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Abstract The potential association between hygienic con-
ditions in the environment of lactating cows and the pres-
ence of gliotoxinogenic Aspergillus fumigatus strains was
studied. Milk samples (individual cow’s milk [ICM], bulk
tank milk [BTM]) from 44 dairy farms were sampled. In
ICM samples, eight different species of Aspergillus were
identified. A. flavus and A. fumigatus were predominant,
with 37.8 % and 26.1 % relative densities, respectively. A.
fumigatus strains were isolated from 61.4 % of the BTM
samples, and 34 % of these strains were able to produce
gliotoxin. Principal component analysis was used to associ-
ate the presence of A. fumigatus with some hygienic and
sanitary practices. A significant and positive correlation was
observed between dry cow therapy and forestripping. The
presence of A. fumigatus gliotoxin producers in milk was
associated with high somatic cells count (SCC) samples.
Good hygienic and sanitary practices were associated with
absence of A. fumigatus and relatively low SCCs of
<250,000 cells/ml. In general, a high percentage of dairy
farms were positive for A. fumigatus in BTM samples. This

is the first work that indicates the positive effects of ade-
quate hygienic and sanitary practices in dairy herds on the
control of A. fumigatus and related species. By reducing the
frequency of Aspergillus spp. in the dairy environment, the
risk of farm handlers’ exposure and the risk of
intramammary fungal infections would also be reduced.

Keywords Aspergillus fumigatus . Gliotoxin . Somatic cell
count . Milk hygiene . Dairy cow

Introduction

Several species within the genus Aspergillus are pathogenic
agents, and A. fumigatus is one of these. A. fumigatus is
ubiquitous in the environment, and may cause severe infec-
tious diseases in humans and in animals (Denning 1998;
Fischer et al. 2006). In dairy animals, A. fumigatus causes
mastitis, respiratory infections, abort, and other diseases, the
bibliographical references being more numerous for cattle
than for sheep and goats (Austwick 1965; Ainsworth and
Austwick 1973; Gourreau et al. 1988; Smith 1989).

Mastitis is one of the most important health problems in
bovine dairy herds. Experimentally infection assays with A.
fumigatus in sheep and goat, verified that it can provoke
abortion and mastitis (Corbel et al. 1980; Muñoz et al. 1989;
Mandal and Gupta 1994; El-Naggar et al. 1997). In addition,
several authors described clinical cases of bovine mastitis
caused by A. fumigatus (Thompson et al. 1978; Schällibaum
et al. 1980; Pepin 1988; Bauer et al. 1989; Katamoto and
Shimada 1990). Several factors suggest that these outbreaks
of mammary aspergillosis are associated with an incorrect or
unhygienic (intramammary) administration of antibiotics
during drying-off. Contamination of the teat end or cannulas
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by environmental A. fumigatus could favor further penetration
into the mammary gland. The inhibition of bacterial growth by
the implementation of antibiotics for mastitis treatment and
prevention, may promote the growth of the fungi into the
mammary gland, thus influencing the pathogenesis and sever-
ity of the intramammary infections (Jensen et al. 1996; Aller et
al. 1999; Perez et al. 1999; Las Heras et al. 2000). In addition,
A. fumigatus spores are easily spread in the air and pose a high
risk of exposure for both animals and humans (Land et al.
1987). This fungus is able to produce thermogenic myco-
toxins with immunosuppressive, genotoxic, cytotoxic and
apoptotic effects, and to induce neurological syndromes in
farm workers who have manipulated mouldy feed (Gordon
et al. 1993; Nieminen et al. 2002; Upperman et al. 2003;
Pereyra et al. 2008). A. fumigatus is the most common cause
of invasive human and animal aspergillosis, an important
source of morbidity and mortality in immunocompromised
hosts (Sutton et al. 1996). Dairy herd handlers, who are
exposed extensively to this fungus, often develop hypersensi-
tivity, so that they develop severe allergic reactions to the
mold. Aspergillosis includes invasive, inflammatory, granulo-
matous, narcotising disease of lungs, and other organs; and
rarely, systemic and fatal disseminated disease (Denning
1998; Denning et al. 2002). Kwon-Chung and Sugui (2009)
analyzed the role of gliotoxin in the pathobiology of A.
fumigatus. This mycotoxin has been suspected as one of the
most likely virulence determinants among various secondary
metabolites produced by the species. Gliotoxin is a dipeptide
characterized by the presence of a disulfide bridge across the
piperazine ring. The disulfide bridge allows the cross linking
with cysteine residues in proteins and the generation of dele-
terious reactive oxygen species (ROS) through a redox cycle
between the reduced and oxidized forms. This mechanism of
ROS generation is believed to be responsible for the toxicity
of gliotoxin (Gardiner et al. 2005). A survey of patients of a
cancer center in the United States reported a frequency of
gliotoxin production of 93 % among clinical A. fumigatus
isolates (Lewis et al. 2005). These results support the hypoth-
esis that gliotoxin production might act in vivo as a virulence
factor required to establish A. fumigatus infection.

For all these reasons, it is important reduce the number of
microorganisms present on the teat end. Prevention is the
key to controlling mammary gland infections and to protect
the dairy herd handler. Effective control measures for con-
tagious and environmental pathogens involves: teat dipping,
dry cow therapy, milking time hygiene (wash and dry the
udders before applying the milking unit), predipping,
culling and vaccines (National Mastitis Council 2004;
Pellegrino et al. 2008; McDougall et al. 2009; Pellegrino
et al. 2010). Teat dipping and dry cow therapy form the
basis of the prevention programs (Crist and Harmon 1991;
Smith and Hogan 1995).

The relation between hygienic and sanitary practices and
the presence of A. fumigatus gliotoxin producers in bovine
milk has not been informed yet. The aim of this work was to
study a possible association between gliotoxinogenic A.
fumigatus in cow’s milk and measures related to good dairy
management, such as teat dipping, dry cow therapy,
forestripping, and cleaning practice.

Materials and methods

Description of the sampling region

The animals concerned belonged to 44 dairy establish-
ments located in Cordoba province, in the central region
of Argentina during March to September, 2009 (Fig. 1)
(Vissio et al. 2009). Cordoba province produces 37 % of
the country’s total milk and is the main milk production
area with 3,000 dairy establishments (Ministerio de
Agricultura, Ganadería y Pesca de la Nación 2009). It
includes four dairy regions, Villa Maria basin being the
most important, with 50 % of state milk production and
1.5 million ha covered. The region is also an area of
intensive agriculture and livestock production, with sig-
nificant production of cereals, fruits and oilseeds (soy-
beans, wheat, corn, sunflower, oats, barley, rye). The
climate is mild with average temperatures around 10.8 °C
and 24.8 °C in winter and summer, respectively. All farms
had mechanical milking systems. The selection of the estab-
lishments was focused on the geographical location, the num-
ber of cows in milking (100–250) and the daily average milk
production (10–20 l/cow). Every dairy establishment was
visited once during the morning milking. In each herd, be-
tween 20 % and 40 % of the animals (breed, Holando-
Argentino) in milking (middle milk lactation) were randomly
sampled.

Samples were taken in agreement to the instructions
recommended by the National Mastitis Council (2004):

Individual cow’s milk (ICM) samples (n=901):
The udders were disinfected with ethanol 70 %,

dried with individual paper towel and the first jet of
milk discarded (forestripping). A pool sample (ICM) of
approximately 40 ml milk from the four quarters of
every animal was collected in plastic containers with
0.5 ml Azidiol for the determination of the somatic cells
count (SCC), and 10 ml in a sterile pipe for fungal
isolation.
Bulk tank milk (BTM) samples (n=44):

Additional samples were collected from the farm
cooling tank after homogenization of the content.
Milking was performed twice daily and fresh raw milk
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was stored in a cooling tank until delivery for further
marketing or processing. Aliquots (100 ml) were re-
moved with the aid of a pole with a cup at the end. Sub-
samples were taken at nine different locations (near the
top, middle and bottom of the tank). Pooled samples,
collected in sterile flasks, were kept on ice during the
transportation from the farm to the laboratory.

All samples were kept at 4 °C and transported to the
laboratory until their processing up to but not more than
18 h after the sample capture. On receipt at the laboratory,
samples were warmed to 37 °C in a water bath and stirred
very gently with a magnetic stirrer to dissolve the fat
layer. The samples were then centrifuged for 15 min at
3,000 g, the upper fat layer was discarded with the aid of
a Pasteur pipette, and defatted milk was filtered through
two or more Whatman No. 4 (Schleicher & Schuell,
Dassel, Germany) filter papers. At least 60 ml of each

skimmed milk sample was collected and frozen (−20 °C)
for subsequent analysis.

Hygienic and sanitary practices

During animal sampling, the implementation of different
hygienic and sanitary practices in the dairy establishments
was registered as present or absent in order to evaluate its
relation to the presence of A. fumigatus gliotoxin producer
strains. The reported practices were: teat dipping (the dipping
of all teats after each milking with a sanitizing solution), dry
cow therapy (post-milking teat germicidal dips, generally
contain antibiotics, skin conditioners and protective film),
forestripping (the expelling of four to five squirts of milk from
each quarter before milking) and washing (the scrubbing of
teats and teat ends thoroughly with a paper towel and washing
by hand with water).

Fig. 1 Geographical location of dairy establishments in the Villa Maria dairy basin (Cordoba province, Argentina)
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Somatic cell count determination

The milk SCC is a key measure of milk quality, reflecting the
health status of the mammary gland and the risk of non-
physiological changes to milk composition. Generally a SCC
is considered normal when the cells per milliliter in ICM are
<250,000 (Carrillo-Casas andMiranda-Morales 2012). Udders
and cooling tank samples were subject to SCC determination.
The SCC was performed with a Somacount 300 (Bentley,
Chaska, MN, USA) according to the revised protocol of the
148A method C, fluoro-opto-electronic, International Dairy
Federation Laboratory (1995). The value of 250,000 cells/ml
was considered as the cut-off point. Samples with SCC values
≥250,000 cells/ml were considered to be from animals with
inflamed udders, whereas samples with SCC values <250,000
cells/ml were considered to be from healthy animals (Carrillo-
Casas and Miranda-Morales 2012).

Fungal microbiota isolation and identification

Total fungal counts of all udder and cooling tank samples
were performed on dichloran rose bengal chloramphenicol
agar (DRBC). This is a general medium used for estimating
total culturable mycobiota (Abarca et al. 1994). Quantitative
enumeration of fungal propagules in solid media was done
using the surface-spread method. Ten milliliters of each
sample were homogenized in 90 ml 0.1 % peptone water
solution (10−1) for 30 min in an orbital shaker. Serial di-
lutions (10−2 and 10−3) were made and 0.1-ml aliquots were
inoculated in duplicates onto DBRCmedium. The plates were
incubated for 7–10 days at 25 °C. Only plates containing 10–
100 colony-forming units (CFU) were used for counting, with
results expressed as CFU per milliliter of sample. On the last
day of incubation, individual CFU counts for each colony type
considered to be different were recorded.

For the fungal identification, colonies representative of
Aspergillus were transferred for sub-culturing to tubes
containing malt extract agar (MEA). Taxonomic identifica-
tion of all colonies was achieved through macroscopic and
microscopic studies, followed by standard tests which were
related to the genera of each particular group of fungi.
Fungal species among Aspergillus genus were identified
according to Klich (2002) and Samson et al. (2000). The
results were expressed as isolation frequency (% of samples
in which each genera was present) and relative density (% of
isolation of each species among strains of the same genera).

Gliotoxin production by A. fumigatus isolates

All A. fumigatus strains were assayed for gliotoxin produc-
tion. The strains were grown on YES (sucrose 40 g, yeast
extract 20 g, agar 20 g and distilled water to 1,000 ml) plates
at 37 °C for 7 days. Three agar plugs were removed from the

central area of the colony, weighed and introduced into a
small vial. Chloroform (1 ml) was added to each vial, and
the sample–solvent mixture was centrifuged for 10 min at
1,252 g. The supernatant was filtered (Titan filtration sys-
tem, 17 mm, 0.45 μm; Rockwood, TN, USA) and evapo-
rated to dryness under N2. The residue was redissolved in
the mobile phase and used for gliotoxin analysis by HPLC.

Detection and quantification of gliotoxin

Gliotoxin was determined following the methodology pro-
posed by Pena et al. (2010). The HPLC apparatus used for
gliotoxin determination was a Perkin Elmer 200 Series
HPLC System equipped with an autosampler and UV de-
tection. Briefly, gliotoxin separation was performed at room
temperature on a Phenomenex Luna RP C18(2) column
(150×4.6 mm, 5 μm; Phenomenex, Torrance, CA, USA)
fitted with a C18 guard column using an isocratic mode:
75 % (1 % acetic acid in water) and 25 % acetonitrile. A
column washing of 5 min at 95 % of acetonitrile, followed
by 5 min of stabilization at the running conditions was
performed between chromatographic runs. Detection was
done at 254 nm. The standard solutions in mobile phase
were prepared from a 5 mgml−1 solution of pure gliotoxin
(Sigma-Aldrich, Buenos Aires) in chloroform, after solvent
evaporation. The detection limit determined as a rate s/n=3
was 0.2 μgg−1 and the limit of quantification, as a rate s/n=
10, was 0.9 μgg−1, where s means signal (intensity of the
toxin peak) and n means signal noise.

Statistical analysis

For A. fumigatus isolation frequency and relative density
data, the analyses were performed by analysis of variance
(ANOVA). The test of Least-Significant Difference (LSD)
was used to determine the significant differences between
means. The interaction between the presence of A.
fumigatus and hygienic and sanitary practices, such as teat
dipping, dry cow therapy, forestripping and washing, was
determined using a principal components analysis (PCA).
Statistical significance was at p<0.05 level. To determine
the association between the presence of A. fumigatus in milk
samples and the SCC, a principal component analysis
(PCA) was performed (INFOSTAT 2009).

Results

Milk from 901 ICM samples was mycologically analyzed
(Fig. 2). The presence of eight genera of filamentous fungi
and yeasts was observed in milk. The yeasts were the
predominant fungi isolated from 56.3 % of the samples.
Among toxinogenic genera, Aspergillus spp. was the most
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prevalent, followed by Penicillium spp, Alternaria spp and
Fusarium spp. Cladosporium spp. showed the highest isola-
tion frequency, while Eurotium spp and Geotricum spp. had
the smallest fungal population percentage. Eight species of
Aspergillus were identified from 901 ICM samples (Fig. 3).
Aspergillus flavus and A. fumigatus were the main isolated
species with percentages significantly higher (p<0.05) than
the other fungal species and significantly different from each
other (p<0.05). Among toxinogenic species, A. niger var
niger and A. parasiticus were also isolated. The other species
(A. terreus, A. niger var. awamori, A. candidus and A.
foetidus.) had densities below 10 %, without significant dif-
ferences among them (p<0.05). On the other hand, A.
fumigatus strains were present in 61.4 % of the BTM samples.

Interaction between A. fumigatus and some hygienic and
sanitary practices was evaluated using PCA. Principal compo-
nent 1 (PC1) and principal component 2 (PC2) explained
93.8 % of the total variation of the plot (Fig. 4). PC1 (71.8 %)
was associatedwith dry cow therapy, forestripping andwashing,
while PC2 (22.0%)was linked to teat dipping. A significant and
positive correlation was observed between dry cow therapy and
forestripping (r=0.70). Absence of A. fumigatus and SCC
<250,000 cells/ml were associated to some good hygienic and
sanitary practices implemented in the dairy establishments stud-
ied (confidence ellipse 95 %). In contrast, presence of A.
fumigatus and both SCC<250,000 cells/ml or ≥250,000
cells/ml, and absence of A. fumigatus with SCC≥250,000
cells/ml were not associated with the practices studied.

Fig. 2 Isolation frequency (%)
of fungal genera from 901
individual cow’s milk (ICM)
samples

Fig. 3 Relative density (%) of
Aspergillus species from 901
individual cow’s milk (ICM)
samples

Mycotoxin Res (2013) 29:71–78 75

Author's personal copy



The results from SCC determination showed that 75 %
(33/44) of the sampled establishments had SCC≥250,000
cells/ml in the bulk tank milk. Aspergillus fumigatus were
isolated in 60 % of BTM samples with high SCC (20/33).
To allow a more detailed analysis, these samples were
divided into stratus and the percentage of A. fumigatus
associated with the different status was evaluated (Table 1).
Although there were not significant differences between the
presence of A. fumigatus and SCC among the different stratus
(p>0.05), the highest A. fumigatus percentage was associated
with the highest SCC.

The production of gliotoxin by A. fumigatus strains and
their relation with SCC is shown in Table 2. Fifteen percent
of A. fumigatus strains isolated from ICM samples with low
SCC (<250,000 cells/ml) were able to produce gliotoxin,
whereas 29 % of them isolated from milk with high SCC
produced gliotoxin. These strains showed average levels
from not detected (ND) to 1.8 μgg−1. The most productive
strains were isolated from the same dairy establishment and
were also associated with high SSC.

Discussion

In this study, the presence of A. fumigatus strains and their
relation with some hygienic and sanitary practices were

studied. Moreover, the gliotoxin production and SCC were
also evaluated.

Until now, the fungal biota present in milk samples has
not been reported. Although yeasts were the prevalent fungi,
the main toxigenic genera were also isolated. The high
percentage of yeasts isolated could be indicating their ca-
pacity to growth in the ducts and acini of the udder, by
virtue of their ability to break up into small vegetative-
reproducing units. In a previous study, Alonso et al.
(2009) described the mycobiota present in raw materials
and cow feed from the same selected establishments in the
present study and the results indicated that Aspergillus was
the prevalent genera in cotton seeds, ready cattle feed and
corn silage, whereas Fusarium spp. were predominant in
corn grains. Yeasts and Penicillium spp. were present in all
kind of samples. Fungi are dispersed throughout the cow’s
environment, whether hygiene measures are not suitable for
the dairy herd animals, the contamination of milk by
toxinogenic fungi could occur. Moreover, the presence of
fungi alone could predict the milk contamination with my-
cotoxins. Cladosporium spp. showed the highest isolation

Fig. 4 Principal component
analysis of some hygienic and
sanitary practices (teat dipping,
dry cow therapy, forestripping
and washing) in the 44 dairy
establishments

Table 1 Relationship between Aspergillus fumigatus and somatic cell
count (SCC) in bulk tank milk samples

SCC (cells/ml) Percentage (%)/number of samples
positive for A. fumigatus

>750,000 39.3/13

750,000–500,000 26.3/9

500,000–250,000 34.4/11

Table 2 Gliotoxinogenic A. fumigatus strains and somatic cell count
(SCC)

Aspergillus fumigatus

SCC (cells/ml) Gliotoxin producer
strainsa

Gliotoxin levels
(μgg−1)±SDb

<250,000 2/13 <QOL

≥250,000 8/28 1.27±0.3

Detection limit of the technique: 0.2 μgg−1

QOL limit of quantification: 0.9 μgg−1

a Number of producer strains vs total strains
bMean levels ± standard deviation
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frequency. Although it does not represent a toxicological
risk, it gives indications of environmental contamination
levels that affect milk.

A. fumigatus was among the main isolated species from
milk samples. This high percentage of A. fumigatus isolated
from milk samples is of concern because this fungus is able
to produce gliotoxin, a toxin that has potent immunosup-
pressive, genotoxic, cytotoxic and apoptotic effects
(Nieminen et al. 2002; Upperman et al. 2003). Pereyra et
al. (2008) found strains able to produce more than one
mycotoxin and the strains isolated from cattle feed produced
higher gliotoxin levels than those isolated from corn silage.

The obtained results showed a high percentage of dairy
farms with A. fumigatus and related species presence in milk
tank samples compared with the low number present in
individual cow’s milk. This isolation difference was associ-
ated with the absence of some basic management and hy-
giene procedures (teat dipping, washing, dry cow therapy
and forestripping) that help to reduce the presence of this
fungus in the milk tank. Aspergillus fumigatus spores are
easily spread in the air and pose a high risk of exposure for
both animals and humans (Land et al. 1987).

The milk SCC is a key measure of milk quality, reflecting
the health status of the mammary gland and the risk of non-
physiological changes to milk composition. Generally an SCC
is considered normal when the cells per milliliter are <250,000
(Carrillo-Casas and Miranda-Morales 2012) In this study, an
elevated percentage of the establishments (75 %) had a high
SCC in their milk tanks. Milk quality is important, with
impacts on human health, milk processing and on-farm prof-
itability. High SCC is not associatedwith direct risks to human
health. However, there are a number of indirect risks as a
result of poor farm hygiene, antibiotic residues and the pres-
ence of pathogenic organisms and toxins in milk.

The most common species of Aspergillus that cause
invasive aspergillosis world-wide are A. fumigatus, A.
terreus, A. flavus and A. niger. In order to correlate the
pathogenic potential of A. fumigatus with the ability to
produce gliotoxin and to investigate the taxonomic distribu-
tion of gliotoxin-producing Aspergillus strains among clin-
ical isolates, Kupfahl et al. (2008) studied a total of 158
Aspergillus isolates, comprising four different species—A.
fumigatus (100), A. terreus (27), A. niger (16), and A. flavus
(15)—collected from different medical centers (some isolat-
ed from probable cases of aspergillosis) and from environ-
mental samples. Gliotoxin was detected in most culture
filtrates of A. fumigatus of both clinical (98 %) and envi-
ronmental (96 %) origin. The toxin was also detected, with
decreasing frequency, in culture filtrates of A. niger (56 %),
A. terreus (37 %), and A. flavus (13 %). The higher gliotoxin
concentrations were detected in A. fumigatus strains cul-
tures, whereas the gliotoxin productivities of other
Aspergillus species were significantly lower. Given these

findings, only A. fumigatus and related species strains were
selected in this work to determine the gliotoxin producing
ability. In this work, 24 % of A. fumigatus were able to
produce gliotoxin and were mainly associated with samples
with high SCC. The extent of the production of gliotoxin
could vary in individual strains of A. fumigatus, depending
on the culture conditions. The most important finding of this
study is that in milk samples some A. fumiugatus strains
were able to produce gliotoxin. This result leads to the
prediction that gliotoxin will be synthesized if adequate
conditions are produced. Additionally, the objective of the
present work was not to demonstrate the presence of
gliotoxin as a virulence factor. However, an elevated per-
centage of A. fumigatus strains were associated with elevat-
ed SCC. For all these reasons, reducing the number of fungi
that can reach the mammary gland through the use of
preventive mediated is important to reduce the contact be-
tween dairy herd handlers and toxinogenic microorganisms.

This is the first study to demonstrate that the presence of
A. fumigatus should be controlled by the implementation of
adequate hygienic and sanitary practices in dairy herds.
These practices would reduce the risk of farm handler’s
exposure and avoid the potential contribution of this micro-
organism to intramammary infections.
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