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EXPRESSIONS AND CHARACTERIZATIONS FOR THE MOORE-PENROSE INVERSE

OF OPERATORS AND MATRICES∗

PATRICIA MARIELA MORILLAS†

Abstract. Under certain conditions, we prove that the Moore–Penrose inverse of a sum of operators is the sum of the

Moore–Penrose inverses. From this, we derive expressions and characterizations for the Moore–Penrose inverse of an operator

that are useful for its computation. We give formulations of them for finite matrices and study the Moore–Penrose inverse of

circulant matrices and of distance matrices of certain graphs.
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1. Introduction. A generalization of the concept of inverse for matrices was first introduced by Moore

[1, 2]. Then, this generalized inverse was independently reintroduced and studied by Bjerhammer [3] and

Penrose [4]. The now commonly called Moore–Penrose inverse has been also defined and studied for operators

in Hilbert spaces (see e.g., [5, 6] and the references therein). It has numerous applications to physics,

statistics, optimization theory, solution of differential and integral equations, prediction theory, control

system analysis, etc. For more details see, e.g., [7, 8, 9, 10].

Let H1 and H2 be Hilbert spaces over F = R or F = C. Let B(H1,H2) denotes the set of bounded

linear operators from H1 to H2. The set of elements in B(H1,H2) with closed range will be denoted with

BC(H1,H2). Given A ∈ B(H1,H2), we denote the adjoint, the null space, and the range of A by A∗, N(A)

and R(A), respectively. If A ∈ BC(H1,H2), then H1 = N(A) ⊕ R(A∗) and H2 = R(A) ⊕ N(A∗), where

⊕ denotes orthogonal sum. If W is a closed subspace of a Hilbert space, then PW denotes the orthogonal

projection onto W.

Definition 1.1. Let A ∈ BC(H1,H2). The unique solution X ∈ BC(H2,H1) of the system of operator

equations

(1)AXA = A, (2)XAX = X, (3) (AX)
∗

= AX and (4) (XA)
∗

= XA,

is called the Moore–Penrose inverse of A and is denoted by A†. Any X ∈ B(H2,H1) that satisfies (1), (3)

and (4) is known as a {1, 3, 4}-inverse of A.

One of the most important properties used in the applications of the Moore–Penrose inverse is that the

minimal norm least squares problem

min ‖x‖ subject to ‖Ax− g‖ = min
f∈H1

‖Af − g‖,

has the unique solution x = A†g.
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We note that if A ∈ B(H1,H2), then A† exists if and only if R(A) is closed, and R(A) is closed if and

only if R(A∗) is closed. Let A ∈ BC(H1,H2). Then
(
A†
)†

= A and (A∗)
†

=
(
A†
)∗

. If A is invertible, then

A† = A−1. The Moore–Penrose inverse is characterized in the following theorem (see [5, Theorem] or [7,

Theorem 9.3]):

Theorem 1.2. If A ∈ BC(H1,H2), then A† ∈ BC(H2,H1) is the unique solution of anyone of the

following equivalent systems:

(i) AX = PR(A), N(X∗) = N(A).

(ii) AX = PR(A), XA = PR(A∗), XAX = X.

(iii) XAA∗ = A∗, XX∗A∗ = X.

(iv) XAPR(A∗) = PR(A∗), XPN(A∗) = 0.

(v) XA = PR(A∗), N(X) = N(A∗).

(vi) AX = PR(A), XA = PR(X).

1.1. Our contributions and the organization of the paper. In Section 2, we prove that under

certain conditions, the Moore–Penrose inverse of a sum of operators is the sum of the Moore–Penrose inverses

(Theorem 2.1). From this, we give a result for {1, 3, 4}-inverses (Corollary 2.2) and derive expressions

and characterizations for the Moore–Penrose inverse that are useful for its computation (Theorem 2.3,

Corollary 2.4, Theorem 2.5 and Corollary 2.6). Part of them can be viewed as extensions of the following

well-known result:

Proposition 1.3. Let A ∈ BC(H1,H2). Then:

(i) A† = (A∗A)
†
A∗ = A∗ (AA∗)

†
.

(ii) If N(A) = {0}, then A∗A is invertible and A† = (A∗A)
−1
A∗.

(iii) If R(A) = H2, then AA∗ is invertible and A† = A∗ (AA∗)
−1

.

In particular, we note that in Definition 1.1 and in Theorem 1.2, A† is characterized as the solution of

systems of equations, or of operators equations where the solution must satisfy some restrictions on its null

space or on its range space. The importance of Proposition 1.3(ii)(iii) from the computational point of view

is that if A ∈ BC(H1,H2) is injective (surjective), then A† is the unique solution of the single equation

(A∗A)X = A∗ (resp. X (AA∗) = A∗). Our results permit to address the computation of A† in a similar

manner as a solution of a single equation, in cases in which A is not necessarily injective or surjective.

Theorem 2.1(iv) extends [4, Lemma 1.7] about the Moore–Penrose inverse of sums of matrices to sums

of operators with closed ranges. In Section 3, we consider other generalizations of [4, Lemma 1.7] given in

[11, 12, 13] for sums of two matrices and in [14] for sums of two operators. We also mention other approaches

to the study of the Moore–Penrose inverse of sums of matrices that appear in [15, 16, 17, 18, 19]. Then, we

give formulations of results of Section 2 for finite matrices (Theorem 3.1, Corollary 3.2 and Theorem 3.4).

These formulations provide methods for the obtention of the Moore–Penrose inverse in the finite-dimensional

case. We show that results appeared in [7, 20, 21], which were proved with different approaches, are particular

cases of Corollary 3.2(iii) (see Remark 3.3). We also show the relation of Theorem 2.1 with the singular

value decomposition (Remarks 3.6 and 3.7).

In Sections 4 and 5, we use our previous results to determine closed-form expressions for the entries of

the Moore–Penrose inverse of circulant matrices and of distance matrices of certain graphs.
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Circulant matrices arise in various areas of applied mathematics and science, such as statistics, physics,

signal processing, and coding theory, among many others (see, e.g., [22, 23, 24]). Beside of its theoretical

interest, having an explicit expression for the (Moore–Penrose) inverses of circulant matrices can reduce the

computational cost in dealing with them in some applications. There are several papers that give expressions

for the (Moore–Penrose) inverse of circulant matrices, see e.g. [25, 20, 26, 27, 28, 29, 30]. In Section 4, we

consider this type of matrices finding the explicit expressions of the (Moore–Penrose) inverse of some families

of complex circulant matrices (Lemma 4.2, Proposition 4.3, Example 4.5 and Proposition 4.7). Based on

spectral properties of circulant matrices, Theorem 4.4 provides a way to obtain the (Moore–Penrose) inverse

of circulant matrices in terms of the (Moore–Penrose) inverses of other circulant matrices. As a consequence,

we get Proposition 4.6 that shows that we can easily have an explicit expression for the Moore–Penrose inverse

of a circulant matrix for the case in which the generating vector has components with nonzero-sum from the

case in which the generating vector has components with zero-sum, and vice versa. Hence, there is no need

to separately consider the two cases. To our best knowledge, this fact was not noted so far in the literature.

It will simplify the study and the application of the Moore–Penrose inverse of circulant matrices in future

works.

Distance matrices of connected graphs have several interesting properties and have applications in, e.g.,

chemistry, biology, and data communication [31, 32]. In [33], Graham and Lovász express the inverse of the

distance matrix of an unweighted tree in terms of the Laplacian matrix. Since then, there was interest in

give expressions for the (Moore–Penrose) inverse of distance matrices of graphs using the Laplacian matrix

of the graph or a generalization of it (see e.g. [34, 35, 36, 37]). Section 5 is devoted to find explicit expression

of the Moore–Penrose inverse of distance matrices D of weighted trees and of wheel graphs with an odd

number of vertices. Our expressions for D† do not involve the Laplacian matrix or a generalization of it

but an invertible matrix which is a {1, 3, 4}-inverse of D constructed directly from D and its null space (see

(5.3), (5.4) and Theorem 5.6). These expressions give alternatives to the ones presented in [35, 36] for the

computation of D†.

In Section 5.1, we consider distance matrices D of weighted trees with all the weights being nonzero

and with sum equal to zero. We note that the expression of D† given in [35, Theorem 11] can be viewed

as an extension of [38, Theorems 3 and 4] for Euclidean distance matrices and the well-known formula due

to Graham and Lovász [33]. In the expression for D† provided in [35, Theorem 11] appears a vector that

depends on D†. We show how our expressions (5.3) or (5.4) can be used to compute this vector without

using D†. Moreover, for certain types of weighted trees, we give an explicit expression of this vector using

only the Laplacian matrix and the degree vector of the tree (Proposition 5.1).

In Section 5.2, we deal with the Moore–Penrose inverse of distance matrices D of wheel graphs with an

odd number of vertices. In [36], an explicit expression of D† is given in terms of a generalized Laplacian

matrix extending in this way the classical result of Graham and Lovász [33]. Here, we give a closed-form

expression for each entry of the inverse of a {1, 3, 4}-inverse of D, and thus of D†. The principal result

is Theorem 5.6. Lemmas 5.4 and 5.5, used to prove Theorem 5.6, are about these entries and describe

properties of them. In Proposition 5.7, we give some properties of the inverse of the {1, 3, 4}-inverse of D

which is used in our expression of D† and of the generalized Laplacian matrix introduced in [36].

2. Moore–Penrose inverses of sums of operators. The following theorem gives conditions under

which the Moore–Penrose inverse of a sum is the sum of the Moore–Penrose inverses.

Theorem 2.1. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, . . . ,K, k 6= k′. Then:
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(i) AkA
†
k′ = 0 and A†kAk′ = 0 for each k, k′ = 1, . . . ,K, k 6= k′.

(ii) R
(∑K

k=1Ak

)
=
⊕K

k=1 R(Ak) and R
(∑K

k=1A
∗
k

)
=
⊕K

k=1 R(A∗k).

(iii) N
(∑K

k=1Ak

)
=
⋂K
k=1 N(Ak) and N

(∑K
k=1A

∗
k

)
=
⋂K
k=1 N(A∗k).

(iv)
(∑K

k=1Ak

)†
exists and

(∑K
k=1Ak

)†
=
∑K
k=1A

†
k.

Proof. Part (i) follows from the inclusions R
(
A†k′
)

= R(A∗k′) ⊆ N(Ak) and R(Ak′) ⊆ N(A∗k) = N
(
A†k

)
for each k, k′ = 1, . . . ,K, k 6= k′.

Since R(Ak) ⊆ N(A∗k′) for each k, k′ = 1, . . . ,K, k 6= k′, we get R(Ak) ⊥ R(Ak′) for each k, k′ = 1, . . . ,K,

k 6= k′. Then, we have the orthogonal sum
⊕K

k=1 R(Ak). Clearly, R
(∑K

k=1Ak

)
⊆
⊕K

k=1 R(Ak) and⋂K
k=1 N(Ak) ⊆ N

(∑K
k=1Ak

)
.

Let g ∈
⊕K

k=1 R(Ak). Then there exist f1, . . . , fK ∈ H1 such that g =
∑K
k=1Akfk =

∑K
k=1AkPR(A∗k)

fk.

Let f =
∑K
k=1 PR(A∗k)

fk. Using that R(A∗k) ⊆ N(Ak′) for each k, k′ = 1, . . . ,K, k 6= k′, we get(
K∑
k=1

Ak

)
f =

(
K∑
k=1

Ak

)(
K∑
k=1

PR(A∗k)
fk

)
=

K∑
k=1

AkPR(A∗k)
fk = g.

Then g ∈ R
(∑K

k=1Ak

)
. This sows that

⊕K
k=1 R(Ak) ⊆ R

(∑K
k=1Ak

)
. Hence, R

(∑K
k=1Ak

)
=
⊕K

k=1 R(Ak).

The equality R
(∑K

k=1A
∗
k

)
=
⊕K

k=1 R(A∗k) can be proved similarly. Therefore, (ii) holds.

Let k0 ∈ {1, . . . ,K}. We have f ∈ N
(∑K

k=1Ak

)
if and only if

Ak0f = −

 K∑
k=1,k 6=k0

Ak

 f ∈ R(Ak0) ∩ R

 K∑
k=1,k 6=k0

Ak

 ⊆ R(Ak0) ∩N
(
A∗k0

)
= {0} .

Thus, f ∈ N(Ak0) for each k0 ∈ {1, . . . ,K}. Therefore,
⋂K
k=1 N(Ak) = N

(∑K
k=1Ak

)
. In a similar way, we

prove that N
(∑K

k=1A
∗
k

)
=
⋂K
k=1 N(A∗k). This shows (iii).

By (ii), R
(∑K

k=1Ak

)
is closed. Thus,

(∑K
k=1Ak

)†
exists. Using part now (i), the rest of (iv) follows

from Definition 1.1.

From the definition of {1, 3, 4}-inverse and Theorem 2.1(i)(iv), we obtain the following result:

Corollary 2.2. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, . . . ,K, k 6= k′. Then
(∑K

k=1Ak

)†
is a {1, 3, 4}-inverse of Ak0 for each k0 = 1, . . . ,K.

From Theorem 2.1, we now derive expressions and characterizations for the Moore–Penrose inverse

of an operator. They are useful for its computation and part of them can be viewed as an extension

of Proposition 1.3 to a sum of operators with closed range. Before we enunciate the results, we note that,

under the hypothesis of Theorem 2.1, we always have R
(
A∗k0

)
⊆ N

(∑K
k=1,k 6=k0 Ak

)
and R

(∑K
k=1,k 6=k0 Ak

)
⊆

N
(
A∗k0

)
for each k0 ∈ {1, . . . ,K}.
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Theorem 2.3. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, 2, . . ., k 6= k′. Let k0 ∈ {1, . . . ,K}. The following assertions hold:

(i) A†k0 =
(∑K

k=1A
∗
kAk

)† (∑K
k=1A

∗
k

)
−
∑K
k=1,k 6=k0 A

†
k.

(ii)
(∑K

k=1A
∗
kAk

)
A†k0 = A∗k0 and A†k0 =

(∑K
k=1A

∗
kAk

)†
A∗k0 .

(iii) N
(∑K

k=1Ak

)
= {0} if and only if R

(
A∗k0

)
= N

(∑K
k=1,k 6=k0 Ak

)
.

(iv) If N
(∑K

k=1Ak

)
= {0}, then

∑K
k=1A

∗
kAk is invertible.

Proof. (i): From Theorem 2.1(iv) and Proposition 1.3(i), we obtain

A†k0 =

(
K∑
k=1

Ak

)†
−

 K∑
k=1,k 6=k0

Ak

†

=

((
K∑
k=1

A∗k

)(
K∑
k=1

Ak

))†( K∑
k=1

A∗k

)
−

K∑
k=1,k 6=k0

A†k

=

(
K∑
k=1

A∗kAk

)†( K∑
k=1

A∗k

)
−

K∑
k=1,k 6=k0

A†k.

(ii): Using Theorem 2.1(i) we get,(
K∑
k=1

A∗kAk

)
A†k0 = A∗k0Ak0A

†
k0

= A∗k0PR(Ak0) = A∗k0 .

From this equality,

(2.1)

(
K∑
k=1

A∗kAk

)†( K∑
k=1

A∗kAk

)
A†k0 =

(
K∑
k=1

A∗kAk

)†
A∗k0 .

Since (
K∑
k=1

A∗kAk

)†( K∑
k=1

A∗kAk

)
= PR(

∑K
k=1 A

∗
kAk)

,

and, by Theorem 2.1(ii),

R

(
K∑
k=1

A∗kAk

)
= R

((
K∑
k=1

A∗k

)(
K∑
k=1

Ak

))
= R

(
K∑
k=1

A∗k

)
=

K⊕
k=1

R(A∗k) ⊇ R
(
A∗k0

)
= R

(
A†k0

)
,

equality (2.1) becomes

A†k0 =

(
K∑
k=1

A∗kAk

)†
A∗k0 .

(iii): Assume that N
(∑K

k=1Ak

)
= {0}. Let f ∈ N

(∑K
k=1,k 6=k0 Ak

)
. Since f = P

R
(
A∗k0

)f + PN(Ak0)f and

R
(
A∗k0

)
⊆ N(Ak) for k 6= k0,

K∑
k=1

AkPN(Ak0)f =

K∑
k=1,k 6=k0

AkPN(Ak0)f =

K∑
k=1,k 6=k0

Akf = 0.
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Consequently, PN(Ak0)f = 0 and f ∈ R
(
A∗k0

)
. This shows that N

(∑K
k=1,k 6=k0 Ak

)
= R

(
A∗k0

)
.

Assume now that R
(
A∗k0

)
= N

(∑K
k=1,k 6=k0 Ak

)
. By Theorem 2.1(iii),

N

(
K∑
k=1

Ak

)
=

K⋂
k=1

N(Ak) = N(Ak0) ∩N

 K∑
k=1,k 6=k0

Ak

 = N(Ak0) ∩ R
(
A∗k0

)
= {0} .

(iv): It follows from Proposition 1.3(ii).

For future references, we enunciate the following straightforward corollary.

Corollary 2.4. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, 2, . . ., k 6= k′. Let k0 ∈ {1, . . . ,K}. If
∑K
k=1Ak is injective, then

∑K
k=1A

∗
kAk is invertible

and A†k0 is the unique solution of the operator equation
(∑K

k=1A
∗
kAk

)
X = A∗k0 .

The following theorem can be proved in a similar manner as was proved Theorem 2.3 or can be proved

applying Theorem 2.3 to {A∗k}
K
k=1 and then taking adjoints.

Theorem 2.5. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, 2, . . ., k 6= k′. Let k0 ∈ {1, . . . ,K}. The following assertions hold:

(i) A†k0 =
(∑K

k=1A
∗
k

)(∑K
k=1AkA

∗
k

)†
−
∑K
k=1,k 6=k0 A

†
k.

(ii) A†k0

(∑K
k=1AkA

∗
k

)
= A∗k0 and A†k0 = A∗k0

(∑K
k=1AkA

∗
k

)†
.

(iii) R
(∑K

k=1Ak

)
= H2 if and only if R

(∑K
k=1,k 6=k0 Ak

)
= N

(
A∗k0

)
.

(iv) If R
(∑K

k=1Ak

)
= H2, then

∑K
k=1AkA

∗
k is invertible.

We have the following immediate and useful consequence.

Corollary 2.6. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, 2, . . ., k 6= k′. Let k0 ∈ {1, . . . ,K}. If
∑K
k=1Ak is surjective, then

∑K
k=1AkA

∗
k is invertible

and A†k0 is the unique solution of the operator equation X
(∑K

k=1AkA
∗
k

)
= A∗k0 .

The next theorem address the case
∑K
k=1Ak invertible.

Theorem 2.7. Let {Ak}Kk=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′) for

each k, k′ = 1, 2, . . ., k 6= k′. Let k0 ∈ {1, . . . ,K}. If
∑K
k=1Ak is invertible, then A†k0 is the solution of any

of the equations
(∑K

k=1Ak

)
X = PN(

∑K
k=1,k 6=k0

A∗k)
, X

(∑K
k=1Ak

)
= PN(

∑K
k=1,k 6=k0

Ak).

Proof. Assume that
∑K
k=1Ak is invertible. From Theorem 2.1(iv),

A†k0 =

(
K∑
k=1

Ak

)†
−

K∑
k=1,k 6=k0

A†k =

(
K∑
k=1

Ak

)−1
−

K∑
k=1,k 6=k0

A†k.
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From here, (
K∑
k=1

Ak

)
A†k0 = IH2

−

(
K∑
k=1

Ak

) K∑
k=1,k 6=k0

A†k


= IH2

−
K∑

k=1,k 6=k0

AkA
†
k = IH2

−
K∑

k=1,k 6=k0

PR(Ak)

= IH2
− PR(

∑K
k=1,k 6=k0

Ak) = PN(
∑K
k=1,k 6=k0

A∗k)
,

and

A†k0

(
K∑
k=1

Ak

)
= IH1

−

 K∑
k=1,k 6=k0

A†k

( K∑
k=1

Ak

)

= IH1 −
K∑

k=1,k 6=k0

A†kAk = IH2 −
K∑

k=1,k 6=k0

PR(A∗k)

= IH2
− PR(

∑K
k=1,k 6=k0

A∗k)
= PN(

∑K
k=1,k 6=k0

Ak).

It is important to note that in Definition 1.1 and in Theorem 1.2, A† is characterized as the solution of

systems of equations, or of operators equations where the solution must satisfy some restrictions on its null

space or on its range space, whereas Corollary 2.4, Corollary 2.6 and Theorem 2.7 give characterizations of

A† as the solution of single equations.

The next result says that under hypotheses similar to the used for the previous characterizations, any

series of operators, which converges in the operator norm, is a finite sum.

Proposition 2.8. Let {Ak}∞k=1 ⊂ BC(H1,H2). Assume that R(Ak) ⊆ N(A∗k′) and R(A∗k) ⊆ N(Ak′)

for each k, k′ = 1, 2, . . ., k 6= k′. Assume that the series
∑∞
k=1Ak converges in the operator norm. If

N(
∑∞
k=1Ak) = {0} and R(

∑∞
k=1Ak) is closed, or R(

∑∞
k=1Ak) = H2, then there exists K0 ∈ N such that

Ak = 0 for each k > K0.

Proof. Assume that N(
∑∞
k=1Ak) = {0} and R(

∑∞
k=1Ak) is closed. Then (

∑∞
k=1Ak)

†
exists.

Let K ∈ N. We have

(2.2)

K∑
k=1

Ak =

∞∑
k=1

Ak −
∞∑

k=K+1

Ak.

Let g ∈ R
(∑∞

k=K+1Ak
)
. There exists f ∈ H1 such that

g =

∞∑
k=K+1

Akf =

∞∑
k=K+1

AkP
R(
∑∞
k=K+1 A

∗
k)
f.

Since R
(∑∞

k=K+1A
∗
k

)
⊆ N

(∑K
k=1Ak

)
,

g =

∞∑
k=1

AkP
R(
∑∞
k=K+1 A

∗
k)
f.
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This shows that

(2.3) R

( ∞∑
k=K+1

Ak

)
⊆ R

( ∞∑
k=1

Ak

)
,

for each K ∈ N.

Let K0 ∈ N be such that ∥∥∥∥∥∥
( ∞∑
k=1

Ak

)† ∞∑
k=K+1

Ak

∥∥∥∥∥∥ < 1,

for each K ≥ K0. By Theorem 2.1(ii), (2.2), (2.3) and [6, Lemma 3.3], if K ≥ K0, then

K⊕
k=1

R(Ak) = R

(
K∑
k=1

Ak

)
= R

( ∞∑
k=1

Ak

)
.

This implies that R(Ak) = {0} for each k > K0.

Similarly, if R(
∑∞
k=1Ak) = H2, we can apply the previous reasoning to {A∗k}

∞
k=1 to conclude that there

exists K0 ∈ N such that Ak = 0 for each k > K0.

3. Formulations for matrices. In this section, we specialize previous results for finite matrices and

relate them with others in the literature. The elements of Fn will be consider as column vectors, and if

x ∈ Fn then x(i) denotes the ith component of x. The elements of the standard basis of Fn will be denoted

by e1, ..., en. We denote the vector with all its components equal to 1 with e. The set of m × n matrices

over F is denoted by Mm,n. If m = n we write Mn. If A ∈ Mm,n, we denote the entry i, j, the ith row

and the jth column of A with A(i, j), A(i, :) and A(:, j), respectively. We note that if x, y ∈ Fn, x 6= 0 and

y 6= 0, then (xy∗)
†

= 1
‖x‖2‖y‖2 yx

∗.

We begin noting that considering {Ak}Kk=1 ⊂ Mm,n, Theorem 2.1(iv) is [4, Lemma 1.7]. For the case

case K = 2, there are various papers that generalize [4, Lemma 1.7] considering weaker hypotheses. For

example, if A1A
∗
2 = 0 and C =

(
I −A1A

†
1

)
A2, [11, Theorem 2] expresses (A1 +A2)

†
in terms of A1, A2,

A∗1, A∗2, C and their Moore–Penrose inverses. We can also mention [12, Theorem 1] which generalize [11,

Theorem 2] and expresses (A1 +A2)
†

in terms of A1, A2, A∗1, A∗2, other matrices and their Moore–Penrose

inverses. In particular, by [13, Theorem 3], if A1, A2 ∈Mn and rank(A1 +A2) = rank(A1)+rank(A2), then

(3.1)

(A1 +A2)
†

=

(
I −

(
PR(A∗2)PN(A1)

)†)
A†1

(
I −

(
PN(A∗1)PR(A2)

)†)
+
(
PR(A∗2)PN(A1)

)†
A†2

(
PN(A∗1)PR(A2)

)†
.

Equality (3.1) was proved for operators A1, A2 ∈ BC(H1,H2) such that R(A1) ∩ R(A2) = R(A∗1) ∩ R(A∗2) =

{0}, R(A1 +A2) = R(A1) + R(A2) and R(A∗1 +A∗2) = R(A∗1) + R(A∗2) (see [14, Theorem 5.2]). Note that if

A1, A2 ∈ BC(H1,H2) satisfy the hypotheses of Theorem 2.1, they also satisfy the hypotheses of [14, Theorem

5.2] and from (3.1) we get (A1 +A2)
†

= A†1 +A†2. In [15, 16] are considered sufficient conditions independent

of the conditions of [4, Lemma 1.7] to have (A1 +A2)
†

= A†1 + A†2 (see also Remark 3.6). For K arbitrary,

we have [17, 18, 19] where
(∑K

k=1Ak

)†
is expressed in terms of the Moore–Penrose inverse of block circulant

matrices.
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The following particular case of Theorem 2.1 permits us to compute A† using the equality A† =

(A+B)
† −B† having B† an explicit expression.

Theorem 3.1. Let A ∈ Mm,n, r = rank(A), q = min{m,n} and r ≤ q′ ≤ q. Let {f1, . . . , fq′−r} be an

orthonomal subset of N(A), {g1, . . . , gq′−r} be an orthonomal subset of N(A∗). Let {dk}q
′−r
k=1 ⊂ F\{0}. Then

(3.2) A† =

A+

q′−r∑
k=1

dkgkf
∗
k

† − q′−r∑
k=1

1

dk
fkg
∗
k.

As a consequence of Theorem 3.1, we get the following result which can be viewed as a particular case

of Theorems 2.3(i) and 2.5(i):

Corollary 3.2. Let A ∈Mm,n, r = rank(A) and q = min{m,n}. Let {f1, . . . , fq−r} be an orthonomal

subset of N(A) and {g1, . . . , gq−r} be an orthonomal subset of N(A∗). Let {dk}q−rk=1 ⊂ F \ {0}. Then:

(i) If m ≥ n, then A† = (A∗A+
∑q−r
k=1 d

2
kfkf

∗
k )−1(A∗ +

∑q−r
k=1 dkfkg

∗
k)−

∑q−r
k=1

1
dk
fkg
∗
k.

(ii) If n ≥ m, then A† = (A∗ +
∑q−r
k=1 dkfkg

∗
k)(AA∗ +

∑q−r
k=1 d

2
kgkg

∗
k)−1 −

∑q−r
k=1

1
dk
fkg
∗
k.

(iii) If m = n, then A† = (A+
∑q−r
k=1 dkgkf

∗
k )−1 −

∑q−r
k=1

1
dk
fkg
∗
k.

Remark 3.3. From Corollary 3.2(iii), we obtain results that appear in the literature for the case m = n.

First, we note that the result of Corollary 3.2(iii) appears in [7, Exercise 53]. The proof given there consists

in a verification of the equality
(
A+

∑q−r
k=1 dkgkf

∗
k

)(
A† +

∑q−r
k=1

1
dk
fkg
∗
k

)
= I.

If A ∈ Mn is a normal matrix and dk = 1 for each k = 1, . . . , q − r, from Corollary 3.2(iii) we obtain

[20, Theorem 1] which is used to give expressions for the Moore–Penrose inverses of circulant matrices. The

proof given in [20] is based on the spectral decomposition of A.

If A ∈ Mn is symmetric, r = n− 1, d1 = αn, α 6= 0 and f1 = g1 = 1√
n
e ∈ N(A), from Corollary 3.2(iii)

we obtain [21, Theorem 2.1]. In [21], the authors first prove that A + αeet is nonsingular by showing that

all its eigenvalues are nonzero. Then, they prove that X = (A+ αeet)
−1 − 1

αn2 ee
t verifies the equations in

Definition 1.1 and consequently X = A†.

In the finite dimensional case we can get a result similar to Theorem 2.3, Theorem 2.5 and Theorem 2.7

but with weaker assumptions.

Theorem 3.4. Let A,B ∈Mm,n. Then:

(i) If R(B∗) = N(A), then A∗A + B∗B is invertible and A† is the unique solution of the equation

(A∗A+B∗B)X = A∗.

(ii) If R(B) = N(A∗), then AA∗ + BB∗ is invertible and A† is the unique solution of the equation

X (AA∗ +BB∗) = A∗.

(iii) If m = n, R(B∗) = N(A) and R(B) ⊆ N(A∗) (or, R(B∗) ⊆ N(A) and R(B) = N(A∗)), then

A + B is invertible, A† = (A+B)
−1 − B† and A† is the unique solution of any of the equations

(A+B)X = PN(B∗) and X(A+B) = PN(B).

Proof. Parts (i) and (ii) follow from [39, Equalities (8) and (9)].

Assume that m = n. If R(B∗) = N(A) and R(B) ⊆ N(A∗), by Theorem 2.3(iii), A+ B is injective and

hence invertible. If R(B∗) ⊆ N(A) and R(B) = N(A∗), by Theorem 2.5(iii), A + B is surjective and hence

invertible. By Theorem 2.1(iv), A† = (A+B)
−1 −B†. The rest of part (iii) follows from Theorem 2.7.
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Remark 3.5. In [39] appears the following variant of parts (i) and (ii) of the previous theorem. Let

A ∈ Mm,n and r = rank(A). Let V ∈ Mn−r,n, rank(V ) = n − r and R(V ∗) = N(A). Let W ∈
Mm,m−r, rank(W ) = m − r and R(W ) = N(A∗). By [39, Theorem 3], A† = (A∗A+ V ∗V )

−1
A∗ =

A∗ (AA∗ +WW ∗)
−1

.

Theorem 3 in [39] is used to obtain condensed Cramer rules for the minimal-norm least-squares solution

x = A†b of linear equations Ax = b and to give condensed determinantal expressions for A†, AA† and A†A.

This theorem in [39] is proved given before an explicit expression for the {2}-inverse of A with range T and

null space S (see [39, Theorem 2]). Then the expressions for A† are obtained considering T = R(A∗) and

S = N(A∗).

We finish this section showing that the sufficient conditions of [15, Theorem 3.2] (see also [16, Proposition

2.3]) and of Theorem 2.1 are not necessary. This will also show the relation of Theorem 2.1 with the singular

value decomposition. We recall first a property. Let A = V ΣW ∗ where V ∈Mm and W ∈Mn are unitary

matrices, and

(3.3) Σ =

(
Σr Or,n−r

Om−r,r Om−r,n−r

)
∈Mm,n.

with Ok,l a zero matrix in Mk,l and Σr a diagonal matrix in Mr with nonzero diagonal elements. Let

Σ† obtained from Σ by first replacing each nonzero element with its inverse and then transposing. Then

A† = WΣ†V ∗.

Remark 3.6. Let A,B ∈ Mn. By [15, Theorem 3.2], if AB∗ + BB∗ = 0 and B∗A + B∗B = 0 (see

[16] for details about these conditions), then (A+B)
†

= A† + B†. Now, if R(B∗) ⊆ N(A), R(A∗) ⊆ N(B),

R(B) ⊆ N(A∗), R(A) ⊆ N(B∗), BB∗ 6= 0 and B∗B 6= 0, then AB∗ +BB∗ 6= 0 and B∗A+B∗B 6= 0 and, by

Theorem 2.1, (A+B)
†

= A† +B†. We are going to see that A,B ∈Mn with the previous properties exist.

Let A ∈Mn be arbitrary, r = rank(A), q = min{n} and r ≤ q′ ≤ q. Let A = V ΣW ∗ be a singular value

decomposition of A where Σ is as in (3.3) and the diagonal elements σ1, . . . , σr of Σr are the singular values

of A (see e.g. [40, 7.3.P7]). Let B = V EW ∗ where

E =

 Or,r Or,q′−r Or,n−q′

Oq′−r,r Eq′−r Oq′−r,n−q′

On−q′,r On−q′,q′−r On−q′,n−q′

 ,

and Eq′−r is a diagonal matrix in Mq′−r with positive diagonal elements e1, ..., eq′−r. Then R(B∗) ⊆ N(A),

R(A∗) ⊆ N(B), R(B) ⊆ N(A∗), R(A) ⊆ N(B∗), BB∗ 6= 0 and B∗B 6= 0 and

(A+B)
†

= W (Σ + E)
†
V ∗ = W

(
Σ† + E†

)
V ∗ = WΣ†V ∗ +WE†V ∗ = A† +B†.

This shows that the sufficient conditions of [15, Theorem 3.2] are not necessary.

Remark 3.7. Let α, β, γ ∈ C \ {0} be such that (α+ β + γ)
−1

= α−1 + β−1 + γ−1 (e.g., α = β = −γ).

Let V ∈ Mm and W ∈ Mn be unitary matrices. Let Σα, Σβ and Σγ as in (3.3) with the r nonzero

entries equal to α, β and γ, respectively. Thus, (Σα + Σβ + Σγ)
†

= Σ†α + Σ†β + Σ†γ and if A = V ΣαW
∗,

B = V ΣβW
∗ and C = V ΣγW

∗, then (A+B + C)
†

= A† + B† + C†. In this case, R(A) = R(B) = R(C),

N(A) = N(B) = N(C), R(A∗) = R(B∗) = R(C∗) and N(A∗) = N(B∗) = N(C∗). This example shows that

the conditions of Theorem 2.1 are not necessary.
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Note that (α+β)−1 = α−1+β−1 if and only if α2+αβ+β2 = 0, or equivalently, α =
(
−1±i

√
3

2

)
β. Hence,

α and β cannot be both real numbers. See [41, 42] for interesting details about the equality (α+ β)
−1

=

α−1 + β−1.

4. Moore–Penrose inverse of circulant matrices. In this section, we consider circulant matrices

of order n ≥ 2, C = circ(c) where c ∈ Cn (see [22, 23, 24]). For example, if n = 2, 3 we have,

C =

(
c(1) c(2)

c(2) c(1)

)
, C =

 c(1) c(2) c(3)

c(3) c(1) c(2)

c(2) c(3) c(1)

 .

If Π = circ(0, 1, 0, . . . , 0) then Π−1 = Πn−1 = Πt = circ(0, . . . , 0, 1) and C = circ(c) =
∑n−1
k=0 c(k + 1)Πk. If

ρ : Cn → Cn is given by (ρ(c))(1) = c(1) and (ρ(c)) (k) = c(n− k+ 2) for k = 2, . . . , n, then Ct = circ(ρ(c)).

If circ(c) = circ(a) circ(b), then circ(c) = circ(b) circ(a) and

(4.1) c(l) =

l∑
k=1

a(k)b(l − k + 1) +

n∑
k=l+1

a(k)b(n+ l − k + 1)

for l = 1, . . . , n, or equivalently, c = circ(ρ(a)) b.

Remark 4.1. If 0 ≤ l ≤ n−1 and C is a circulant matrix, then N
(
ΠlC

)
= N(C) and, by the reverse-order

law for the Moore–Penrose inverse (see, e.g., [7, Chapter 4, Ex. 22]),
(
ΠlC

)†
= C†Πn−l.

In [29, 30], the coefficients of the inverse and the group inverse of a circulant matrix depending on

up to four complex parameters, i.e., circ(a, b, c, d, . . . , d), are expressed in terms of functions kj(a, b, c, d),

j = 1, . . . , n. In particular, in the case of four parameters, these functions involves Chebyshev polynomials.

The group inverse of a circulant matrix coincides with its Moore–Penrose inverse. The techniques used

in these papers are related with the solution of boundary value problems associated to second-order linear

difference equations. Here we use results of the previous sections to obtain properties and explicit expressions

of the Moore–Penrose inverse of circulant matrices.

Consider circulant matrices of the form C = αΠk−1 + βΠk where α, β ∈ C \ {0} and 1 ≤ k < n. Then

C = Πk−1 (αI + βΠ). Similarly, C = αI + βΠn−1 = Πn−1 (βI + αΠ). Hence, by Remark 4.1, in both cases,

in order to study C† it is sufficient to consider circulant matrices of the form C = αI + βΠ. Part (ii) of the

following lema can be obtained from [27, Theorem 2.3] with parameters a = 2, b = 0, and c = 1. We include

here a direct brief proof.

Lemma 4.2. The following assertions hold:

(i) If n even, C1,1 = circ(1, 1, 0, . . . , 0), v = (1,−1, 1,−1, . . . , 1,−1) and w ∈ Rn is given by

w(k) = (−1)
k+1 (

n2 − (2k − 1)n+ 2
)

for k = 1, . . . , n, then C1,1 + v ∗ vt = circ(2, 0, 1,−1, . . . , 1,−1) is invertible and(
C1,1 + v ∗ vt

)−1
=

1

2n2
circ(w) .

(ii) If C1,−1 = circ(1,−1, 0, . . . , 0), then C1,−1 + eet = circ(2, 0, 1, . . . , 1) is invertible and(
C1,−1 + eet

)−1
= − 1

2n
circ(1, 3, 5, . . . , 2n− 1) +

n2 + 2

2n2
eet.
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Proof. (i) Let circ(a) := (C1,1 + v ∗ vt) circ(w). Using (4.1) we obtain,

a(1) = 2
(
n2 − n+ 2

)
+

n−1∑
k=2

(−1)
n−k+3

(−1)
k+1

,
(
n2 − (2k − 1)n+ 2

)
= 2

(
n2 − n+ 2

)
+ (n− 2)

(
n2 + n+ 2

)
− 2n

(
(n− 1)n

2
− 1

)
= 2n2,

and for l = 2, . . . , n,

a(l) =

l−2∑
k=1

(−1)
l−k+2

(−1)
k+1 (

n2 − (2k − 1)n+ 2
)

+ 2 (−1)
l+1 (

n2 − (2l − 1)n+ 2
)

+

+

n∑
k=l+1

(−1)
n+l−k+2

(−1)
k+1 (

n2 − (2k − 1)n+ 2
)

= (−1)
l+1

(
n∑
k=1

(
n2 − (2k − 1)n+ 2

)
+
(
n2 − (2l − 1)n+ 2

)
−
(
n2 − (2 (l − 1)− 1)n+ 2

))

= (−1)
l+1

(
n
(
n2 + n+ 2

)
− 2n

n(n+ 1)

2
− 2n

)
= 0.

This shows that (C1,1 + v ∗ vt)−1 = 1
2n2 circ(w).

(ii) Let B = − 1
2ncirc(1, 3, 5, . . . , 2n− 1) + n2+1

2n2 ee
t. Using that C1,−1e = 0 and (4.1), we obtain

(
C1,−1 + eet

)
B = − 1

2n
C1,−1circ(1, 3, 5, . . . , 2n− 1)− 1

2n

n∑
k=1

(2k − 1) eet +
n2 + 2

2n
eet

= − 1

2n
circ(2− 2n, 2, 2, . . . , 2) +

1

n
eet = circ(1, 0, . . . , 0) = I.

Hence B = C−1.

The following proposition can be derived from [29, Theorem 3.4.] considering parameters a = α, b = β, and

c = 0. Here, we present a short proof based on the previous lemma and Corollary 3.2(iii), giving the explicit

expressions for the Moore–Penrose inverses.

Proposition 4.3. Let C = αI+βΠ with α, β ∈ C\{0}. Then C is singular if and only if βn = (−1)
n
αn

and the following assertions hold:

(i) If n is even and α = β, then N(C) = span {(1,−1, 1,−1, . . . , 1,−1)} and

C† =
1

αn2

(
1

2
circ(w)− circ(1,−1, 1,−1, . . . , 1,−1)

)
,

where w ∈ Rn is given by w(k) = (−1)
k+1 (

n2 − (2k − 1)n+ 2
)

for k = 1, . . . , n.

(ii) If α = −β, then N(C) = span {(1, 1, . . . , 1)} and

C† =
1

2α

(
− 1

n
circ(1, 3, 5, . . . , 2n− 1) + eet

)
=

1

2nc1
circ(n− 1, n− 3, n− 5, . . . , 2− n, 1− n) .
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Proof. We have Cx = 0 if and only if x(k + 1) = (−1)
k
(
α
β

)k
x(1) for each k = 1, . . . , n − 1 and

x(n) = −β
αx(1). Hence, C is singular if and only if βn = (−1)

n
αn.

(i) If n is even and α = β, then N(C) = span {(1,−1, 1,−1, . . . , 1,−1)}. Let C1,1 and v as in Lemma 4.2.

By Corollary 3.2(iii) and Lemma 4.2,

C† =
1

α
C†1,1 =

1

α

((
C1,1 + vvt

)−1 − 1

‖v‖2
vvt

)

=
1

αn2

(
1

2
circ(w)− circ(1,−1, 1,−1, . . . , 1,−1)

)
.

(ii) If α = −β, then N(C) = span {(1, 1, . . . , 1)}. Consider C1,−1 as in Lemma 4.2. By Corollary 3.2(iii)

and Lemma 4.2,

C† =
1

α
C†1,−1 =

1

α

((
C1,−1 + eet

)−1 − 1

n2
eet
)

=
1

α

(
− 1

2n
circ(1, 3, 5, . . . , 2n− 1) +

n2 + 2

2n2
eet − 1

n2
eet
)

=
1

2α

(
− 1

n
circ(1, 3, 5, . . . , 2n− 1) + eet

)
.

The Fourier matrix of order n denoted with F is given by F (k, l) = 1√
n
e−

2πi
n (k−1)(l−1). If C = circ(c),

then C is diagonalizable by F ,

C = FΛF, C† = FΛ†F,

(4.2) λ =
√
nFc and c =

1√
n
Fλ.

where λ is the diagonal of Λ. As a consequence of Theorem 2.1 and (4.2), we obtain the next theorem that

provides a way to obtain the (Moore–Penrose) inverse of circulant matrices in terms of the (Moore–Penrose)

inverses of other circulant matrices. The support of a vector c, denoted by supp(c), are the indices of the

non-zero components of c.

Theorem 4.4. Let {ck}Kk=1 ⊆ Cn, λk =
√
nFck and λ̃k =

√
nFρ(ck) for each k = 1, . . . ,K. If

supp(λk) ∩ supp
(
λ̃k′
)

= ∅ for each k, k′ = 1, . . . ,K, k 6= k′, then

(
circ

(
K∑
k=1

ck

))†
=

K∑
k=1

(circ(ck))
†
.

Moreover, if
⋃K
k=1 supp(λk) = {1, . . . , n}, then circ

(∑K
k=1 ck

)
is invertible.

Example 4.5. Let n be even. Let α, β ∈ C \ {0}. Let cβ = (0, . . . , 0, β, β, 0, . . . , 0) where β appears in

the l-th position. Then

λβ =
√
nFcβ = β

(
e

2πi
n (k−1)(l−1) + e

2πi
n (k−1)l

)n
k=1

= β
(
e

2πi
n (k−1)l

(
e−

2πi
n (k−1) + 1

))n
k=1

.
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Hence λβ(n2 + 1) = 0 and λβ(k) 6= 0 for k 6= n
2 + 1. If λ̃α = αnen

2 +1, then

cα :=
1√
n
F λ̃α = α (1,−1, . . . , 1,−1) = ρ(cα).

By Theorem 4.4,

(circ(cα + cβ))
−1

= (circ(cα))
†

+ (circ(cβ))
†
.

If c = (1,−1, . . . , 1,−1), then (circ(cα))
†

= 1
α‖c‖4 vv

t = 1
αn2 circ(c). We also have

(circ(cβ))
†

=
1

β
(circ(1, 1, 0, . . . , 0))

†
Πn−l+1

and the explicit expression of (circ(1, 1, 0, . . . , 0))
†

appears in Proposition 4.3(i).

We have supp
(√
nFe

)
= {1}, and if a ∈ Cn is such that

∑n
j=1 a(j) = 0, then 1 /∈ supp

(√
nFa

)
. Hence,

by Theorem 4.4, we get the following proposition.

Proposition 4.6. Let c ∈ Cn. The following assertions hold:

(i) If
∑n
j=1 c(j) 6= 0, then

circ(c)
†

= circ

(
c(1)−

∑n
j=1 c(j)

n
, . . . , c(n)−

∑n
j=1 c(j)

n

)†
+

1

n
∑n
j=1 c(j)

eet.

(ii) If
∑n
j=1 c(j) = 0 and α 6= 0, then

circ(c)
†

= circ(c(1) + α, . . . , c(n) + α)
† − 1

n2α
eet.

By the previous proposition, it is very easy to obtain the Moore–Penrose inverse in the case
∑n
j=1 c(j) 6= 0

from the case
∑n
j=1 c(j) = 0, and vice versa. As a consequence, in order to give explicit expressions, there is

no need to separately consider each of the two cases. This fact will simplify future researchers in the subject.

Part (ii) of the following proposition can be used to compute explicitly and easily the Moore–Penrose

inverse of

circ

a, b, . . . , b︸ ︷︷ ︸
k

, a, b, . . . , b︸ ︷︷ ︸
k

, . . . , a, b, . . . , b︸ ︷︷ ︸
k


for each a, b ∈ C choosing α = a+kb

k+1 and β = a−b
k+1 .

Proposition 4.7. Let k and q be positive integers and n = q(k + 1). The following assertions hold:

(i) If C = circ

k,−1, . . . ,−1︸ ︷︷ ︸
k

, . . . , k,−1, . . . ,−1︸ ︷︷ ︸
k

, then C2 = nC and C† = 1
n2C.

(ii) If α, β ∈ C \ {0}, then

circ

α+ kβ, α− β, . . . , α− β︸ ︷︷ ︸
k

, . . . , α+ kβ, α− β, . . . , α− β︸ ︷︷ ︸
k

† =
1

αn2
eet +

1

βn2
C.
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Proof. For j = 1, k + 2, 2k + 3, 3k + 4, . . . , n− k,

C2(1, j) = qk2 + qk = qk(k + 1) = nk = nC(1, j).

Otherwise,

C2(1, j) = 2q(−k) + n− 2q = n− 2q(k + 1) = n− 2n = −n = nC(1, j).

Hence, C2 = nC. The rest of part (i) follows from this equality and Definition 1.1.

Taking into account that

circ

α+ kβ, α− β, . . . , α− β︸ ︷︷ ︸
k

, . . . , α+ kβ, α− β, . . . , α− β︸ ︷︷ ︸
k

 = αeet + βC,

part (ii) follows from Proposition 4.6.

5. Moore–Penrose inverse of distance matrices of certain graphs. In this section, we give

applications to distance matrices of certain graphs. Specifically, we consider distance matrices of weighted

trees and of wheel graphs with an odd number of vertices.

5.1. Moore–Penrose inverse of the distance matrix of a weighted tree. Let T = (V,E) denotes

a weighted tree with the set of vertices V = {1, . . . , n} and the set E of unordered pairs edges (i, j), i 6= j.

To each i, j ∈ V is assigned a weight wij 6= 0 if i 6= j and (i, j) is an edge of T . If i 6= j and (i, j) is

not an edge of T then wij = 0. The Laplacian matrix L of T is the n × n positive definitive matrix given

by L(i, j) = −w−1ij if i 6= j and (i, j) is an edge of T , L(i, j) = 0 if i 6= j and (i, j) is not an edge of T ,

and L(i, i) = −
∑
j 6=i L(i, j). The distance matrix D of T is the matrix with D(i, j) equal to the distance

between vertices i and j, defined to be the sum of the weights of the edges on the (unique) ij-path. We set

D(i, i) = 0, i = 1, . . . , n. We denote the degree of the vertex i by δ(i) , i = 1, . . . , n. Let δ be the vector with

components δ(1), . . . , δ(n). We set τ = 2e− δ.

Assume that
∑n−1
j=1 wj = 0 and that all the weights are nonzero. By [35, Theorem 11],

(5.1) D† = −1

2
L+ uτ t + τut,

where

(5.2) u =
1

2

(
D†e+

etD†e

4
τ

)
.

From the proof of [35, Theorem 11], N(D) = span{τ}. Thus, by Corollary 3.2(iii),

(5.3) D† =
(
D + αττ t

)−1 − 1

α ‖τ‖4
ττ t.

or equivalently, multiplying both sides from the left by D + αττ t, D† is the unique solution of the equation

(5.4)
(
D + αττ t

)
X = I − 1

‖τ‖2
ττ t.

By Corollary 2.2, the invertible matrix D + αττ t is a {1, 3, 4}-inverse of D. Expressions (5.3) and (5.4) are

alternatives for (5.1) to obtain D†. In order to compute u in (5.1), we note that from (5.3),

(5.5) D†e =
(
D + αττ t

)−1
e− 2

α ‖τ‖4
τ,
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and from (5.4), D†e is the unique solution of the equation

(D + αττ t)x = e− 2
‖τ‖2 τ ,

where α 6= 0. If τ tLτ = δtLδ 6= 0, choosing α appropriately, from (5.5) we get an expression of u in (5.2)

that do not involve D†.

Proposition 5.1. Let T be a weighted tree with distance matrix D, Laplacian matrix L, degrees given

by δ and τ = 2e− δ. Assume that
∑n−1
j=1 wj = 0 and that all the weights are nonzero. If τ tLτ 6= 0, then the

vector u in (5.2) is given by

(5.6) u =
1

2

(
1

‖τ‖2
Lτ − 3τ tLτ

2 ‖τ‖4
τ

)
.

Proof. By [35, Lemma 9], DL = eτ t − 2I. Hence,(
D +

2

τ tLτ
ττ t
)(

1

‖τ‖2
Lτ

)
= e.

From (5.5) with α = 2
τtLτ and the previous equality we obtain,

D†e =
1

‖τ‖2
Lτ − τ tLτ

‖τ‖4
τ.

Replacing this expression for D†e in (5.2), we get (5.6).

5.2. Moore–Penrose inverses of distance matrices of wheel graphs with an odd number of

vertices. Let n ≥ 5 be an odd integer. Let W (n) be the wheel graph having n number of vertices, with

the center labeled 1, the other vertices labeled 2, ..., n lie in a cycle of length n − 1, and (i, i + 1) is an

edge. Without loss of generality, we fix this labeling because any other labeling of W (n) leads to a distance

matrix which is a permutation similar to D. If u = (0, 1, 2, . . . , 2, 1) ∈ Rn−1, then the distance matrix D of

the wheel graph is given by

D =

(
0 et

e circ(u)

)
.

The following proposition is about null(D) and D†.

Proposition 5.2. Let n ≥ 5 odd. Let D be the distance matrix of the wheel graph with n vertices and

let a = (0,−1, 1, . . . ,−1, 1) ∈ Rn. Then null(D) = span{a} and

(5.7) D† =
(
D + aat

)−1 − 1

(n− 1)2
aat.

Proof. Clearly, span{a} ⊆ null(D). Let x ∈ null(D). Since xtD(1, :) = 0,
∑n
j=2 x(j) = 0. We have∑n

i=1D(i, :) = (n− 1, 3 + 2(n− 3), . . . , 3 + 2(n− 3)). Since xtD(i, :) = 0 for i = 2, . . . , n,

(5.8) x(2) = −x(n) + x(3)

2
,

(5.9) x(j) = −x(j − 1) + x(j + 1)

2
, for j = 3, . . . , n− 1,
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(5.10) x(n) = −x(n− 1) + x(2)

2
,

and

0 = xt (
∑n
i=1D(i, :)) = (n− 1)x(1) + (3 + 2(n− 3))

∑n
j=2 x(j) = (n− 1)x(1).

From the last equality, x(1) = 0, and from (5.8)-(5.9), x(j) = (−1)
j

((j − 1)x(2) + (j − 2)x(n)) for j =

3, . . . , n. In particular, x(n) = − ((n− 1)x(2) + (n− 2)x(n)). Therefore, x(n) = −x(2) and, more generally,

x(j) = (−1)
j
x(2) for j = 3, . . . , n. This shows that null(D) = span{a}. Now, from Corollary 3.2(iii), we

obtain (5.7).

In [36], the equality

(5.11) D† = −1

2
L̃+

4

n− 1
wwt

where L̃ is a semidefinite positive matrix, rank
(
L̃
)

= n− 2, L̃e = 0 and w = 1
4 (5− n, 1, . . . , 1), is obtained.

The matrix L̃ can be viewed as a special Laplacian matrix. Equating (5.7) and (5.11) we get

(5.12)
(
D + aat

)−1
= −1

2
L̃+

4

n− 1
wwt +

1

(n− 1)2
aat.

One expression of (D + aat)
−1

can be derived from (5.12) and the expression of L̃ given in [36, Definition 1].

Next, we give a closed-form expression of each entry of (D + aat)
−1

and hence, of each entry of D†, based

on numerical experiments. The principal result is Theorem 5.6. We establish before three auxiliary lemmas.

The first of them is about sums. The other two lemmas are about the entries of (D + aat)
−1

and describe

properties of them.

Lemma 5.3. Let n ≥ 5 odd. The following equalities hold:

(i) If n = 5 + 4m for some m ∈ N, m ≥ 0, then

(n−3)/2∑
k=1,k even

k =
(n− 5) (n− 1)

16
=
n2 − 6n+ 5

16
,

(n−3)/2∑
k=1,k odd

k =
(n− 1)

2

16
=
n2 − 2n+ 1

16
,

(n−3)/2∑
k=1,k even

k2 =
(n− 5) (n− 1) (n− 3)

48
=
n3 − 9n2 + 23n− 15

48

and
(n−3)/2∑
k=1,k odd

k2 =
(n− 1) (n− 3) (n+ 1)

48
=
n3 − 3n2 − n+ 3

48
.
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(ii) If n = 7 + 4m for some m ∈ N, m ≥ 0, then

(n−3)/2∑
k=2,k even

k =
(n− 3) (n+ 1)

16
=
n2 − 2n− 3

16
,

(n−3)/2∑
k=1,k odd

k =
(n− 3)

2

16
=
n2 − 6n+ 9

16
,

(n−3)/2∑
k=1,k even

k2 =
(n− 3) (n+ 1) (n− 1)

48
=
n3 − 3n2 − n+ 3

48

and
(n−3)/2∑
k=1,k odd

k2 =
(n− 3) (n− 1) (n− 5)

48
=
n3 − 9n2 + 23n− 15

48
.

Proof. (i): Assume that n = 5 + 4m for some m ∈ N, m ≥ 0. We have

(n−3)/2∑
k=2,k even

k =

2m+1∑
k=1,k even

k =

m∑
k=1

2k = 2
m (m+ 1)

2

=
n− 5

4

(
n− 5

4
+ 1

)
=

(n− 5) (n− 1)

16
=
n2 − 6n+ 5

16
,

(n−3)/2∑
k=1,k odd

k =

2m+1∑
k=1,k odd

k =

m+1∑
k=1

(2k − 1) = 2
(m+ 1) (m+ 2)

2
− (m+ 1)

=

(
n− 5

4
+ 1

)(
n− 5

4
+ 2

)
−
(
n− 5

4
+ 1

)
=

(n− 1)
2

16
=
n2 − 2n+ 1

16
,

(n−3)/2∑
k=2,k even

k2 =

2m+1∑
k=1,k even

k2 =

m∑
k=1

(2k)
2

= 4
m (m+ 1) (2m+ 1)

6

=
2

3

n− 5

4

(
n− 5

4
+ 1

)(
n− 5

2
+ 1

)
=

(n− 5) (n− 1) (n− 3)

48
=
n3 − 9n2 + 23n− 15

48

and

(n−3)/2∑
k=1,k odd

k2 =

2m+1∑
k=1,k odd

k2 =

m+1∑
k=1

(2k − 1)
2

= 4

m+1∑
k=1

k2 − 4

m+1∑
k=1

k +m+ 1

= 4
(m+ 1) (m+ 2) (2 (m+ 1) + 1)

6
− 4

(m+ 1) (m+ 2)

2
+m+ 1

= (m+ 1)

(
(m+ 2)

4

3
m+ 1

)
=

(
n− 5

4
+ 1

)((
n− 5

4
+ 2

)
n− 5

3
+ 1

)
=

(n− 1) (n− 3) (n+ 1)

48
=
n3 − 3n2 − n+ 3

48
.
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(ii): Assume now that n = 7 + 4m for some m ∈ N, m ≥ 0. Then

(n−3)/2∑
k=1,k even

k =

2m+2∑
k=1,k even

k = 2

m+1∑
k=1

k = (m+ 1) (m+ 2)

=

(
n− 7

4
+ 1

)(
n− 7

4
+ 2

)
=

(n− 3) (n+ 1)

16
=
n2 − 2n− 3

16
,

(n−3)/2∑
k=1,k odd

k =

2m+2∑
k=1,k odd

k =

m+1∑
k=1

(2k − 1)

= 2
(m+ 1) (m+ 2)

2
− (m+ 1) = (m+ 1)

2

=

(
n− 7

4
+ 1

)2

=
(n− 3)

2

16
=
n2 − 6n+ 9

16
,

(n−3)/2∑
k=1,k even

k2 =

2m+2∑
k=1,k even

k2 =

m+1∑
k=1

(2k)
2

= 4

m+1∑
k=1

k2

= 4
(m+ 1) (m+ 2) (2 (m+ 1) + 1)

6
=

2

3

(
n− 7

4
+ 1

)(
n− 7

4
+ 2

)(
n− 7

2
+ 3

)
=

(n− 3) (n+ 1) (n− 1)

48
=
n3 − 3n2 − n+ 3

48
,

and

(n−3)/2∑
k=1,k odd

k2 =

2m+2∑
k=1,k odd

k2 =

m+1∑
k=1

(2k − 1)
2

= 4

m+1∑
k=1

k2 − 4

m+1∑
k=1

k +m+ 1

= 4
(m+ 1) (m+ 2) (2 (m+ 1) + 1)

6
− 4

(m+ 1) (m+ 2)

2
+m+ 1

=
n3 − 9n2 + 23n− 15

48
=

(n− 3) (n− 1) (n− 5)

48
.

The vector z of the following two lemmas will appear in the expression of D† given in Theorem 5.6

below.

Lemma 5.4. Let z = (z(0), . . . , z(n− 2)) where

z(0) =
−n3 + 3n2 + n+ 9

12
,

z(k) = z(n− 1− k) =

{
−6(n−1)k2+6(n−1)2k−n3+3n2+n+9

12 , 1 ≤ k ≤ n−3
2 , k even,

6(n−1)k2−6(n−1)2k+n3−3n2+5n−15
12 , 1 ≤ k ≤ n−3

2 , k odd,

and

z((n− 1)/2) =

{
n3−3n2+11n+15

24 , n = 5 + 4m, m = 0, 1, . . .,
−n3+3n2+n−27

24 , n = 7 + 4m, m = 0, 1, . . ..
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Then

(5.13)

(n−3)/2∑
k=1,k even

z(k) =

{
n3−3n2−n−45

48 , n = 5 + 4m, m = 0, 1, . . .,
2n3−6n2+10n−30

48 , n = 7 + 4m, m = 0, 1, . . .,

(5.14)

(n−3)/2∑
k=1,k odd

z(k) =

{
−n−14 , n = 5 + 4m, m = 0, 1, . . .,
n3−3n2−13n+39

48 , n = 7 + 4m, m = 0, 1, . . .,

(5.15)

n−2∑
k=0,k even

z(k) = −
n−2∑

k=0,k odd

z(k) =
n− 1

2
,

(5.16) 2

n−3∑
l=2,l even

z(l)− z(1)− z(n− 2) = (n− 1) (n− 2) ,

(5.17) 2

n−4∑
l=1,l odd

z(l)− z(0)− z(n− 3) = − (n− 1) ,

(5.18) 2z(k) + z(k − 1) + z(k + 1) = 2 (n− 1) for 2 ≤ k ≤ n− 3 and k even,

(5.19) 2

n−2∑
l=0,l even,l 6=k

z(l)− z(k − 1)− z(k + 1) = − (n− 1) for 2 ≤ k ≤ n− 3 and k even,

(5.20) 2z(k) + z(k − 1) + z(k + 1) = 0 for 1 ≤ k ≤ n− 3 and k odd,

and

(5.21) 2

n−2∑
l=0,l odd,l 6=k

z(l)− z(k − 1)− z(k + 1) = − (n− 1) for 1 ≤ k ≤ n− 3 and k odd.

Proof. We first note that if n = 5 + 4m for some m ≥ 0, then n−3
2 is odd and n−1

2 is even, whereas if

n = 7 + 4m for some m ≥ 0, then n−3
2 is even and n−1

2 is odd.

Assume that n = 5 + 4m for some m ≥ 0. By Lemma 5.3(i),

(n−3)/2∑
k=1,k even

z(k) =
1

12

−6 (n− 1)

(n−3)/2∑
k=1,k even

k2 + 6
(
n2 − 2n+ 1

) (n−3)/2∑
k=1,k even

k +
(
−n3 + 3n2 + n+ 9

) n− 5

4


=

1

12

(
−6 (n− 1)

n3 − 9n2 + 23n− 15

48
+ 6

(
n2 − 2n+ 1

) n2 − 6n+ 5

16

)
+

1

12

((
−n3 + 3n2 + n+ 9

) n− 5

4

)
=
n3 − 3n2 − n− 45

48
(5.22)
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and

(n−3)/2∑
k=1,k odd

z(k) =
−1

12

−6 (n− 1)

(n−3)/2∑
k=1,k odd

k2 + 6
(
n2 − 2n+ 1

) (n−3)/2∑
k=1,k odd

k +
(
−n3 + 3n2 − 5n+ 15

) n− 1

4


=
−1

12

(
−6 (n− 1)

n3 − 3n2 − n+ 3

48
+ 6

(
n2 − 2n+ 1

) n2 − 2n+ 1

16

)
+
−1

12

((
−n3 + 3n2 − 5n+ 15

) n− 1

4

)
=− n− 1

4
.(5.23)

Using (5.22) and (5.23) we get

n−2∑
k=0,k even

z(k) = z(0) +

(n−3)/2∑
k=1,k even

z(k) + z((n− 1)/2) +

n−2∑
k=(n+1)/2,k even

z(k)

=
−n3 + 3n2 + n+ 9

12
+
n3 − 3n2 − n− 45

24
+
n3 − 3n2 + 11n+ 15

24

=
n− 1

2
,

and

n−2∑
k=0,k odd

z(k) =

(n−3)/2∑
k=1,k odd

z(k) +

n−2∑
k=(n+1)/2,k odd

z(k) = −n− 1

2
.

Assume now that n = 7 + 4m for some m ≥ 0. By Lemma 5.3(ii),

(n−3)/2∑
k=1,k even

z(k) =
1

12

−6 (n− 1)

(n−3)/2∑
k=1,k even

k2 + 6
(
n2 − 2n+ 1

) (n−3)/2∑
k=1,k even

k +
(
−n3 + 3n2 + n+ 9

) n− 3

4


=

1

12

(
−6 (n− 1)

n3 − 3n2 − n+ 3

48
+ 6

(
n2 − 2n+ 1

) n2 − 2n− 3

16

)
+

1

12

((
−n3 + 3n2 + n+ 9

) n− 3

4

)
=

2n3 − 6n2 + 10n− 30

48
,(5.24)

and

(n−3)/2∑
k=1,k odd

z(k) =
−1

12

−6 (n− 1)

(n−3)/2∑
k=1,k odd

k2 + 6
(
n2 − 2n+ 1

) (n−3)/2∑
k=1,k odd

k +
(
−n3 + 3n2 − 5n+ 15

) n− 3

4


=

1

12

(
−6 (n− 1)

n3 − 9n2 + 23n− 15

48
+ 6

(
n2 − 2n+ 1

) n2 − 6n+ 9

16

)
+

1

12

((
−n3 + 3n2 − 5n+ 15

) n− 3

4

)
=
n3 − 3n2 − 13n+ 39

48
.(5.25)
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From (5.24) and (5.25) we obtain,

n−2∑
k=0,k even

z(k) = z(0) +

(n−3)/2∑
k=1,k even

z(k) +

n−2∑
k=(n+1)/2,k even

z(k)

=
−n3 + 3n2 + n+ 9

12
+

2n3 − 6n2 + 10n− 30

24
=
n− 1

2
,

and

n−2∑
k=0,k odd

z(k) =

(n−3)/2∑
k=1,k odd

z(k) + z((n− 1)/2) +

n−2∑
k=(n+1)/2,k odd

z(k)

=
n3 − 3n2 − 13n+ 39

24
+
−n3 + 3n2 + n− 27

24
= −n− 1

2
.

Hence, we have proved (5.13), (5.14) and (5.15).

For each n ≥ 5 odd, using (5.15) we obtain (5.16) and (5.17)

2

n−3∑
l=2,l even

z(l)− z(1)− z(n− 2) = 2

n−3∑
l=0,l even

z(l)− 2z(0)− z(1)− z(n− 2)

= 2

n−3∑
l=0,l even

z(l)− 2z(0)− 2z(1)

= n− 1− −n
3 + 3n2 + n+ 9

6
− n3 − 9n2 + 23n− 27

6

= (n− 1) (n− 2) ,

and

2

n−4∑
l=1,l odd

z(l)− z(0)− z(n− 3) =2

n−2∑
l=1,l odd

z(l)− 2z(n− 2)− z(0)− z(n− 3)

= 2

n−2∑
l=1,l odd

z(l)− 2z(1)− z(0)− z(2)

=1− n− 2
6 (n− 1)− 6 (n− 1)

2
+ n3 − 3n2 + 5n− 15

12

− −n
3 + 3n2 + n+ 9

12
− −24 (n− 1) + 12 (n− 1)

2 − n3 + 3n2 + n+ 9

12

= − (n− 1) .

Assume that 2 ≤ k ≤ n − 3 and k even. We note that k − 1, k + 1, n − k − 2, and n − k are odd and

n− k − 1 is even. If k + 1 < n−1
2 , then
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2z(k) + z(k − 1) + z(k + 1) =2
−6 (n− 1) k2 + 6 (n− 1)

2
k − n3 + 3n2 + n+ 9

12

+
6 (n− 1) (k − 1)

2 − 6 (n− 1)
2

(k − 1) + n3 − 3n2 + 5n− 15

12

+
6 (n− 1) (k + 1)

2 − 6 (n− 1)
2

(k + 1) + n3 − 3n2 + 5n− 15

12

= 2 (n− 1) .

If k − 1 > n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2z(n− k − 1) + z(n− k) + z(n− k − 2)

=
−12 (n− 1) (n− k − 1)

2
+ 12 (n− 1)

2
(n− k − 1)− 2n3 + 6n2 + 2n+ 18

12

+
6 (n− 1) (n− k)

2 − 6 (n− 1)
2

(n− k) + n3 − 3n2 + 5n− 15

12

+
6 (n− 1) (n− k − 2)

2 − 6 (n− 1)
2

(n− k − 2) + n3 − 3n2 + 5n− 15

12

=2 (n− 1) .

If n = 5 + 4m for some m ≥ 0 and k = n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2z((n− 1)/2) + z((n− 3)/2) + z((n− 3)/2 + 1)

=2 (z((n− 1)/2) + z((n− 3)/2))

=
n3 − 3n2 + 11n+ 15

12

+
3 (n− 1) (n− 3)

2 − 6 (n− 1)
2

(n− 3) + 2n3 − 6n2 + 10n− 30

12

=2 (n− 1) .

If n = 7 + 4m for some m ≥ 0 and k + 1 = n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2z((n− 3)/2) + z((n− 5)/2) + z((n− 1)/2)

=2
−6 (n− 1)

(
n−3
2

)2
+ 6 (n− 1)

2 n−3
2 − n

3 + 3n2 + n+ 9

12

+
6 (n− 1)

(
n−5
2

)2 − 6 (n− 1)
2 n−5

2 + n3 − 3n2 + 5n− 15

12

+
−n3 + 3n2 + n− 27

24

=2 (n− 1) .

If n = 7 + 4m for some m ≥ 0 and k − 1 = n−1
2 , using the above equality we get

2z(k) + z(k − 1) + z(k + 1) =2z((n+ 1)/2) + z((n− 1)/2) + z((n+ 3)/2)

=2z((n− 3)/2) + z((n− 1)/2) + z((n− 5)/2) = 2 (n− 1) .
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Thus, (5.18) is proved. Using (5.15) and (5.18) we obtain (5.19):

2

n−2∑
l=0,l even,l 6=k

z(l)− z(k − 1)− z(k + 1) = 2

n−2∑
l=0,l even

z(l)− 2z(k)− z(k − 1)− z(k + 1)

= n− 1− 2 (n− 1) = − (n− 1) .

Assume that 1 ≤ k ≤ n− 3, and k odd. We note that k − 1, k + 1, n− k − 2, and n− k are even, and

n− k − 1 is odd. If k + 1 < n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2
6 (n− 1) k2 − 6 (n− 1)

2
k + n3 − 3n2 + 5n− 15

12

+
−6 (n− 1) (k − 1)

2
+ 6 (n− 1)

2
(k − 1)− n3 + 3n2 + n+ 9

12

+
−6 (n− 1) (k + 1)

2
+ 6 (n− 1)

2
(k + 1)− n3 + 3n2 + n+ 9

12

=0.

If k − 1 > n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2z(n− k − 1) + z(n− k) + z(n− k − 2)

=2
6 (n− 1) (n− k − 1)

2 − 6 (n− 1)
2

(n− k − 1) + n3 − 3n2 + 5n− 15

12

+
−6 (n− 1) (n− k)

2
+ 6 (n− 1)

2
(n− k)− n3 + 3n2 + n+ 9

12

+
−6 (n− 1) (n− k − 2)

2
+ 6 (n− 1)

2
(n− k − 2)− n3 + 3n2 + n+ 9

12

=0.

If n = 5 + 4m for some m ≥ 0 and k + 1 = n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2z((n− 3)/2) + z((n− 5)/2) + z((n− 1)/2)

=2
6 (n− 1)

(
n−3
2

)2 − 6 (n− 1)
2 (n−3

2

)
+ n3 − 3n2 + 5n− 15

12

+
−6 (n− 1)

(
n−5
2

)2
+ 6 (n− 1)

2 (n−5
2

)
− n3 + 3n2 + n+ 9

12

+
n3 − 3n2 + 11n+ 15

24

=0.

If n = 5 + 4m for some m ≥ 0 and k − 1 = n−1
2 , using the previous equality

2z(k) + z(k − 1) + z(k + 1) =2z((n− 2)/2 + 1) + z((n− 1)/2) + z((n− 1)/2 + 2)

=2z(n− (n− 1)/2− 2) + z((n− 1)/2) + z(n− (n− 1)/2− 3)

=2z((n− 3)/2) + z((n− 1)/2) + z((n− 5)/2) = 0.
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If n = 7 + 4m for some m ≥ 0 and k = n−1
2 , then

2z(k) + z(k − 1) + z(k + 1) =2z((n− 1)/2) + z((n− 3)/2) + z((n− 2)/2 + 1)

=2z((n− 1)/2) + 2z((n− 3)/2)

=2
−n3 + 3n2 + n− 27

24

+ 2
−6 (n− 1)

(
n−3
2

)2
+ 6 (n− 1)

2 (n−3
2

)
− n3 + 3n2 + n+ 9

12

=0.

This proves (5.20). From (5.15) and (5.20) we get (5.21):

2

n−2∑
l=0,l odd,l 6=k

z(l)− z(k − 1)− z(k + 1) = 2

n−2∑
l=0,l odd

z(l)− 2z(k)− z(k − 1)− z(k + 1)

= 2

(
−n− 1

2

)
− 0 = − (n− 1) .

Lemma 5.5. Let z as in Lemma 5.4. Then

etcirc(z) = 0,

and

circ(1, 0, 3, 1, . . . , 3, 1, 3, 0)circ(z) = (n− 1)
2
I − (n− 1) eet.

Proof. Using Lemma 5.4,

etcirc(z) =

n−2∑
k=0

z(k) =

n−2∑
k=0,k even

z(k) +

n−2∑
k=0,k odd

z(k) =
n− 1

2
− n− 1

2
= 0.

For the other equality we have,

circ(1, 0, 3, 1, . . . , 3, 1, 3, 0)circ(z) =

=
(
Π0
n−1 + 3

(
Π2
n−1 + Π4

n−1 + . . .+ Πn−5
n−1 + Πn−3

n−1
)

+
(
Π3
n−1 + Π5

n−1 + . . .+ Πn−6
n−1 + Πn−4

n−1
))(

n−2∑
k=0

z(k)Πk
n−1

)

=
(
eet + 2

(
Π2
n−1 + Π4

n−1 + . . .+ Πn−5
n−1 + Πn−3

n−1
)
−Π1

n−1 −Πn−2
n−1
)(n−2∑

k=0

z(k)Πk
n−1

)

=2

n−2∑
k=0

z(k)

n−3∑
k′=2,k′,even

Πk+k′

n−1 −
n−2∑
k=0

z(k)Πk+1
n−1 −

n−2∑
k=0

z(k)Πn+k−2
n−1

=

2

n−3∑
l=2,l even

z(l)

Π0
n−1 +

n−3∑
k=2,k even

2

n−2∑
l=0,l even,l 6=k

z(l)

Πk
n−1

+

n−3∑
k=1,k odd

2

n−2∑
l=0,l odd,l 6=k

z(l)

Πk
n−1 +

2

n−4∑
l=1,l odd

z(l)

Πn−2
n−1
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−

(
z(n− 2)Π0

n−1 +

n−2∑
k=1

z(k − 1)Πk
n−1

)
−

(
n−3∑
k=0

z(k + 1)Πk
n−1 + z(0)Πn−2

n−1

)

=

2

n−3∑
l=2,l even

z(l)− z(1)− z(n− 2)

Π0
n−1

+

n−3∑
k=2,k even

2

n−2∑
l=0,l even,l 6=k

z(l)− z(k − 1)− z(k + 1)

Πk
n−1

+

n−3∑
k=1,k odd

2

n−2∑
l=0,l odd,l 6=k

z(l)− z(k − 1)− z(k + 1)

Πk
n−1

+

2

n−4∑
l=1,l odd

z(l)− z(0)− z(n− 3)

Πn−2
n−1.

Now, applying Lemma 5.4, we obtain

circ(1, 0, 3, 1, . . . , 3, 1, 3, 0)circ(z) = (n− 1) (n− 2) I − (n− 1)

n−2∑
k=1

Πk
n−1 = (n− 1)

2
I − (n− 1) eet.

Now we are in position to give our expression for D† using the vector z of Lemma 5.4.

Theorem 5.6. Let n ≥ 5 odd. Let D be the distance matrix of the wheel graph with n vertices. Let

a = (0,−1, 1, . . . ,−1, 1) ∈ Rn and z as in Lemma 5.4. Let v = (1,−1, . . . , 1,−1) ∈ Rn−1. Then

(5.26)
(
D + aat

)−1
=

1

(n− 1)
2

(
−2 (n− 1) (n− 3) (n− 1)et

(n− 1)e circ(z)

)
,

and

(5.27) D† =
1

(n− 1)
2

(
−2 (n− 1) (n− 3) (n− 1)et

(n− 1)e circ(z + v)

)
.

Proof. We have

(5.28) aat =

(
0 0

0 circ(v)

)
,

and

D + aat =

(
0 et

e circ(u+ v)

)
=

(
0 et

e circ(1, 0, 3, 1, . . . , 3, 1, 3, 0)

)
.

Let

X =

(
−2 (n− 1) (n− 3) (n− 1)et

(n− 1)e circ(z)

)
.

Since (
D + aat

)
X =

(
(n− 1)

2
etcirc(z)

0 (n− 1)eet + circ(1, 0, 3, 1, . . . , 3, 1, 3, 0)circ(z)

)
,

applying Lemma 5.5, we get (D + aat)X = (n− 1)
2
I. This shows (5.26). By Proposition 5.2, (5.26) and

(5.28), we obtain (5.27).
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We end this section with properties of (D + aat)
−1

, D†, and the matrix L̃ of (5.11).

Proposition 5.7. Let n ≥ 5 odd. Let D be the distance matrix of the wheel graph with n vertices. Let

a = (0,−1, 1, . . . ,−1, 1) ∈ Rn. Let w = 1
4 (5− n, 1, . . . , 1) and L̃ be such that

D† = −1

2
L̃+

4

n− 1
wwt.

Then

(5.29)
(
D + aat

)−1
a =

1

n− 1
a,

(5.30) D† =
(
D + aat

)−1(
I − 1

n− 1
aat
)
,

(5.31) L̃ = −2

((
D + aat

)−1 − 4

n− 1
wwt

)(
I − 1

n− 1
aat
)
,

and (D + aat)
−1 − 4

n−1ww
t is negative semidefinite on R(D).

Proof. By the equality (D + aat) a = n − 1a, we get (5.29). Equality (5.30) is a consequence of (5.29)

and (5.7). Using that wta = 0, from (5.11) and (5.30), (5.31) follows.

Since N(D) = span {a}, PR(D)x = I − 1
n−1aa

t. By [36, Theorem 2], L̃ is positive semidefinite. Hence,

by (5.31) and noting that R
(
L̃
)
⊆ R(D),

xtL̃x = −2
(
PR(D)x

)t((
D + aat

)−1 − 4

n− 1
wwt

)
PR(D)x,

and we conclude that (D + aat)
−1 − 4

n−1ww
t is negative semidefinite on R(D).
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