

4. CONCLUSION 

This study identified that the LC50 of As after 96 h of exposure in scallop Aequipecte

uelchus from San José gulf was 7.1 mg As/L. This species seems to be relatively tolerant to A

posure in comparison with other bivalves’ species. The present results indicated that exposure 

rganic As (Ⅲ) caused a proportional dose-dependent and tissue-specific accumulation, tendin
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be higher in gills and digestive gland than in muscle. As accumulation induced slight oxidativ

ess, with no generation of RS nor lipid peroxidation through TBARS, a rise of CAT and GS

tivities and MT levels and the consumption of the lipid-soluble antioxidant α-T. The integrativ

alysis of the present results shows that short-term exposure to As concentrations higher than

 As/L produces significant changes in the biochemical metabolism of A. tehuelchus. The curre

dy supports the suitability of employing A. tehuelchus as a bioindicator of As. However, due 

 ubiquitous occurrence of As in the environment and the variable toxicity depending on chemic

m, extrapolations of results obtained in laboratory experiments to the natural environment mu

 avoided. In order to better assess the environmental impact caused by anthropogen

ntamination, the authors highlight the importance of measuring chemical speciation of As du

its toxicological relevance. 
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Highlights

 Arsenic accumulation in tissues increased linearly with arsenic exposure.

 Arsenic did not induced production of reactive species and TBARS at any tissue.

 Greater antioxidant response in gills and digestive gland than in muscle.

 Tehuelche scallop would be relatively tolerant to As exposure (CL50: 7.1 mg As/L).
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