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Abstract                                                                                                                    

The need to establish the downwind fluid dynamic field of aerodynamic bodies subjected to a given 

velocity field is well known, to verify their aerodynamic characteristics. In this context, different 

techniques allow us to establish the characteristics of the field. It is almost always necessary to carry out 

quantitative determinations to describe the field correctly, particularly when the field is made up of 

turbulent wakes. In this sense, in the experimental field, it is common to use hot-wire anemometry 

techniques, which have great capabilities to quantify high-frequency events. Previous work has analyzed 

the determination of changes in hot-wire anemometry signals for the detection of events in turbulent 

flows with different models, based on stochastic algorithms (CPM - Change Point Model).  

The present work aims to compare the results obtained previously with the application of different CPM 

models developed. Previously applied and evaluated measurements are used, the implementation of the 

models is carried out and the results are compared. All the algorithms used can detect changes in data that 

do not have a known distribution, i.e. non-parametric distributions, which are typical for turbulent flow 

field signals. Measurements of the fluctuating components of the wind tunnel velocity at a specific point 

are considering. The signals used correspond to periodic detachments downstream of a flow control 

device (Gurney mini-flap) at the trailing edge of an airfoil. The results show which are the best models to 

use for the experimental detection of such turbulent events in the flow field.  
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INTRODUCTION 

Turbulent flow in a fluid is that in which the variables: velocity, density, pressure, temperature, 

etc. behave randomly at each point of the fluid and at each instant of time [1]. The study of 

turbulent flows is of great importance in many technological applications: Aeronautical, Naval, 

Mechanical and Structural Engineering, internal flow phenomena, combustion, etc. There are 

characteristics of the turbulent structure of a flow that change how the fluid moves in the 

environment of the objects, generating fluid-dynamic forces on them. Such changes can be losses 

in flow momentum, generated by the appearance of eddies and viscous dissipation, and these 

effects are commonly observed in aeronautical and naval applications, internal flows, etc. [1]. If 

an engineering problem involving turbulence is to be improved or optimized, it will be necessary 

to understand and control the set of turbulent events or structures that govern it [2]. A meticulous 

analysis of a global turbulent flow would allow detecting the existence of turbulent structures in 

it, normally hidden. Since the mid-1960s the analysis of turbulence has been revolutionized 

thanks to the use of sophisticated methodologies for experimental data analysis. There is a vast 

literature on methodologies for the analysis of turbulent flow measurements, among the most 

recent ones, we can mention the so-called POD-Proper Orthogonal Decomposition [3], 

multiresolution analysis methods [4], the use of ARMA (Auto Regressive Moving Average) [5], 

etc. All these methodologies require significant computational power for their implementation. 

From the application of these methodologies, it was realized that in many cases the turbulence, 

which contained an important portion of the kinetic energy, was organized in structures. Such 

organization occurs, for example, in eddies of very different shape and size. The modern 

approach to turbulence concentrates on the meticulous study of the various turbulent structures, 

by analyzing how the flow behaves around the objects. The determination of such behavior 

allows the effects on a moving object to be inferred. Of interest is the detection the occurrence of 

specific turbulent events (eddies) that are generated as the flow detaches from the object defining 

a particular pattern. These eddies allow us to infer important effects related to the forces acting 

on the object, which are usually immersed in the motion of the turbulent flow [1]. When 

measurements, particularly in wind tunnel experiments, are performed with point velocity 

measurement equipment, (Hot Wire Anemometry-HWA [6] or Laser Doppler Anemometry-

LDA [7]), the possibility of processing the sensed random signal to detect this type of turbulent 

events and characterize their frequencies of occurrence and intermittency is of interest. From 

this, the aim is to analyze and understand how an object processes the fluid in which it is 

moving, and in this way to predict the behavior of the moving object. Our aim, then, is to apply 

stochastics techniques, for detecting changes in a sensed signal over time [8], for velocity 

fluctuations in a turbulent flow. The main objective is the use of these methodologies to analyze 

measurements made with hot-wire anemometry, incorporating them as another tool that allows 

us to determine the occurrence of events in a fluid-dynamic field, to carry out their analysis and 

study.  
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CHANGE POINT DETECTION PROBLEM 

The problem of change detection has been a vast area of research since the 1950s [9-11]. 

Because the problem is very general, the literature is very diverse and takes place in very 

different fields. In particular, many of the methods have their origin in the quality control 

community, where the main objective is to monitor the results of an industrial manufacturing 

process, aiming to detect faults in the process as early as possible [8]. However, there are many 

other applications where change detection techniques are important, for example, in the study of 

genetic sequences, climatological studies, bioinformatics applications, intrusion in computer 

networks, financial market, etc. There is a lot of literature on all these topics, but their 

application to the analysis of fluid velocity signals is not well known. In our case, the sensed 

signal corresponds to the fluctuating values of the air velocity in a turbulent flow. In recent years 

[12], extensive work has begun on the subject of change detection in a process and certain basic 

criteria have been defined. Many statistical problems require the identification of change points 

in a data sequence. Statistical Process Control (SPC) refers to the monitoring of processes due to 

a change in their distribution. Traditional methods assume that the distribution of the process is 

fully known before any change, including all its parameters, in which case the process is said to 

be "in control", and "out of control" if a change occurs that causes the process to correspond to a 

different distribution. The aim is to design control charts that can detect deviations from the 

baseline distribution. Usually, in control charts, the Average Run Length function (ARL) is 

employed, where ARL0 indicates the average number of observations between false positive 

detection assuming no change has occurred, and ARLδ indicates the average delay before a 

change in size δ is detected. This is analogous to the classical idea applied in hypothesis test 

design of having a bounded Type I error and a controlled Type II error. Historically control 

charts were developed for monitoring changes in the mean value of a process, but variations have 

now been developed that also allow changes in standard deviation to be monitored in both 

Gaussian and non-Gaussian distributions, which prompted us to investigate the applicability of 

these new methodologies to the detection of changes in a turbulent random signal. Control charts 

traditionally require full knowledge of the process "in control", but this is not a problem if there 

is a large reference sample of observations that are known to generate the distribution "in 

control". In the case of fixed sample sizes, this is called Phase I analysis, while sequential 

monitoring of the process when observations are received over time is called Phase II analysis 

[12]. In some cases, the reference sample may be small or non-existent. In these cases, it would 

be impossible to accurately estimate the parameters "in control". This has important 

implications; it was found that even small deviations from the actual values can cause the charts 

to show a significantly different ARL0 from the desired value [13]. A worse situation can occur 

when the distribution "in control" is incorrectly specified, such as the use of a Gaussian 

distribution for processes exhibiting skewness. In these circumstances, non-parametric control 

charts are needed that assume no knowledge of the "in-control" distribution ("free distribution" 

charts), maintaining a desired value of ARL0 regardless of the true distribution of the process 

under study. In previous work [14, 15], studies were initiated to analyse the application of 
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Change Point Models (CPM), used to detect deviations in the sensed signal. In the present work, 

non-parametric tests for the implementation of CPM models are considered again, using 

applications of the detection algorithm, with routines coded in R language (https://cran.r-

project.org/web/packages/cpm/index.html - http://CRAN.R-project.org/package=ecp - 

http://CRAN.R-project.org/package=changepoint), employing the Kolmogorov-Smirnov (CPM-

KS) [12][16], James-Matteson (CPM-JM) [21], and Killick- Eckley (CPM-KE) [23] tests.  

This work presents results obtained from the analyses carried out for the device indicated and 

comparing the different models used. From these results it is expected to continue with other 

configurations of the device, to evaluate its behaviour in all the established study cases. 

METHODS  

KOLMOGORV-SMIRNOV CPM (CPM-KS) 

We will consider the problem of detecting a change point in a fixed sequence of observations. By 

identifying the observations as {X1, …. Xt}, the aim is to test whether they have been generated 

by the same probability distribution. We assume that the distribution is not known a priori. Using 

the language of statistical hypothesis testing, the null hypothesis is that there is no change point 

and all observations come from the same distribution, while the alternative hypothesis is that 

there is a change point τ in the sequence that partitions it into two sets, with X1, …. Xτ coming 

from the pre-change F0 distribution, and Xτ+1, …. Xt coming from a different F1 distribution after 

the change [11], 

     𝐻0: 𝑋𝑖~𝐹0     for   𝑖 = 1, . . . , 𝑡                         

𝐻1: 𝑋1, . . . , 𝑋𝜏~𝐹0,   𝑋𝜏+1, . . . , 𝑋𝑡~𝐹1                                       (1) 

 

You can test the existence of a change point immediately after any observation, Xk,, by 

partitioning the observations into two samples S1 = {X1, …, Xk} and S2 = { Xk+1 …, Xt} of sizes n1 

= k and n2 = t – k, respectively, and then applying a hypothesis test for two samples. We will use 

the Kolmogorov-Smirnov (KS) test for this, which is based on comparing the empirical 

distribution function of the two samples, as defined, 

�̂�𝑠1(𝑥) =
1

𝑘
∑ 𝐼(𝑋𝑖 ≤ 𝑥)

𝑘

𝑖=1

 

              (2) 

    �̂�𝑠2(𝑥) =
1

𝑡−𝑘
∑ 𝐼(𝑋𝑖 ≤ 𝑥)𝑡

𝑖=𝑘+1  

 

Where I(X i< x) is the indicator function 

 

𝐼(𝑋𝑖 < 𝑥) = {
1      si    𝑋𝑖 < 𝑥 

0  otherwise
                                                 (3) 

 

For the KS test the statistic is defined as the maximum difference between the empirical 

distributions seen above (Eq. 2 and 3) where, 
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𝐷𝑘,𝑡 = 𝑠𝑢𝑝
𝑥

|�̂�𝑆1
(𝑥) − �̂�𝑆2

(𝑥)|,                                                   (4) 

                 

We reject the null hypothesis H0 if 𝐷𝑘,𝑡 > ℎ𝑘,𝑡 for some threshold hk,t 

As it is not known where the change point will be located, we do not know which value of k to 

use for partitioning the sample. That is why we specify a more general hypothesis H0, i.e. there is 

no change in the sequence of values. The alternative hypothesis is then that there is a change 

point for some nonspecific value of k. Then we can make this test by calculating Dk,t, for each 

value 1 <k <t and take the maximum value. However, the statistical variance Dk,t depends on the 

value of k. Because of this, we standardize the Dk,t statistics so that they have equal mean and 

variance for all values of k.  

The standardisation of the KS statistic is complex. This is due to the fact that there are no closed 

expressions for mean and variance of Dk,t, except asymptotically when t is large. Instead of 

considering the statistic Dk,t the p-value pk,t is used, defined as the probability of observing a 

value more extreme than Dk,t. This value can be considered already standardised with respect to 

the sample size and easier to correct than the mean or variance for small samples. 

We will have qk,t = 1 – pk,t  and define by, 

 

𝑞𝑡 = 𝑚á𝑥
𝑘

𝑞𝑘,𝑡,                                                                   (5)  

 

In this case we will have qt > ht, where ht is some possible chosen threshold, then the null 

hypothesis H0 is discarded and we conclude that a change has occurred at some point in the data 

sequence. The above formulation of the nonparametric CPMs rely on the calculation of ranks.  

One of the most important issues in the implementation of this CPM is the number of pre-change 

observations; this has a great impact on the performance of the model. As the prior distribution 

change is unknown, it will be easy to detect changes when the number of previous observations 

is large, making it possible to obtain a better estimated distribution and a more accurate empirical 

function distribution. 

 

JAMES-MATTESON CPM (CPM-JM) 

It assumes that at most only one change point exists [19]. A natural way to proceed is to choose  

as the most likely location for a change point, based on some criterion. Here,  is chosen from 

some subset of {1, 2, … , T-1}, then a test for homogeneity is performed. This should necessarily 

incorporate the fact that  is unknown. 

Now, suppose there is a known number of change points k in the series, but with unknown 

locations. Thus, there exist change points 0 < 1 < … < k < T, that partition the sequence into 

k+1 clusters, such that observations within clusters are identically distributed, and observations 

between adjacent clusters are not. Then it maximizes the objective function using dynamic 

programming. 

This is a nonparametric technique, which they call E-Divisive [21], for performing multiple 

change point analysis of a sequence of multivariate observations. The E-Divisive method 

combines bisection [20] with a multivariate divergence measure from Székely and Rizzo [22]. 

For random variables X; Y  Rd; let x and y denote the characteristic functions of X and Y, 

respectively. A divergence measure between multivariate distributions may be defined as  
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∫ |𝜙𝑥(𝑡) − 𝜙𝑦(𝑡)|
2
𝑤(𝑡)𝑑𝑡

ℝ𝑑                                                          (6) 

 

in which w(t) denotes an arbitrary positive weight function, for which the above integral exists. 

Using the following weight function [22]  

 

𝑤(𝑡; 𝛼) = (
2𝜋

𝑑
2⁄ Γ(1−𝛼 2⁄ )

𝛼2𝛼Γ((𝑑+𝛼) 2⁄ )
|𝑡|𝑑+𝛼)

−1

                                                 (7) 

 

For some fixed constant (0,2). Then, if EX, EY < , a characteristic function-based 

divergence measure may be defined as 

 

𝐷(𝑋, 𝑌; 𝛼) = ∫ |𝜙𝑥(𝑡) − 𝜙𝑦(𝑡)|
2

ℝ𝑑 (
2𝜋

𝑑
2⁄ Γ(1−𝛼 2⁄ )

𝛼2𝛼Γ((𝑑+𝛼) 2⁄ )
|𝑡|𝑑+𝛼)

−1

𝑑𝑡                      (8) 

 

then we may employ an alternative divergence measure based on Euclidean distances, defined in 

[22]  

 

ℰ(𝑋, 𝑌; 𝛼) = 2𝐸|𝑋 − 𝑌|𝛼 − 𝐸|𝑋 − 𝑋′|𝛼 − 𝐸|𝑌 − 𝑌′|𝛼                           (9) 

 

An empirical divergence measure analogous to previous Eq. 9 may be defined as 

 

       ℰ̂(𝑋𝑛 , 𝑌𝑚; 𝛼) =
2

𝑚𝑛
∑ ∑ |𝑋𝑖 − 𝑌𝑗|

𝛼𝑚
𝑗=1 − (

𝑛
2

)
−1

∑ |𝑋𝑖 − 𝑌𝑘|𝛼 −1≤𝑖<𝑘≤𝑛
𝑛
𝑖=1 (

𝑚
2

)
−1

∑ |𝑋𝑗 − 𝑌𝑘|
𝛼

1≤𝑗<𝑘≤𝑚           (10) 

 

Let 

�̂�(𝑋𝑛 , 𝑌𝑚; 𝛼) =
𝑚𝑛

𝑚+𝑛
ℰ̂(𝑋𝑛 , 𝑌𝑚; 𝛼)                                            (11) 

 

denote the scaled sample measure of divergence discussed above. This statistic leads to a 

consistent approach for estimating change point locations. Let Z1, …, ZT  Rd  be an independent 

sequence of observations and let 1   < k  T be constants. Now define the following sets, X = 

{Z1, Z2, …, Z} and Y = {Z+1, Z+2, …, Zk}. A change point location �̂� is then estimated as    

 
(𝜏,̂ �̂�) = argmax

(𝜏,𝜅)
�̂�(𝑋𝜏 , 𝑌𝜏(𝜅); 𝛼)                                            (12) 

 

To estimate multiple change points, we iteratively apply the above technique as follows. Suppose 

that k - 1 change points have been estimated at locations 0 <�̂�1 < … < �̂�𝑘−1 < T. This partitions 

the observations into k clusters �̂�1,  �̂�2, …, �̂�𝑘, such that �̂�𝑖 = {𝑍�̂�𝑖−1+1, … , 𝑍�̂�𝑖
}, in which �̂�0 = 0 

and �̂�𝑘 = 𝑇 . Given these clusters, we then apply the procedure for finding a single change point 

to the observations within each of the k clusters. Specifically, for the ith cluster �̂�𝑖 denote a 

proposed change point location as �̂�(𝑖) and the associated constant �̂�(𝑖), as defined by Eq. 12. 

Now, let 

 

𝑖∗ = argmax
𝑖∈{1,…,𝑘}

�̂�(𝑋�̂�(𝑖), 𝑌�̂�(𝑖)(�̂�(𝑖)); 𝛼)                                              (13) 
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in which �̂�𝑘 = �̂�(𝑖∗) denotes the kth estimated change point, located within the cluster �̂�𝑖∗ , and 

�̂�𝑘 = �̂�(𝑖∗) the corresponding constant. This iterative procedure has running time 𝒪(𝑘𝑇2), in 

which k is the unknown number of change points. 

 

KILLICK- ECKLEY CPM (CPM-KE) 

Let us assume we have an ordered sequence of data, 𝑦1:𝑛 = (𝑦1, … , 𝑦𝑛). A changepoint is said to 

occur within this set when there exists a time, 𝜏 ∈ {1, … , 𝑛 − 1}, such that the statistical 

properties of (𝑦1, … , 𝑦𝜏) and (𝑦𝜏+1, … , 𝑦𝑛) are different in some way. Extending this idea of a 

single changepoint to multiple changes, we will have several changepoints, m, together with their 

positions, 𝜏1:𝑚 = (𝜏1, … , 𝜏𝑚). Each changepoint position is an integer between 1 and n - 1 

inclusive. We define  𝜏0 = 0 and 𝜏𝑚+1 = 𝑛, and assume that the changepoints are ordered so that 

𝜏𝑖 < 𝜏𝑗 if, and only if, i < j. Consequently, the m changepoints will split the data into m + 1 

segments, with the ith segment containing data 𝑦(𝜏𝑖−1+1):𝜏𝑖
 . Each segment will be summarized by 

a set of parameters. The parameters associated with the ith segment will be denoted {𝜃𝑖 , 𝜙𝑖}, 

where 𝜙𝑖 is a (possibly null) set of nuisance parameters and 𝜃𝑖 is the set of parameters that we 

believe may contain changes. Typically, we want to test how many segments are needed to 

represent the data, i.e., how many changepoints are present and estimate the values of the 

parameters associated with each segment. 

We introduce the general likelihood ratio-based approach to the hypothesis test. A test statistic can be 

constructed which we will use to decide whether a change has occurred. The likelihood ratio 

method requires the calculation of the maximum log-likelihood under both null and alternative 

hypotheses. For the null hypothesis the maximum log-likelihood is log 𝑝(𝑦1:𝑛|𝜃), where p(▪) is 

the probability density function associated with the distribution of the data and 𝜃 is the 

maximum likelihood estimate of the parameters.  

Under the alternative hypothesis, consider a model with a changepoint at τ1, with 𝜏1 ∈
{1, 2, … , 𝑛 − 1}. Then the maximum log likelihood for a given τ1 is  

 

             𝑀𝐿(𝜏1) = log 𝑝(𝑦1:𝜏1
|𝜃1) + log 𝑝(𝑦(𝜏1+1):𝑛|𝜃2)                          (14) 

 

Given the discrete nature of the changepoint location, the maximum log-likelihood value under 

the alternative is simply 𝑚𝑎𝑥𝜏1
ML(τ1), where the maximum is taken over all possible 

changepoint locations. The test statistic is thus, 

𝜆 = 2 [max
𝜏1

𝑀𝐿(𝜏1) − 𝑙𝑜𝑔 𝑝(𝑦1:𝑛|𝜃)]                                     (15) 

The test involves choosing a threshold, c, such that we reject the null hypothesis if λ > c. If we 

reject the null hypothesis, i.e., detect a changepoint, then we estimate its position as �̂�1 the value 

of τ1 that maximizes ML(τ1). 

The most common approach to identify multiple changepoints in the literature is to minimize  

∑ [∁(𝑦(𝜏𝑖−1+1):𝜏𝑖
)] + 𝛽𝑓(𝑚)𝑚+1

𝑖=1                                          (16)  

where ∁ is a cost function for a segment e.g., negative log-likelihood and 𝛽𝑓(𝑚) is a penalty to 

guard against over fitting (a multiple changepoint version of the threshold c). 
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The changepoint package [23] implements the pruned exact linear time (PELT) [24] algorithm 

that minimize Eq. 16. The algorithm minimizes the expression given by Eq. 16 exactly using a 

dynamic programming and pruning technique to obtain the optimal segmentation for m + 1 

changepoints reusing the information that was calculated for m changepoints. 

 

EXPERIMENTAL SETUP 

The measurements were performed in one of the close circuit boundary layer wind tunnels of our 

laboratory (UIDET-LaCLyFA) at the Aeronautics Department Engineering College, at the 

National University of La Plata, which has a test section 1 m high and 1.4 m wide. The model 

was a small wing with a chord length of 45 cm (C) and a wingspan of 80 cm (main wing length 

b), built with a NACA 4412 airfoil (shown in Fig. 1). A flow control device (Gurney mini-flap) 

with a length H = 2% C was added, located at the trailing edge (TE) of the airfoil at an angle of 

90° to the chord axis. The airfoil was submitted to a flow with an angle of attack of 0° (incidence 

chord angle relative to the free stream direction) to obtain a Reynolds number of 300,000 for the 

tests. 
 

 

 
 

Fig. 1: Wind tunnel setup images and trailing edge measurement point. 
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The flow velocities components were measured using a constant temperature hot-wire 

anemometer and a double wire sensor. Signal acquisition was at 4,000 Hz, with a low-pass filter 

of 2,000 Hz and 8,192 samples. The measurements presented correspond to a point in the wake 

generated by the profile at a distance of 1H downstream from the trailing edge at the height of 

the chord, with the passive flow control device at the TE (Gurney mini-flap). 

With the knowledge of the flow field generated by the presence of this device and the knowledge 

that it generates periodic vortex structures, periodic counter-rotating vortices (see Fig. 2), 

previous work [25] evaluated the possibility of using this methodology to detect the expected 

wake events. These events were identified by applying the wavelet transform to the signal. 

Wavelets are localized in both space and frequency; therefore, the wavelet transform analyses a 

signal locally in the frequency domain and in space or time [3]. The characteristic frequency 

localization in time of the wavelet transform provides a great opportunity to discover the 

positions of singularities and discontinuities in a signal, which is not possible with ordinary 

Fourier analysis [4]. The results of this methodology and the change point models were 

compared. 

 

 

 
 

Fig. 2: Counterrotating vortices scheme downstream the Gurney mini-flap (velocity and vorticity field). [26]. 

 

 

To compare, we present the result analysis found in the calculations for the vertical velocity 

component (v) of the analysed signal. Fig. 3 presents the wavelet map applying wavelet 

transform to the signal using a Mexican Hat wave type (Ricker wavelet), in which a maximum 
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can be traced in the signal [4]. Hence, the occurrence of a turbulent periodic event associated 

with one of the counter-rotating vortices that are released downstream of the device is observed. 

In Fig. 3, the value corresponding to the scales ordinate is defined with the following expression: 

 

𝑆𝑐𝑎𝑙𝑒 =
𝑙𝑛(∆𝑡)

ln (10)
                         (17) 

 

 

 

Fig. 3: Wavelets map and time series of v component velocity fluctuations for the first 0,05 seconds  

(Arrow indicates vortex scale: -0.3) [25] 

 

 

DISCUSION AND CONCLUSION 

Based on the measurements made and the implementation of the different CPM models, a 

comparison of the results between the models was made. It was found that, in general, the 

different models used are very accurate in detecting the expected events obtained by the methods 

usually used. As mentioned earlier, these models allow the determination of changes in a signal 

for which no probability distribution is known, so they can be applied to any flow case to 

evaluate the possible events contained therein. As can be seen in Table 1, the comparison of the 

results does not show a preference for any of the models. However, in this table, as in previous 

works, the model CPM-KS is the one with the best comparison results. This may be due to the 

fact that in these case, corresponding to the mini-flap in TE and as shown in Fig. 3, is that in 

which the predominance of counter-rotating vortices that periodically and alternately detach 

from the device with a characteristic frequency is clear. In Fig. 4 we shown the original data 

signal and the change points in vertical lines for wavelet transform and for the CPM-KS model. 

As shown in Table 1, only for the CPM-JM and CPM-EK models are there cases in which 

differences of more than 9.5% are found compared to the wavelet determination. Smaller 

differences is found for CPM-KS model, and also always correlated to the wavelet transform. 
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Table 1: Change point detection with differents models. 

Wavelet 
Nonparametric distribution CPM models 

CPM-KS CPM-JM CPM-EK 

Change     

[s] 

Change     

[s] 

Relative 

Difference    

[%] 

Change     

[s] 

Relative 

Difference    

[%] 

Change     

[s] 

Relative 

Difference    

[%] 

0.00225 0.00225 0 0.00250 11.11 0.00250 11.11 

0.00425 0.0045 5.88 0.00500 17.65 0.00450 5.88 

0.00825 0.00875 6.06 0.00900 9.09 0.00875 6.06 

0.01225 0.01175 4.08 0.01200 2.04 0.01175 4.08 

0.01575 0.01550 1.59 0.01725 9.52 0.01725 9.52 

0.02025 0.02000 1.23 0.02000 1.23 0.02000 1.23 

0.02375 0.02150 9.47 N/A N/A 0.02175 8.42 

0.02550 0.02450 3.92 0.02475 2.94 0.02450 3.92 

0.02825 0.02800 0.88 0.02950 4.42 0.02800 0.88 

0.03350 0.03350 0.00 0.03375 0.75 0.03350 0.00 

0.03625 0.03775 4.14 0.03775 4.14 N/A N/A 

0.04025 0.04050 0.62 0.04050 0.62 N/A N/A 

0.04425 0.04300 2.82 0.04375 1.13 0.04300 2.82 

0.04825 0.04800 0.52 0.05025 4.14 N/A N/A 

 

Fig. 4: Original signal with change points indicated for wavelet transform (blue lines) and CPM-KS model (red 

lines). 
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It was also found that the CPM-JM and CPM-EK models do not detect some of the changes 

predicted by the application of the wavelet transform. Nevertheless, all the models shown in this 

work are considered useful for evaluating turbulent events under different conditions. 

We think that the reviews made [14] [15] [25] of the most suitable models for evaluation will 

primarily allow us to determine and analyse the downstream fluid dynamic behaviour in such 

flow control devices. 
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