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Abstract: This research addresses the problem regarding the efficient operation of photovoltaic
(PV) plants in monopolar direct current (DC) distribution networks from a perspective of convex
optimization. PV plant operation is formulated as a nonlinear programming (NLP) problem while
considering two single-objective functions: the minimization of the expected daily energy losses and
the reduction in the expected CO2 emissions at the terminals of conventional generation systems. The
NLP model that represents the energy management system (EMS) design is transformed into a convex
optimization problem via the second-order cone equivalent of the product between two positive
variables. The main contribution of this research is that it considers the uncertain nature of solar
generation and expected demand curves through robust convex optimization. Numerical results in
the monopolar DC version of the IEEE 33-bus grid demonstrate the effectiveness and robustness of the
proposed second-order cone programming model in defining an EMS for a monopolar DC distribution
network. A comparative analysis with four different combinatorial optimizers is carried out, i.e.,
multiverse optimization (MVO), the salp swarm algorithm (SSA), the particle swarm optimizer (PSO),
and the crow search algorithm (CSA). All this is achieved while including an iterative convex method
(ICM). This analysis shows that the proposed robust model can find the global optimum for two
single-objective functions. The daily energy losses are reduced by 44.0082% with respect to the
benchmark case, while the CO2 emissions (kg) are reduced by 27.3771%. As for the inclusion of
uncertainties, during daily operation, the energy losses increase by 22.8157%, 0.2023%, and 23.7893%
with respect to the benchmark case when considering demand uncertainty, PV generation uncertainty,
and both. Similarly, CO2 emissions increase by 11.1854%, 0.9102%, and 12.1198% with regard to the
benchmark case. All simulations were carried out using the Mosek solver in the Yalmip tool of the
MATLAB software.

Keywords: robust convex optimization; energy management system; photovoltaic plants; monopolar
direct current networks; daily energy losses; carbon dioxide emissions

1. Introduction
1.1. General Context

Government policies, multilateral organizations, and industry have strongly advo-
cated the widespread adoption of renewable energy resources in electrical networks, with
the purpose of mitigating the detrimental effects of global warming caused by the daily
emission of greenhouse gases into the atmosphere [1,2]. Photovoltaic (PV) and wind tech-
nologies are the most widely used renewable energy technologies for electric systems.
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These technologies are mature, with high efficiency and long useful lives [3–5]. However,
the massive integration of these energy sources in electrical systems has transformed the
classical passive networks with unidirectional power flows into active distribution grids.
Utility companies play an active role in these grids, aiming to maximize their profits [6,7].

To maintain an efficient operation in electrical networks with a high penetration of
multiple generation sources, it is necessary to design efficient energy management systems
(EMSs) [8,9]. The primary purpose of an EMS is to ensure the efficient functioning of an
electrical network by meeting the technical grid requirements, which pertain to voltage
profiles, current magnitudes, and the power balance, while also improving economic,
technical, or environmental objective functions [10].

1.2. Motivation

Designing an effective EMS typically involves formulating an optimization model that
accurately represents the behavior of an electrical network and establishes a relationship
between the analyzed objective function and the electrical variables [11,12]. Considering
the importance of designing efficient EMS for distribution companies, this research aims
to propose a convex optimization model that seeks to determine the optimal dispatch of
multiple PV plants integrated into monopolar DC networks, with the objective of mini-
mizing two possible functions: the reduction in daily CO2 emissions or the minimization
of the total daily energy losses [10]. The proposal of a convex formulation to determine
the effective dispatch of PV plants arises from the need to guarantee effective solutions
corresponding to the optimal global solution. This has not been achieved in studies that
rely on combinatorial optimizers, as their stochastic nature makes it impossible to ensure
that the global optimum is found [13–15]. In addition, the use of convex optimization
allows for incorporating the stochastic nature of the demand and PV generation curves
while maintaining the convexity of the solution space. This is a significant advantage of
convex optimization when compared to metaheuristics [16,17].

For the sake of clarity, it is worth mentioning that a monopolar DC network implies
an electrical configuration where two poles are used to provide electrical energy to all end
users, where one of the poles is set with the nominal voltage value of the network, and
the second one is solidly grounded at all load points [18]. These grids may be regarded
as analogous to single-phase AC distribution networks, with the main advantage that no
reactive power or frequency control designs are required [19]. In general, this configuration
makes DC networks more efficient than their AC counterparts [20,21].

1.3. Literature Review

The problem regarding the efficient operation of PV plants in medium- and low-
voltage distribution networks has been widely explored in the literature. Some of the most
recent advances in this area are discussed below.

The study by [22] proposed an EMS to dispatch PV plants during the daily operation of
alternating current (AC) distribution grids. This EMS employs a master–slave methodology,
which employs antlion optimization for the PV plant power dispatch. In the master stage,
the power flow is entrusted to the successive approximations method. This methodology
was assessed in two test systems of 33 and 27 nodes while considering three PV plants
installed.

The authors of [10] presented a general EMS design for monopolar DC networks in
urban and rural regions, which considers three objective functions: energy losses, the costs
associated with energy purchasing at the conventional sources and PV plant maintenance,
and CO2 emissions. The salp swarm algorithm was implemented to solve the nonlinear
programming model that represents the studied problem. According to the numerical
results obtained in two test systems composed of 27 and 33 nodes, the proposed approach
demonstrated a better numerical performance than the particle swarm optimizer (PSO),
the multiverse optimization approach, and the crow search algorithm in terms of the final
solution and repeatability.
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The work by [23] addressed the optimal PV plant location and sizing problem with the
aim to reduce the expected grid power losses and improve voltage profiles. The k-means
clustering method was selected to determine the best nodal locations for the PV plants.
Numerical results in the IEEE 33- and 69-bus systems demonstrated the effectiveness of
this approach when considering different PV penetration levels. However, the authors did
not present a daily analysis, and they only focused on the peak load operating scenario,
which is not realistic for installing PV plants in electrical networks.

The study by [24] presented a methodology based on the multi-period optimal power
flow solution for operating battery energy storage systems (BESSs), PV plants, and wind
and conventional generation sources. The main contribution of this research was the
possibility of using the converter interfacing with the battery systems to independently
control the active and reactive power. The proposed optimization model was solved with
the help of the modeling language for mathematical programming while considering the
two test feeders composed of 33 and 141 nodes.

In [8], the authors applied a convex-based optimization algorithm to operate PV plants
in monopolar DC networks while considering three objective functions (technical, economic,
and environmental indices). The proposed convex reformulation belongs to the family of
recursive approximations. Here, Taylor’s series expansion is used to linearly approximate
the power flow equations, which are recursively solved until the desired convergence is
reached. Numerical results in a DC version of the IEEE 33-bus grid demonstrated the
proposed convex model’s effectiveness when compared to four combinatorial optimizers.

Other optimization methodologies have been applied to the optimal placement and
sizing/operation of PV plants in electrical distribution networks, including the krill herd
algorithm [25], the horse herd optimization algorithm [26,27], PSO [28,29], genetic algo-
rithms [30,31], and the gravitational search algorithm [32], among others. Table 1 summa-
rizes the most important works on EMS in monopolar DC grids with high PV penetration.

Table 1. Summary of the methodologies implemented in the literature for EMS in monopolar
DC grids.

Method/Algorithm Objective Function Robust Year Ref.

Perturb and observe algorithm Minimization of operating costs 7 2020 [33]

Antlion optimizer Minimization of operating costs or energy
losses and reduction of CO2 emissions 7 2022 [22]

Salp swarm algorithm Minimization of operating costs or energy
losses and reduction of CO2 emissions 7 2022 [10]

Loss sensitivity factor and k-means
clustering

Minimization of power losses and voltage
regulation improvement 7 2022 [23]

Weight-based method Minimization of operating costs or energy
losses and reduction of CO2 emissions 7 2023 [34]

Antlion optimizer Minimization of operating costs or reduction of
CO2 emissions 7 2023 [8]

Vortex search algorithm Minimization of operating and maintenance
costs 7 2023 [35]

Crow search algorithm Minimization of operating and maintenance
costs 7 2023 [36]

Robust conic programming approximation Minimization of operating costs or energy
losses and reduction of CO2 emissions X 2023 This

study

The main characteristics of the works listed in Table 1 are as follows: (i) most of the
optimization algorithms are based on the application of the combinatorial optimization
methods to locate/operate distributed energy resources (DERs) in electrical networks;
(ii) the most common objective functions include voltage profile improvements, energy loss
reduction, greenhouse gas emissions reduction, and energy purchasing and operating cost
minimization; and (iii) the demand and PV generation curves are assumed to be determin-
istic (no stochastic analyses are included). These aspects constitute a clear opportunity to
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contribute to the current literature on monopolar DC networks and designing an efficient
EMS system for PV plants integrated in these systems.

1.4. Contributions and Scope

Considering the above, the main contributions of this research article are the following:

i. The application of convex optimization to obtain an approximated second-order cone
programming model that represents the problem regarding the efficient design of an
EMS for dispatching PV plants in monopolar DC networks.

ii. The fact that the proposed convex model includes uncertainty in the power available
from PV generators and the load demand makes it a robust approach.

iii. The fact that deterministic and uncertain scenarios are evaluated with regard to the
expected daily behavior of the constant power loads and the PV generation curves.

Note that, within the scope of this research, the following considerations are made:
(i) the distribution company provides the parametric information regarding branches and
peak load consumption, which therefore have no uncertainties; (ii) the average generation
and demand curves are also provided by the utility, which, in the case of the stochastic
scenario, have expected variations of about ±10% with respect to the deterministic curves;
and (iii) the load nodes are modeled while considering only constant power consumption,
i.e., no resistive or current loads are considered, given that this is the worst-case scenario
with regard to energy losses when constant power loads are connected.

1.5. Document Structure

The remainder of this document is structured as follows. Section 2 reveals the general
nonlinear programming model that represents the problem of operating PV plants in
monopolar DC networks via an EMS. Section 3 describes the proposed convexification
approach, which is based on the hyperbolic representation of the product between two
positive variables as a l2-norm. Section 4 presents the main characteristics of the test
feeder, which corresponds to the DC version of the IEEE 33-bus system, considering
different operating scenarios that include deterministic and stochastic analyses. Section 5
shows the main numerical results for the stochastic and deterministic scenarios, as well
as a comparative analysis with multiple combinatorial optimizers for the latter. Finally,
Section 6 presents the main concluding remarks derived from this work, in addition to
some future lines of research.

2. General Problem Formulation

The problem regarding the optimal operation of distributed energy resources (DERs)
in monopolar DC networks corresponds to a nonlinear programming model that belongs
to the family of non-convex optimization, given the product between voltage variables
in the power balance constraints. This research considers two objective functions: the
minimization of (i) energy losses and the total greenhouse gas emissions from conventional
sources, i.e., the CO2 emissions to the atmosphere by conventional generators. In addition,
the set of constraints includes the power balance per node and time, the energy storage
behavior, and voltage regulation, among others. The complete optimization model is
detailed below.

2.1. Objective Functions

The first objective function aims to minimize the expected energy losses in a daily
operation scenario. This objective function is formulated below.

min Eloss = ∑
h∈H

∑
k∈N

∑
m∈N

Gkmvkhvmh∆h, (1)

where Eloss quantifies the expected daily energy losses in all the branches of the monopolar
DC network, as a function of the conductance effects between nodes k and m (i.e., Gkm) and
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the voltage magnitudes in these nodes per period (i.e., vkh and vmh, respectively). Note that
∆h is the fraction of time defined for the daily period, typically one hour or fractions of one.
In addition, N andH are the sets containing the nodes of the network and the number of
periods under analysis.

The second objective function seeks to minimize the expected CO2 emissions (kg) gen-
erated by conventional sources (diesel plants) or the equivalent emissions at the terminals
of the substation nodes. This objective function is presented below.

min ECO2 = ∑
h∈H

∑
k∈N

(
Csub

CO2 psub
kh + Cdiesel

CO2 pdiesel
kh

)
∆h, (2)

where ECO2 denotes the expected daily CO2 emissions of the network, which are calculated
with the emission coefficients at the terminals of the substation (Csub

CO2) and the diesel
sources (Cdiesel

CO2 ). These are associated with the generation power outputs psub
kh and pdiesel

kh ,
respectively.

Remark 1. The main characteristic of the objective functions (1) and (2) is that both are convex, as
the components Gkm in Equation (1) are part of a positive semi-definite matrix and Equation (2) is a
linear function.

2.2. Set of Constraints

The efficient operation of PV plants in monopolar DC networks is subject to different
technical constraints associated with Kirchhoff’s laws applied to DC circuits [37]. These
constraints include the power equilibrium per node, the power generation capabilities of
the conventional and renewable sources, the voltage regulation bounds, and the current
capacities of the distribution lines, among others. This set of constraints is listed from
Equations (3)–(8)

psub
kh + pdiesel

kh + ppv
kh − pd

kh = vkh ∑
m∈N

Gkmvmh, {∀k ∈ N , ∀h ∈ H} (3)

ikmh = gkm(vkh − vmh) {∀km ∈ L, ∀h ∈ H} (4)

pmin,sub
k ≤ psub

k ≤ pmax,sub
kh , {∀k ∈ N , ∀h ∈ H} (5)

pmin,diesel
k ≤ pdiesel

kh ≤ pmax,diesel
k , {∀k ∈ N , ∀h ∈ H} (6)

pmin,pv
kh ≤ ppv

kh ≤ pmax,pv
kh , {∀k ∈ N , ∀h ∈ H} (7)

vmin
k ≤ vkh ≤ vmax

k , {∀k ∈ N , ∀h ∈ H} (8)

|ikmh| ≤ imax
km , {∀km ∈ L, ∀h ∈ H} (9)

where ppv
kh represents the power injected by a PV source connected at node k and time h;

pd
kh denotes the constant power load connected at node k in period h; gkm corresponds

to the conductive effect of the distribution line that connects nodes k and m (note that
gkm = −Gkm); ikmh stands for the current flowing from node k to node m in period h; pmin,sub

k
and pmax,sub

k are the lower and upper power generation bounds for the substation bus;
pmin,diesel

k and pmax,diesel
k represent the minimum and maximum bounds for diesel power

generation; pmin,pv
kh and pmax,pv

kh correspond to the lower and upper generation bounds
associated with the PV plant connected to node k at time h (note that pmax,pv

kh depends on
the solar availability in the grid’s area of influence); and vmin

k and vmax
k correspond to the

lower and upper regulation bounds applicable to all the network nodes at any period. Note
that L is the set containing all the distribution lines of the grid.

The set of constraints (3)–(9) can be interpreted as follows: Equation (3) is the power
equilibrium constraint at each node and period; Equation (4) corresponds to the application
of Ohm’s law at each distribution branch; inequality constraints (5)–(7) express the lower
and upper generation constraints associated with the substation, diesel, and PV generators,
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respectively; box-type constraint (8) is related to the voltage regulation constraints applica-
ble to all the nodes of the monopolar DC network; and l1-norm in (9) imposes the thermal
operating conditions regarding the current flow of each distribution line.

Remark 2. 85% of the constraints in (3)–(9) are linear, i.e., convex (see constraints (4)–(9)).
However, the power balance constraint in (3) is non-convex due to the product between voltages on
its right-hand side [37].

3. Formulating the Conic Programming Approximation

A conic formulation can be elaborated in a set belonging toRn+1 with the following
expression:

C =
{
(x, z) ∈ Rn+1 : ‖x‖ ≤ z

}
, (10)

where x ∈ Rn is a vector of decision variables, z ∈ R is a real variable, and ‖·‖ denotes the
l2-norm of argument. Figure 1 depicts an example of a second-order cone, i.e., x ∈ R2 and
z ∈ R.

−4 −2 0
2

4 −5

0

5
0

2

4

6

x1

x2

z

Figure 1. Representation of the second-order cone C.

The cone C can integrate an affine space on both sides of the inequality, as follows:

‖Ax + b‖ ≤ c>x + d, (11)

where A ∈ Rn×n is a matrix, b, c ∈ Rn are vectors, and d ∈ R is a scalar. Therefore, an
optimization problem using a conic formulation can be generally represented as follows:

min h>x

subject to :

‖Ax + b‖ ≤ c>x + d

(12)

where h ∈ Rn is the costs vector of the objective function.
It is important to mention that the conic formulation (12) can include another type

of constraint, e.g., linear constraints, which are a particular case of a conic constraint, as
it defines A = 0 in (11) (see [38,39] for more details about conic formulations). The case
involving quadratic constraints is presented below.
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3.1. Conic Programming Application

To obtain a convex approximation that represents the problem under study, this
section proposes a convexification of the power balance constraints in (3). To obtain a
convex equivalent, the hyperbolic representation of the product between two variables is
employed [40]. To obtain this equivalent, consider the definition of the following set of
variables:

ωkmh = vkhvmh, {∀k, m ∈ N , ∀h ∈ H}, (13)

where ωkkh = v2
kh and ωmmh = v2

mh. Furthermore, if both sides of (13) are squared, then

ω2
kmh = v2

khv2
mh = ωkkhωmmh, {∀k, m ∈ N , ∀h ∈ H}. (14)

Now, note that (14) can be expressed using the equivalent hyperbolic representation
of the product between two positive variables, as follows:

ω2
kmh = ωkkhωmmh, {∀k, m ∈ N , ∀h ∈ H}

ω2
kmh =

1
4
(ωkkh + ωmmh)

2 − 1
4
(ωkkh −ωmmh)

2, {∀k, m ∈ N , ∀h ∈ H}

(2ωkmh)
2 + (ωkkh −ωmmh)

2 = (ωkkh + ωmmh)
2, {∀k, m ∈ N , ∀h ∈ H}∥∥∥∥ 2ωkmh

ωkkh −ωmmh

∥∥∥∥ = ωkkh + ωmmh, {∀k, m ∈ N , ∀h ∈ H} (15)

Here, Equation (15) corresponds to a non-convex constraint, as it represents the contour of
a cone due to the equality imposition [41].

Remark 3. To represent the product of two variables as an equivalent convex cone, the equality
constraint in (15) is relaxed as an inequality constraint (see [40]), which yields∥∥∥∥ 2ωkmh

ωkkh −ωmmh

∥∥∥∥ ≤ ωkkh + ωmmh. {∀k, m ∈ N , ∀h ∈ H} (16)

On the other hand, even though Equation (4) and the inequality constraints (8) and (9)
are convex in the domain of variables {vkh, vmh, ikmh}, they must be defined in the set of
the auxiliary variables {ωkkh, ωkmh, ωmmh}, preserving their convexity properties.

To obtain an equivalent function of the current flow per line in Equation (4), both sides
of this equation are squared, which yields

i2kmh = g2
km(vkh − vmh)

2 {∀km ∈ L, ∀h ∈ H}

i2kmh = g2
km

(
v2

kh − 2vkhvmh + v2
mh

)
{∀km ∈ L, ∀h ∈ H} (17)

if a new auxiliary variable lkmh = i2kmh is defined and the definition in (13) is employed, the
following convex constraint in the domain of the new variables is reached:

lkmh = g2
km(ωkkh − 2ωkmh + ωmmh) {∀km ∈ L, ∀h ∈ H} (18)

Considering the definitions of the variables lkmh and ωkkh, the voltage regulation
constraint (8) and the thermal limitations of the conductors in (9) can be rewritten as
follows: (

vmin
k

)2
≤ ωkkh ≤ (vmax

k )2, {∀k ∈ N , ∀h ∈ H} (19)

|lkmh| ≤ (imax
km )2, {∀km ∈ L. ∀h ∈ H} (20)
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The compact form of the general optimization problem is a nonlinear programming
model with a non-convex structure, as defined from (1) to (9). Next, the complete second-
order cone approximation for this problem is presented.
Objective functions:

min Eloss = ∑
h∈H

∑
k∈N

∑
m∈N

Gkmωkmh∆h, (21)

min ECO2 = ∑
h∈H

∑
k∈N

(
Csub

CO2 psub
kh + Cdiesel

CO2 pdiesel
kh

)
∆h, (22)

Set of constraints:

psub
kh + pdiesel

kh + ppv
kh − pd

kh = ∑
m∈N

Gkmωkmh, {∀k ∈ N , ∀h ∈ H} (23)

lkmh = g2
km(ωkkh − 2ωkmh + ωmmh) {∀km ∈ L, ∀h ∈ H} (24)

pmin,sub
k ≤ psub

k ≤ pmax,sub
kh , {∀k ∈ N , ∀h ∈ H} (25)

pmin,diesel
k ≤ pdiesel

kh ≤ pmax,diesel
k , {∀k ∈ N , ∀h ∈ H} (26)

pmin,pv
kh ≤ ppv

kh ≤ pmax,pv
kh , {∀k ∈ N , ∀h ∈ H} (27)(

vmin
k

)2
≤ ωkkh ≤ (vmax

k )2, {∀k ∈ N , ∀h ∈ H} (28)

|lkmh| ≤ (imax
km )2, {∀km ∈ L. ∀h ∈ H} (29)∥∥∥∥ 2ωkmh

ωkkh −ωmmh

∥∥∥∥ ≤ ωkkh + ωmmh. {∀k, m ∈ N , ∀h ∈ H} (30)

Remark 4. The optimization model (21)–(30) represents is convex and belongs to the family of
the second-order cone approximations, given the hyperbolic relaxation of the product between two
variables, with the main advantage that, under good operating conditions (loads far from the voltage
collapse point), it converges to the global optimal solution [40].

To illustrate the general workflow of the proposed EMS using a conic approximation,
Algorithm 1 shows the solution flow applied to the optimization model (21)–(30), which de-
pends on the selected objective function and all the potential operation scenarios associated
with the demand behavior and the PV generation forecast.

Algorithm 1: EMS operation for PV systems in monopolar DC networks
Data: Power generation output in PV plants

1 Select the monopolar DC network under analysis;
2 Compute the per-unit equivalent representation of the network;
3 Define the expected power demand curve and PV generation curves with their

uncertainties;
4 for Each expected demand or generation input variations do
5 Implement the conic approximation in (21)–(30) using a convex optimization

tool;
6 Select the objective function under minimization, i.e., Eloss or ECO2;
7 Solve the proposed conic optimization model;
8 Obtain the generation profile of the PV plants for a day-ahead operation;
9 Define the expected objective function value;

10 Construct different operation plants for each possible demand and PV generation
forecasts;

Result: Publish the day-ahead operation plan

It is worth mentioning that, in order to avoid a repetitive solution for each possible
demand behavior and PV generation projection, this research proposes a robust convex
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analysis involving the worst possible operation scenario, with the aim to define the optimal
day-ahead PV generation plan. This analysis is presented in the next subsection.

3.2. Robust Formulation

For its implementation, the EMS requires information such as the power output of the
PV generators and the load demand. However, this information is not 100% accurate, as it
is a forecast. Therefore, uncertainty must be incorporated in order to obtain a more accurate
EMS. One way to account for uncertainty in a model is through robust optimization,
which aims to identify the worst-case scenario for the problem. First, robust optimization
defines the set of decision variables (x) of the model. Secondly, it includes the set of
uncertainties (w) in order to achieve the minimum of the model under the worst-case cost
while observing all constraints. A robust optimization model can be defined as follows:

min
x

max
w

f (x, w),

subject to h(x, w) = 0 ∀ w ∈ W ,

g(x, w) ≤ 0 ∀ w ∈ W ,

(31)

where f (x, w), h(x, w), and g(x, w) are the objective function, the set of equality constraints,
and the set of inequality constraints that include the set of uncertainties in the original
optimization model, respectively. W denotes the set of uncertainties.

Now, it is necessary to include the set of uncertainties in the conic programming
approximation described in (21)–(30). Initially, the following variables are defined:

γ
p+
kh + γ

p−
kh ≤ 1, {∀ k ∈ N , ∀ h ∈ H} (32)

γd+
kh + γd−

kh ≤ 1, {∀ k ∈ N , ∀ h ∈ H} (33)

ppv
kh = p̄pv

kh + p̂pv
kh γ

p+
kh − p̂pv

kh γ
p−
kh , {∀ k ∈ N , ∀ h ∈ H} (34)

pd
kh = p̄d

kh + p̂d
khγd+

kh − p̂d
khγd−

kh , {∀ k ∈ N , ∀ h ∈ H} (35)

where γ ∈ {0, 1} defines the set of uncertainties; p̄pv
kh and p̂pv

kh are the power available from
the PV generator and its deviation, respectively; p̄d

kh is the power consumption of the load,
and p̂d

kh is its deviation.
Note that in (34) and (35), only the values in the following intervals are considered:

ppv
kh ∈ [ p̄pv

kh − p̂pv
kh , p̄pv

kh + p̂pv
kh ], (36)

pd
kh ∈ [ p̄d

kh − p̂d
kh, p̄d

kh + p̂d
kh]. (37)

The robust conic programming approximation (RCPA) model yields the following
formulation:
Objective functions:

min
W

(
Eloss max

w∈W

(
‖ p̄pv‖+

∥∥∥P̄d
∥∥∥)), (38)

min
W

(
ECO2 max

w∈W

(
‖ p̄pv‖+

∥∥∥P̄d
∥∥∥)), (39)

subject to (23)–(26), (28)–(30), (32)–(35). (40)

Algorithm 2 illustrates the flowchart of the proposed RCPA model.
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Algorithm 2: Robust conic programming approximation
Data: Select the monopolar DC grid with the PV generators to be analyzed

1 Compute the per-unit equivalent representation of the network;
2 Define LB = −∞, UB = +∞.
3 for h = 1 : 24 do
4 while (UB− LB < ε) do
5 Solve (23)–(30). Obtain the optimal solution and the objective function

value, x∗ = [w∗km, p∗pv, p∗sub] and Eloss (or ECO2), respectively.
6 LB← max{LB, Eloss (or ECO2)}.
7 Solve fs(x∗, w) = max

(
‖ p̄pv‖+

∥∥∥ p̄d
∥∥∥), subject to (23)–(26), (28)–(30),

(32)–(35), with x = x∗.
8 Obtain the worst-case scenario regarding the uncertainty and the objective

function, w∗ = [ p̂pv∗

h , p̂d∗
h ] and fs.

9 UB← min{UB, fs}.
10 ppv max

h ← ppv max
h + w∗.

11 ppv min
h ← ppv min

h − w∗.
12 pd max

h ← pd max
h + w∗.

13 pd min
h ← pd min

h − w∗.

14 h← h + 1.
Result: Return x∗ and Eloss (or ECO2)

4. Test Feeder Information

To validate the proposed second-order cone optimization model, the monopolar DC
of the IEEE 33-bus grid was considered with information on the demand and generation
profiles in Medellín (Colombia) [8]. The electrical configuration of this test feeder is
depicted in Figure 2. The main characteristic of this system is that three PV plants, with
installed capacities of 2.4 MW, are allocated in nodes 12, 15, and 31. This grid has a PV
penetration level of around 43.72%, which is computed as the total energy demand and
the total generation available from the PV systems, using the integrals of the demand and
generation curves. This is a medium-voltage distribution grid that operates with 12,660 V
at the terminals of the substation bus, which is located at node 1.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 2. Urban distribution network composed of 33 nodes.

The parametric information regarding the loads and branches of the 33-bus grid is
presented in Table 2.

The daily expected demand behavior measured at the terminals of the substation bus
and the daily renewable generation profile depicted in Figure 3 were taken from the work
by [10], who presented a complete characterization of Medellín (Colombia).
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Table 2. Parametric information of the urban distribution network used for validation.

Line l Node i Node j Rij (Ω) Pj (kW) Imax
l (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 1.7114 200 85
8 8 9 1.0300 60 70
9 9 10 1.0400 60 55
10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 1.4680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 1.2890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 1.5042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 1.0590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60

70

80

90

100

PV
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cu

rv
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)

PV availability Load

Figure 3. Expected daily behavior of the generation and demand curves for Medellín (Colombia).

5. Results and Discussion

This section shows all the numerical results obtained with the RCPA approach in
the modified DC 33-bus system. The computational implementation was carried out in
YALMIP (R20230622 version), a toolbox for convex optimization of the MATLAB 2021a
software [42]. The RCPA model shown in (38)–(40) was executed on a PC with an Intel
Quad-Core i7-7700HQ processor @2.80 GHz, 16 GB RAM (Dell Inc., Round Rock, TX, USA;
Intel Corporation, Santa Clara, CA, USA, and 64-bit Windows 10 Home Single Language.
The YALMIP solver used to solve the proposed model was Mosek [43].
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This research considered the following simulation scenarios to validate the proposed
deterministic and robust convex models.

i. The minimization of the daily energy losses in the deterministic case.
ii. The minimization of the daily energy losses while considering uncertainties in the

demand and PV curves.
iii. The minimization of the daily CO2 emissions in the deterministic case.
iv. The minimization of the daily CO2 emissions while considering uncertainties in the

demand and PV curves.

5.1. Minimization of Daily Energy Losses

This subsection compares the proposed RCPA approach against methods such as the
iterative convex model (ICM) [8], multi-verse optimization (MVO) [10], the particle swarm
optimizer (PSO) [10], the crow search algorithm (CSA) [10], and the salp swarm algorithm
(SSA) [10]. This comparison sought to evaluate the performance of the proposed RCPA
method only with regard to the objective function (21). Table 3 presents the numerical
results obtained by all approaches for the minimization of the daily energy losses. These
losses are about 2186.2799 kWh/day without PV generation (benchmark case).

Table 3. Numerical results for all approaches used in this study.

Method Eloss (kWh/day) Reduction (%)

Benchmark case 2186.2799 —

CSA 1270.1562 41.9033
PSO 1268.5973 41.9746

MVO 1231.2531 43.6827
SSA 1225.3323 43.9536
ICM 1224.8548 43.9754

RCPA 1224.8548 43.9754

According to the results shown in Table 3, the following conclusions can be drawn:

i. The RCPA approach achieves the best solution, with a daily energy loss reduction of
44.0082% with respect to the benchmark case. The SSA and MVO approaches are close
to the best solution, with reductions of 43.9536% and 43.9536%, respectively. This
demonstrates that the RCPA approach finds the best solution for the problem, unlike
the random-based optimization approaches, such as the SSA, MVO, PSO, and CSA. If
energy loss costs of 0.1302 USD/kWh (taken from [8]) are assumed, the reductions
would be USD 119.2793, 119.4823, 124.3445, 125.1154, and 125.1775 per day for the
CSA, PSO, MVO, SSA, and RCPA approaches, respectively, indicating that the RCPA
can reach the best solution with the lowest energy losses costs.

ii. The CSA and PSO approaches yield the worst solutions to the problem, with expected
reductions of less than 42%. This demonstrates that these random-based optimization
approaches only find local solutions. The proposed RCPA outperforms these methods
by 2.1049% and 2.0336%.

iii. The ICM approach is a convex model that finds the same solution as the proposed
RCPA approach. However, this approach does not have a robust formulation that
allows including uncertainties in demand and PV generation.

5.2. Minimization of Daily Energy Losses While Considering Uncertainties

This subsection examines the performance of the proposed RCPA approach (see
model (38) and (40)) while considering demand and PV generation uncertainties, whose
values are assumed to be±10% of the nominal values. Figure 4 illustrates the PV generation
and demand curves with these values, and Table 4 lists the numerical results obtained for
this case. The benchmark case included the dispatch of PV generators.
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Figure 4. PV generation and demand curves considering uncertainties of ±10% with respect to the
nominal values.

Table 4. Numerical results obtained when including demand and PV generation uncertainties for
Eloss.

Uncertainty Eloss (kWh/day) Increase (%)

Benchmark case 1224.8548 —

Demand 1504.3148 22.8157
PV generation 1227.3335 0.2023

Demand/PV generation 1516.2396 23.7893

From Table 4, note that:

i. The daily energy losses increase to 1504.3148 kWh/day when a demand uncertainty of
±10% is included. This increase is around 22.8157% when compared to the benchmark
case. This result is expected, as the daily energy losses are calculated while considering
an increase in the power demanded.

ii. PV generation uncertainty does not entail a significant change in the daily energy
losses; they increase by 0.2023% with respect to the benchmark case. However, this
increase is explained by the fact that the PV generators are programmed for the
worst-case scenario.

iii. The daily energy losses for this case are 1516.2396 kWh/day. This is the highest
result, with increments of 23.7893% (without uncertainty), 0.7927% (only demand
uncertainty), and 23.5393% (only PV generation uncertainty). This is expected and
logical, given that this scenario considers a more significant uncertainty, and all
dispatched powers correspond to the worst possible case.

5.3. Minimization of the Environmental Objective Function

This subsection presents an analysis of the numerical results obtained by applying the
RCPA to minimize the CO2 emissions caused by the generation from conventional sources.
Table 5 presents a comparison with the CSA, the PSO, the MVO, the SSA, and the ICM
reported in [8]. The total CO2 emissions for the benchmark case (without PV generation)
are about 12,345.1497 kg/day.
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Table 5. Numerical results obtained by all approaches for ECO2

Method ECO2 (kg/day) Reduction (%)

Benchmark case 12,345.1497 –

CSA 9328.7685 24.4337
PSO 9282.4081 24.8093

MVO 9187.9682 25.5743
SSA 9166.6746 25.7568
ICM 8965.4072 27.3771

RCPA 8965.4072 27.3771

The numerical data in Table 5 show that:

i. The proposed RCPA finds the best possible solution for the deterministic case, with
total CO2 emissions reductions of about 27.3771% in comparison with the benchmark
case. This solution is the same as that reported by the ICM. However, all of the
combinatorial optimizers, i.e., the CSA, the PSO, the MVO, and the SSA, get stuck in
local optima, thus confirming that the RCPA approach, together with the ICM, are the
best options for operating PV systems in monopolar DC networks.

ii. For the deterministic reduction in energy losses, the CSA and PSO approaches are the
worst combinatorial methods, with reductions lower than 25%, i.e., differences greater
than 2% when compared to the convex approaches.

iii. The proposed RCPA outperforms the best combinatorial optimization method (SSA) by
about 1.62%, which corresponds to an additional improvement of about 201.2674 kg/day.

The main result in Table 5 is that convex optimization methods are the best options
in the design of EMS for renewable energy applications in monopolar DC grids. This is
due to the fact that the convexity of the solution space and the objective functions ensure a
100% solution repeatability, unlike random-based algorithms, which can reach different
local optima in each evaluation.

5.4. Minimization of the Environmental Objective Function While Considering Uncertainties

This subsection analyzes the performance of the proposed RCPA approach (see
models (39) and (40)) in minimizing the expected CO2 emissions generated by conventional
sources while considering demand and PV generation uncertainty, whose assumed level is
±10% of the nominal values (see Figure 4). Table 6 presents the numerical results obtained
for this scenario.

Table 6. Numerical results for ECO2 when considering uncertainties in the demand and PV generators.

Uncertainty ECO2 (kg/day) Increase (%)

Benchmark case 8965.4072 —

Demand 9968.2305 11.1854
PV generation 9047.0174 0.9102

Demand/PV generation 10,051.9989 12.1198

From Table 4, it can be stated that:

i. The demand uncertainty increases the CO2 emissions to 9968.2305 kg/day, which
constitutes an increment of 11.1854% in comparison with the benchmark case. This is
expected, as the system’s generators are programmed for the worst-case scenario.

ii. PV generation uncertainty does not significantly change the CO2 emissions, which
only increase by 0.9102% with respect to the benchmark case. However, this value
continues to increase because the worst-case scenario is considered.

iii. The expected CO2 emissions from conventional sources amount to 10,051.9989 kg/day
when taking uncertainty into account. This result surpasses those of other cases by
12.1198% (without uncertainty), 0.8403% (only demand uncertainty), and 11.1084%
(only PV generation uncertainty).
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6. Conclusions

This paper described a robust conic convex model for efficiently managing energy
in monopolar DC networks which considers uncertainties in demand and PV generation.
The EMS model belongs to the NLP family and was transformed into a convex optimiza-
tion problem via the second-order cone equivalent of the product between two positive
variables. Furthermore, two single-objective functions were considered to evaluate the
performance of the proposed RCPA approach, i.e., the minimization of the expected daily
energy losses and the CO2 emissions from conventional generation sources. Each objective
function included demand and PV generation uncertainties, which were solved using a
min–max strategy. This strategy involved solving the model under the worst-case possible
configuration while observing the set of constraints. Numerical simulations in the monopo-
lar DC version of the IEEE 33-bus grid showed the effectiveness and robustness of the
proposed approach. This was supported by a comprehensive comparison of four different
combinatorial optimizers: the SSA, the MVO, the PSO, and the CSA. The global optimum
was found for two single-objective functions; the first one (daily energy losses) was reduced
by 44.0082% with respect to the benchmark case, while the other one (CO2 emissions) was
reduced by 27.3771%. When uncertainties were included in the model, each objective func-
tion obtained a worse result, as the worst-case scenario was taken into account. In all the
cases considered, the daily energy losses increased by 22.8157% (only demand uncertainty),
0.2023% (only PV generation uncertainty), and 23.7893% (both PV generation and demand
uncertainty). Similarly, with respect to the benchmark case, the expected CO2 emissions
showed increments of 11.1854%, 0.9102%, and 12.1198%, respectively.

In future works, the following works could be carried out: (i) extending the proposed
optimization model to the integration of battery energy storage systems and wind genera-
tion and (ii) designing an EMS for monopolar DC networks that is based on a semi-definite
programming model and includes a robust analysis.
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