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Abstract: This manuscript presents a control law based on the kinematic control concept and the
input–output linearization approach. More specifically, the given approach has the structure of a
two-loop controller. A rigorous closed-loop system analysis is presented by using known theory on
perturbed systems. By assuming that the desired velocity in the body frame is persistently exciting,
the uniform bound of the tracking error in earth coordinates is ensured. A simulation study using
practical mobile robot parameters shows the viability of the introduced approach. In addition,
two known trajectory tracking controllers are simulated in order to compare the performance of the
proposed technique. Better tracking accuracy is obtained with the proposed control approach, even if
uncertainties in the knowledge of the friction coefficients are presented.

Keywords: skid-steering mobile robot; motion control; tracking error; input–output feedback
linearization; nonlinear systems

1. Introduction

Mobile robots have attracted attention in recent years. In practice, these systems can
be applied in the solution of many tasks, such as transportation of materials, surveillance,
entertainment, and agriculture [1]. Control system researchers have also found a benchmark
system in mobile robots since they present highly nonlinear dynamics. An interesting fact is that
most of the research on mobile robot control is focused on the consideration of kinematic models
and in designing feedback control laws for non-holonomic systems; see, for example, [2].

Next, a literature review on the following topics will be presented:

• Control of vehicles with nonlinear dynamics;
• Control of skid-steering mobile robots;
• Applications of input–output linearization to nonlinear systems.

As mentioned above, we first present an assessment of the research on the control of
vehicles with nonlinear dynamics. A backstepping controller for a wheeled mobile robot
was designed in [3]. A more complex problem was solved in [4], where a controller for
a tractor–trailer system was designed and experimentally tested. In [5], a discontinuous
controller for a non-holonomic mobile robot subject to disturbances was developed. The
flatness approach was used in [6] to approach the motion control of differentially driven
wheeled mobile robots. The design of a robust discontinuous controller using a nonlinear
state transformation was provided in [7]. The authors of [8] presented a review on the
visual servoing of non-holonomic mobile robots. In [9–11], techniques for the teleoperation
of skid-steering mobile robots were introduced. By using velocity transformation and
backstepping methods, a nonlinear controller for a nonlinear vehicle was introduced
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in [12,13]. A Lyapunov-based controller for solving the visual servoing of a unicycle mobile
robot was introduced in [14]. An interesting approach based on integral backstepping
control was provided in [15] in order to guarantee motion control of a non-holonomic
wheeled mobile robot. A controller for mobile robots with the ability to ensure robustness
against external disturbance and fixed-time convergence was introduced in [16]. In [17–19],
the control of mobile robots under constraints was addressed. A formation control strategy
with the ability to reject disturbances for wheeled vehicles was proposed in [20].

A review on the modeling and control of skid-steering mobile robots is provided
in the next section. Among the multiple configurations of wheeled mobile robots, we
know that skid-steering mobile robots rely on lateral skidding, which is produced by a
difference in the forces produced by wheels. A moment is created by this difference in the
forces, and if this moment is larger than the dissipative friction moment, then skidding
takes place and rotatory motion is consequently obtained. So-called tracked vehicles are
also skid-steering vehicles. The modeling of a four-wheel skid-steering mobile robot was
studied in [21–23], where nonlinear controllers were proposed. In order to guarantee
motion control and pose estimation, in [24] a kinematic approach for the nonlinear model
of tracked mobile robots was proposed. A controller for the practical stabilization of a
mobile robot was introduced in [25]. In [26], a robust dynamic feedback controller was
designed and implemented for a six-wheel skid-steering vehicle. The authors of [27]
provided a motion planning algorithm for autonomous navigation. The control for teams
of skid-steering mobile robots was solved in [28]. The work in [29] concerned a skid-
steering mobile robot with independently rotating wheels displacing on irregular ground,
proving its results experimentally. Friction compensation was proposed in [30] in order
to improve performance. An adaptive control approach was introduced in [31]. The
intelligent optimization of the parameters of a nonlinear controller for controlling a skid-
steering mobile robot was introduced in [32]. To achieve laser ray tracking, a backstepping
controller was developed [33]. Paper [34] reported a predictive tracking controller using
an error-based dynamic model approach, guaranteing motion control of a skid-steering
vehicle. In [35], a Lyapunov stable path-following controller was designed to generate
the steering control command for a skid-steering mobile robot. More recently, a complex
nonlinear controller was introduced in [36] with the aim of ensuring trajectory tracking of
a skid-steering mobile robot.

The feedback linearization control technique aims to achieve a controller that can
turn either part or all of a closed-loop system linear. We now discuss the concept of this
technique and its applications to nonlinear systems, including mobile robots. In particular,
when applying the input–output feedback linearization strategy to nonlinear systems,
an external system with linear dynamics and a nonlinear internal system with nonlinear
descriptions are obtained. The input–output linearization technique is an attractive design
tool since the output functions can be used as design criterion to stabilize the internal
dynamics. Textbooks [37,38] show detailed theory and academical application examples
of the mentioned techniques. A literature review is discussed in the next section. By
defining a point on the mobile robot as the output function, a controller was synthesized by
input–output linearization in [39]. The input–output linearization technique was applied
in [40] to a complex system composed of a tractor and n − 1 trailers. In [41], input–
output-linearization using a neural process model was described. To solve the problem
of regulating the output voltage of a resonant converter, an input–output-linearization
scheme was adopted in [42]. Another interesting application was developed in [43], where
a controller was developed to suppress vibrations in a mechanical system. In [44], an
adaptive nonlinear controller was designed for controlling the output voltage of a DC–DC
buck converter considering continuous and discontinuous conduction modes. By using an
approach based on feedback linearization, a nonlinear controller for a planar vertical take-
off and landing aircraft was introduced in [45,46]. More recently, in [47], the control of a
vehicle using a combination of passivity analysis and feedback linearization was proposed.
Similarly, the use of feedback linearization was an important step in the controller method
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introduced in [48]. An application of input–output linearization for glucose regulation was
achieved in [49]. Excellent performance was shown under perturbations. An input–output
linearization controller for a flexible joint robot was proposed in [50], showing that tracking
accuracy is improved with respect to a state feedback linearization controller. The control
of a self-balancing mobile robot was addressed in [51] by using a feedback linearization
controller. As can be seen, the power of the input–output linearization technique has been
widely recognized by the community since applications to various types of problems and
systems can be developed with relative ease, in addition to the fact that robustness can be
guaranteed with a few modifications to the controller.

This paper deals with the trajectory tracking of a skid-steering mobile robot. The given
literature review shows that the application of the input–output linearization technique has
been little explored, particularly using a linear combination of error states as the output
function. Hence, the contributions of this paper are established as follows:

• The proposed control approach consists of a two-level approach. The external control
loop (also denoted as kinematic controller) computes the desired velocity for the inner
loop and is designed to ensure that the fixed (earth) frame tracking error is bounded.
The purpose of the inner control loop is to guarantee that the body frame velocity
error is similarly bounded.

• Due to the underactuated nature of the skid-steering mobile robot, the uniform ulti-
mately boundedness of the position error in the earth frame is ensured theoretically
without requiring stringent conditions for the desired earth frame trajectories. This
statement has been proven to be true by assuming that the desired body velocity
produced by the kinematic controller is persistently exciting.

• A simulation study is presented, where the viability of the proposed approach is
shown. We test the persistency of the excitation condition resulting from the proposed
analysis. Furthermore, a comparison with two known trajectory tracking control
schemes is shown. Robustness is tested by using friction coefficients in the vehicle
that are position-varying.

The manuscript is organized as follows. Section 2 deals with the model of the mobile
robot, the control goal, and the mathematical tools required to prove our main theoretical
results. The proposed approach, based on the two loops of feedback and input–output
feedback linearization, is provided in Section 3. Simulation results are discussed in Section 4.
Finally, the main conclusions from the study and analysis are established in Section 5.

2. Model, Control Goal, and Mathematical Preliminaries

In the next section, the model of a skid-steering mobile robot is presented. Further details
are provided in [21,23]. The model corresponds to the free-body diagram depicted in Figure 1.

Figure 1. Free-body diagram.
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2.1. Model of a Skid-Steering Mobile Robot

Define a fixed reference frame, F(X, Y), and a moving frame, f (x, y), attached to the
vehicle body, with origin at the vehicle center of mass G (see Figure 1). The center of mass is
located at distances a and b (usually, a < b) from the front and rear wheel axes, respectively,
and is symmetric with respect to the vehicle sides (at distance τ).

Let us consider the rotation matrices:

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and

R∗(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 =

[
R(θ) 02×1
01×2 1

]
.

Let vx, vy, θ̇ = ω be, respectively, the longitudinal, lateral, and angular velocity of the
vehicle in frame f . In the fixed frame F, the absolute velocities are

d
dt

X
Y
θ

 =

[
R(θ) 02×1
01×2 1

]vx
vy
ω

. (1)

From the differential kinematics (1), we have[
Ẋ
Ẏ

]
= R(θ)

[
vx
vy

]
. (2)

For each wheel, i = 1, · · · , 4; let vxi and vyi be the the longitudinal velocity and the
lateral (skidding) velocity, respectively, which are explicitly given by

vx1 = vx4 = vx − τθ̇ (left)
vx2 = vx3 = vx + τθ̇ (right)
vy1 = vy2 = vy + aθ̇ (front)
vy3 = vy4 = vy − bθ̇ (rear).

(3)

We assume that wheel actuation is equal on each side so as to reduce longitudinal slip.
Thus, it will always be Fx4 = Fx1 and Fx3 = Fx2. Lateral forces, Fyi, act on the wheels as a
consequence of lateral skidding. In addition, a resistive moment, Mr, around the center of
mass is induced in general by the Fyi and Rxi forces.

The dynamic model of the skid-steering mobile robot of mass m and inertia J about its
center of mass can be rewritten as

mv̇x −mvyω = F1 − Rx

mv̇y + mvxω = −Fy (4)

Jω̇ = F2 −Mr,

where Rx and Fy are dissipative forces in the x and y direction of the body frame, respec-
tively, and Mr is the dissipative moment. Furthermore, F1 and F2 are the control inputs.

The longitudinal resistive force is expressed by [21]

Rx = fr
mg
2

(tanh(βvx1) + tanh(βvx2)). (5)

The total lateral force is thus

Fy = µ
mg

a + b
(
b tanh(βvy1) + a tanh(βvy3)

)
, (6)
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while the resistive moment is

Mr = µ
abmg
a + b

(
tanh(βvy1)− tanh(βvy3)

)
+ fr

τmg
2

(tanh(βvx2)− tanh(βvx1)). (7)

It is worth noting that a continuous model of friction has been introduced in the
dynamic model (4). This guarantees that the closed-loop system is locally Lipschitz.

2.2. Control Problem Formulation

Let us consider the point of interest given by

z =

[
Xz
Yz

]
=

[
X + d0 cos(θ)
Y + d0 sin(θ)

]
,

where d0 is constant, such that [21]

0 < d0 < a.

See Figure 1 for an illustration of point z. Thus, the mobile robot pose is defined as

p(t) =

Xz(t)
Yz(t)
θ(t)

 =

[
z(t)
θ(t)

]
∈ R3,

which is a vector that contains the vehicle position and orientation in the fixed earth frame.
Furthermore, the desired point of interest is defined as

zr(t) =
[

Xzr(t)
Yzr(t)

]
.

Thus, the desired pose is specified by pr = [zT
r θr]T , with θr = atan2(Ẏzr(t), Ẋzr(t)).

Assumption 1. The desired pose trajectory, pr(t), is assumed to be at least twice differentiable.
Furthermore,

pr(t), ṗr(t), p̈r(t) < µ, ∀ t ≥ 0,

with constant µ > 0.

Furthermore, the pose error is defined as

p̃ = p− pr. (8)

For the sake of simplicity, let us define the control input:

u =

[
F1
F2

]
=

[
2Fx1 + 2Fx2

2τ(Fx1 − Fx2)

]
. (9)

Thus, the control problem consists of designing a control input, u(t) ∈ R2, such that
the pose error in the fixed earth frame is uniformly ultimately bounded [38]; that is,

‖p̃(t)‖ ≤ a0, ∀ t ≥ T, (10)

for a compact set of initial conditions, such that

‖p̃(0)‖ ≤ b0. (11)

In (10) and (11), the notation ‖ =
√

xTx stands for the Euclidean norm of vector
x ∈ Rn.
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2.3. Mathematical Background for Analysis

The following analysis tools are found in the classical textbook [52] and are necessary
for the proposed control approach analysis.

Definition 1. A signal φ : R+ → R is persistently exciting if there exist ∆1, ∆2, and ∆3 > 0,
such that

∆1 ≥
∫ t+∆2

t
φ(t)dt ≥ ∆3, for all t ≥ 0.

Theorem 1 ([52]). Let φ : R+ → R be piecewise continuous. If φ(t) is persistently exciting, then
the system is

η̇(t) = −γφ(t)η(t), constant γ > 0,

and is globally exponentially stable.

We consider the properties of a so-called perturbed system:

ẋ = f (t, x, d), x0 = x(0), (12)

and relate its properties to those of the unperturbed system:

ẋ = f (t, x, 0), x0 = x(0), (13)

where t ≥ 0, x ∈ Rn, and d ∈ Rm.
Similarly to [52], we restrict our attention to solution x(t) and perturbation d(t)

belonging to some arbitrary balls, Bh ∈ Rn and Bc ∈ Rm.
Consider that the L-∞ norm is defined as

‖x‖∞ = sup
i
|xi|.

In particular, for u(t) : R+ → R, the notation u(t) ∈ L∞ means that |u(t)|∞ =
supt≥0 |u(t)| exists.

Theorem 2 ([52]). Consider the perturbed system (12) and the unperturbed system (13). Let x = 0
be an equilibrium of (13); that is, f (t, 0, 0) = 0 for all t ≥ 0. Let f be piecewise continuous in t
and have continuous and bounded first partial derivatives in x, for all t ≥ 0, x ∈ Bh, and d ∈ Bc.
Let f be Lipschitz in d, with Lipschitz constant ld, for all t ≥ 0, x ∈ Bh, and d ∈ Bc. Let d ∈ L∞.

If x = 0 is the exponentially stable equilibrium point of the unperturbed system, then

(a) The perturbed system is small-signal L∞-stable; that is, there exist γ∞, c∞, such that
‖d‖∞ < c∞ implies that

‖x‖∞ ≤ γ∞‖d‖∞ < h

where x is the solution of (12) starting at x(0) = 0.
(b) There exists s ≥ 1, such that, for all ‖x(0)‖ < h/s, 0 < ‖d‖∞ < c∞ implies that x(t)

converges to a Bδ ball of radius δ = γ∞‖d‖∞ < h; that is, for all ε > 0 there exists T ≥ 0,
such that

‖x‖ < (1 + ε)δ

for all t ≥ T, along the solutions of (12) starting at x(0). In addition, for all t ≥ 0, ‖x(t)‖ < h.

Essentially, Theorem 2 provides sufficient conditions for solution x(t) of system (12)
to be uniformly ultimately bounded [38]. In the textbook [52], Theorems 1 and 2 were used
systematically to conclude the robustness of the parameter identification algorithms and
adaptive controllers.
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3. A Two-Level Control Approach

Once the dynamic model of the skid-steering mobile robot has been defined, we are
in position to describe and present the corresponding analysis of the proposed control
approach. The adopted scheme is described as two-level control architecture and also de-
noted as nested control: an external kinematic control and an inner input–output feedback
linearization control loop. Figure 2 illustrates the proposed control approach, which relies
on the described two-level architecture. Further details are given in the next section.

Figure 2. Block diagram of the proposed two-level control approach. The outer loop is a kinematic
controller and the inner loop is an input–output linearization controller.

3.1. Outer Control Loop: Kinematic Control

The kinematic control loop will be defined in this subsection. Kinematic control
considers the differential relationship (1) as the mobile robot model, the body frame
velocity vector,

v =

vx
vy
ω

T

∈ R3, (14)

being the input of the mobile robot, while the pose, p, is the variable of interest.
Motivated by the motion rate control [53,54], let us definite the desired body frame

velocity as

vd =

vxd
vyd
ωd

 = R∗(θ)−1[ṗr − Kp p̃
]
, (15)

where Kp is a 3× 3 symmetric positive definite matrix, and the tracking error, p̃, is defined
in (8). Equation (15) also denotes the outer control loop.

Let us define the following error signals:

e1 = vx − vxd,

e2 = ω−ωd, (16)

e3 = vy − vyd,

which can be placed into a vector:

e =

e1
e3
e2

.

The reason for defining the velocity error as in (16) is because the velocity in vx(t) is
related to the applied force, F1(t), and the ω(t) is related to the applied torque, F2(t). This
will facilitate the derivation of the input–output linearization controller. In order to balance
the relation between the body frame velocity error, e(t), and the velocity error vector in the
fixed frame, ˙̃p(t), the matrix

U =

1 0 0
0 0 1
0 1 0


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is defined.
The kinematic relation (2) can be rewritten as

˙̃p = −ṗr + R∗(θ)Ue + R∗(θ)

vxd
vyd
ωd

. (17)

By substituting (15) into the error system (17), the expression

˙̃p = −Kp p̃ + R∗(θ)Ue (18)

is obtained.
Provided that the body frame velocity error, e(t), is a uniformly bounded signal, one

can expect that the pose error, p̃(t), will satisfy the control objectives in (10) and (11).
This claim will be precisely proven next by means of the introduction of an input–output
linearization controller, u(t).

As seen in Figure 2, the inputs for the inner control loop are the desired body frame
velocity, vd(t), in (15), its time derivative,

v̇d(t) = R∗(θ)−1[p̈r − Kp ˙̃p
]
+

[
d
dt

R∗(θ)−1
][

ṗr − Kp p̃
]
,

and the actual body frame velocity, v(t) ∈ R3.
An important observation is that, thanks to Assumption 1, for all θ ∈ R, the matrix

R∗(θ) is invertible and bounded, and for all p̃, ˙̃p ∈ Bp, with Bp ⊂ R3, a compact set that
contains the origin, the body frame desired velocity and acceleration vd(t), and v̇d(t),
respectively, are bounded for all time t ≥ 0.

3.2. Inner Control Loop: Input–Output Linearization

In this subsection, a controller, u(t), will be developed with the aim of ensuring the
uniform ultimately boundedness of the body frame velocity error, e(t); that is,

‖e(t)‖ ≤ av0, ∀ t ≥ T, with T ≥ 0, (19)

where e(t) is defined in (16), for e(0) ∈ S, where S ⊂ R3 is a compact set.
In order to derive the inner-loop controller, we follow the procedure described in

textbook [37], and the works [50,55], for designing an input–output linearization controller.

3.2.1. Error System Development

Our goal is to developed an error system for which an input–output linearization
approach will be applied.

The time derivative of the error signals (16) is computed by using the skid-steering
mobile robot model (4), as follows:

d
dt

e1 = (e3 + vyd)(e2 + ωd) +
F1

m
− Rx

m
− v̇xd,

d
dt

e2 = −Mr

J
+

F2

J
− ω̇d,

d
dt

e3 = −(e1 + vxd)(e2 + ωd)−
Fy

m
− v̇yd,

which can be written in the compact standard form

d
dt

e = f (t, e) + G(t, e)u, (20)
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where

f (t, e) =

 (e3 + vyd)(e2 + ωd)− Rx
m − v̇xd

−Mr
J − ω̇d

−(e1 + vxd)(e2 + ωd)−
Fy
m − v̇yd

, (21)

G(t, e) =

1/m 0
0 1/J
0 0

,

and u defined in (9).

3.2.2. Input–Output Linearization Design

As highlighted in [37], the input–output methodology consists of defining an output
function, y(e). The definition of the output function shall be carried out to facilitate
the analysis of the internal dynamics. With this in mind, the following output function
is defined:

y = K(t)e, (22)

where K(t) ∈ R2×3 is a time-varying matrix; that is,

K(t) =
[

k11(t) k12(t) k13(t)
k21(t) k22(t) k23(t)

]
. (23)

The gain kij(t) will be defined so that the solutions of the internal dynamics are
uniformly ultimately bounded. The selection of the gain kij(t) will be presented in a
constructive form.

The reasons to define the output function, y, as a linear combination of the velocity
error, e, is to facilitate the analysis of the internal dynamics; see also the papers [50,55],
where a similar idea was used for the control of a Furuta pendulum and a flexible joint
robot, respectively.

Once we have written the error system in the standard form and defined the output
function, the next step is to differentiate each component of the output function ri times for
the control input to appear. Thus, the time derivative of the output function, y, is given:

ẏ = K̇e + Kė = K̇e + K f (t, e) + KG(t, e)u. (24)

The total relative degree is r = r1 + r2 = 1 + 1 = 2, since the output function, y, has
dimension 2 and the control input appears after differentiating with respect to times y1 and
y2; see [37], p. 267, for further discussions.

What follows is the method to find a relationship between the controller, u(t), and the
dynamics of the output function, y(t). As suggested in [37], one should select u(t) to cancel
the nonlinearities of (24) and guarantee the tracking convergence of y(t). Specifically, the
control input that linearizes the dynamics of y(t) is given by

u = [KG(t, e)]−1[−K f (t, e)− K̇e− K0y], (25)

with K0 = KT
0 > 0; that is, K0 ∈ R2×2 is a symmetric positive definite matrix. By substitut-

ing the control action (25) into the output dynamics (24), we obtain

ẏ = −K0y. (26)

It is possible to show that y(t)→ 0 as t→ ∞ with exponential convergence rate.
Notice that the control action, u, in (25) depends on the expression [KG(t, e)]−1, which

should hold for all time t ≥ 0 and e ∈ R3. In other words, the square product matrix,
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KG(t, e), should be invertible. In order to guarantee that KG(t, e) is invertible and the
indetermination of the control action, u, the following condition should be satisfied:

det(KG(t, e)) =
1

mJ
[k11k22 − k12k21] 6= 0. (27)

Equation (26) denotes the external dynamics. The next step is to compute the internal
dynamics. With this aim, let us define the change of variable η(e), such that [37]

∂η(e)
∂e

G(t, e) =
[
0 0
]
. (28)

A selection is
η(e) = e3,

so that the evaluation of Equation (28) results in

[
0 0 1

]1/m 0
0 1/J
0 0

 =
[
0 0
]
. (29)

To compute the internal dynamics, the following transformation is defined: η
y1
y2

 =

 0 0 1
k11 k12 k13
k21 k22 k23


︸ ︷︷ ︸

H

e1
e2
e3

. (30)

Then, the inverse relation of (30) is given bye1
e2
e3

 =


k12 k23−k13 k22
k11 k22−k12 k21

k22
k11 k22−k12 k21

− k12
k11 k22−k12 k21

− k11 k23−k13 k21
k11 k22−k12 k21

− k21
k11 k22−k12 k21

k11
k11 k22−k12 k21

1 0 0


︸ ︷︷ ︸

H−1

 η
y1
y2

. (31)

It is worth noting that (31) holds if

det(H) = k11k22 − k12k21 6= 0,

which correspond to the invertibility condition (27) of the matrix KG(t, e).
For the sake of simplicity, we will adopt the notation

H−1 =

c11 c12 c13
c21 c22 c23
1 0 0

 =


k12 k23−k13 k22
k11 k22−k12 k21

k22
k11 k22−k12 k21

− k12
k11 k22−k12 k21

− k11 k23−k13 k21
k11 k22−k12 k21

− k21
k11 k22−k12 k21

k11
k11 k22−k12 k21

1 0 0

 (32)

to make the calculations shown in the next section more compact.
By using (31), we are in position to compute the internal dynamics as follows:

d
dt

η = ė3 = −e1e2 − vxde2 −ωde1 − vxdωd −
Fy

m
− v̇yd. (33)
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Substituting the expressions of e1 and e2 from (31) into (33), we have

d
dt

η = −(c11η + c12y1 + c13y2)(c21η + c22y1 + c23y2)

−vxd(c21η + c22y1 + c23y2)−ωd(c11η + c12y1 + c13y2)

−vxdωd −
Fy

m
− v̇yd. (34)

The system (34) can be written with the structure suggested in [55] as follows:

d
dt

η = f0(t, η) + Φ(t, η, y) + d0, (35)

where

f0(t, η) = −(vxdc21 + ωdc11)η − c11c21η2, (36)

Φ0(t, η, y) = −c11η(c22y1 + c23y2)− c21η(c12y1 + c13y2) (37)

−(c12y1 + c13y2)(c22y1 + c23y2) (38)

−vxd(c22y1 + c23y2)−ωd(c12y1 + c13y2) (39)

d0 = −vxdωd −
Fy

m
− v̇yd. (40)

It is worth noting that, at y = 0, the function

Φ0(t, η, 0) = 0, ∀ t ≥ 0, η ∈ R.

Thus, by continuity of the function Φ0(t, η, y), and assuming that η(t) is uniformly
continuous, we have

Φ0(t, η(t), y(t))→ 0 as y(t)→
[

0
0

]
.

The signals vxd(t), vxd(t), and ωd(t), and their respective time-derivatives v̇xd(t),
v̇xd(t), and ω̇d(t), are generated by the output of the kinematic (outer) controller (15).
Furthermore, v̇xd(t), v̇xd(t), and ω̇d(t) depend on the actual pose, p(t), and the desired one,
pr(t).

By definition, the friction forces and moments Rx, Fy, and Mr are bounded for all time.
This is immediately deduced from the definition of the dissipative forces and moments Rx,
Fy, and Mr given in Equations (5)–(7), respectively.

Once we have defined the above-written framework, the following results are stated.
Section 2.3 shows the definition of a persisting exciting signal as well as the required
analysis tools to prove our main results.

Proposition 1. Assume that the disturbance term d0 in (40) is null for all time t ≥ 0; that is,

d0(t) = 0, ∀ t ≥ 0. (41)

Consider that
k11 > 0,
k22 > 0,
k12 = −k21,
k13 = α2k21vxd − α1k11ωd,
k23 = −α1k21ωd − α2k22vxd.

(42)

The constants α1 and α2 are selected either as strictly positive, or one of them is zero and the
another is strictly positive. Furthermore, consider that

φ = α1ω2
d + α2v2

xd (43)
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is a persisting exciting signal. Then, the vector [η(t) y(t)T ]T ∈ Rn converges to zero exponentially,
provided that the initial conditions start as a compact set.

Proof. Under assumption (41), the internal and external dynamics can be written as

d
dt

y = −Koy, (44)

d
dt

η = f0(t, η) + Φ(t, η, y), (45)

which has an equilibrium point at η = 0 and y = 0.
The zero dynamics is given by

d
dt

η = f0(t, η) + Φ(t, η, 0),

which can be linearized around η = 0, resulting in

d
dt

η(t) =
[
−ωd

(
k12 k23 − k13 k22

k11 k22 − k12 k21

)
+ vxd

(
k11 k23 − k13 k21

k11 k22 − k12 k21

)]
η(t), (46)

where the explicit definitions of element cij of the matrix H−1 in (32) were used.
By substituting the gains selection (42) into Equation (46), and after some algebra,

we obtain
d
dt

η(t) = −φ(t)η(t),

with φ(t) defined in (43). Since φ(t) is a persisting exciting signal, the local exponential
convergence of η(t) can be claimed by Theorem 1. Since K0 is a symmetric positive definite
matrix, the local exponential stability of the state-space origin of (44) and (45) is concluded
by using arguments of cascade systems [56], and thus Proposition 1 is proven.

Proposition 2. Assume that the control gains satisfy the conditions expressed in (42) and that
φ(t) in (43) is a persistently exciting signal. Then, the solutions y(t) and η(t) of the external and
internal dynamics in (26) and (35), respectively, are uniformly ultimately bounded.

Proof. By defining

d(t) =
[

y(t)
d0(t)

]
,

the internal dynamics (35) have the same structure as the nonlinear system (12). For d0 = 0,
the control gains satisfying (42) and φ(t) in (43) are assumed to be a persistently exciting
signal; the local exponential stability of the internal dynamics was proven in Proposition 1.

Furthermore, since y(t) converges to zero exponentially and d0(t) is bounded for all
time, we have

||d(t)‖∞ ≤ c∞.

Since all the conditions of Theorem 2 are satisfied, the solution η(t) converges to a ball,
Bδ, of radius δ = γ∞‖d‖∞ < h. In other words, for all ε > 0, there exists T ≥ 0, such that

|η| < (1 + ε)δ

for all t ≥ T, which means at the same time that η(t) is a uniformly ultimately bounded
signal.
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It is worth noting that the control law, u(t), in (25) requires the time derivative of the
control gain, K(t). Thus, with the given design in Propositions 1 and 2, we have

d
dt

K(t) =
[

0 0 α2k21v̇xd − α1k11ω̇d
0 0 −α1k21ω̇d − α2k22v̇xd

]
.

Finally, by means of relation (31), we can see that

‖e(t)‖ ≤ ‖H(t)−1‖
∥∥∥∥[η(t)

y(t)

]∥∥∥∥
is satisfied for all time t ≥ 0. In consequence, the error signal, e(t), is uniformly ultimately
bounded and inequality (19) is satisfied.

3.3. Bounding of the Pose Error

We have used the kinematic controller, vd(t), in (15) in the outer loop and the body
frame velocity controller, u(t), in (25) in the inner loop. We have proven that u(t) (25)
ensures that the body frame velocity error, e(t), is a uniformly bounded signal. The final
step is to show with the given control law that the control goal established in inequalities
(10) and (11) is attained.

Proposition 3. The pose error (the position error in fixed earth coordinates), p̃(t), is a uniformly
ultimately bounded signal; that is, p̃(t) satisfies inequalities (10) and (11) established as the
control goal.

Proof. The proof is similar to the proofs of Propositions 1 and 2. The fist step is to show
that the equilibrium point, p̃ = 0, of the system

˙̃p = −Kp p̃

is globally exponentially stable. The second step is that by defining

d(t) = R∗(θ(t))Ue(t),

system (18) has the same structure as system (12). Since ‖d(t)‖∞ ≤ c∞ and all conditions of
Theorem 2 are satisfied, the solution p̃(t) is uniformly ultimately bounded.

Proposition 1 establishes that in the absence of the perturbation d0(t) and under the
condition persistency of excitation of the the signal φ(t), which is a function of the desired
signals vxd(t) and ωd(t), the limit

lim
t→∞

η(t) = lim
t→∞

e3(t) = lim
t→∞

[vy(t)− vyd(t)] = 0

will be satisfied with exponential convergence rate. Thus, from Definition 1 and Theorem 1
given in the mathematical background of Section 2.3, one can expect that the larger the
energy of the signal, φ(t), the faster the convergence of the velocity error, e3(t). In Proposi-
tion 2, where the perturbation, d0(t), is taken into account, the most we can say is that the
error, e3(t), is uniformly ultimately bounded, no matter the amount of energy contained
by the signal, φ(t). Based on the previous discussion, we can still conjecture that the
velocity error in the body frame, e(t), and the position error in the fixed frame, p̃(t), will be
reduced if the energy of the signal, φ(t), increases. This will be verified numerically in the
following section.
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4. Simulation Results

In this section, the numerical simulation results are presented. The following set of
simulations are presented:

• A simulation set with the proposed input–output linearization controller using a
trajectory that draws a circular path in earth coordinates at three different speeds. This
test is useful to verify the conjecture that the larger the energy of the desired trajectory,
the smaller the tracking error, and that is intuitively derived from Propositions 1 and 2.

• A simulation set comparing the proposed input–output linearization controller with
respect to another two known trajectory tracking control schemes. We consider a
polynomial path in earth coordinates and continuous changes in the vehicle friction
parameters so that continuous changes in the characteristics of the terrain are obtained.

• The third simulation set is similar to the second one but a path that draws a sine wave
in earth coordinates and a discontinuous change in the vehicle friction parameters
are used.

The parameters of the ATRV-2 robot have been used [21]. Specifically, a = 0.37 (m),
b = 0.55 (m), 2τ = 0.63 (m), and wheel radius r = 0.2 (m). The vehicle mass is m = 116 (kg)
and its inertia is J = 20 (kg m3). We used d0 = 0.18 (m) as the coordinate of the point of
interest, z. A value of β = 100 in the resistive forces and moment (5)–(7) has been selected.
As mentioned earlier, we have used fixed values of µ and fr in the vehicle for the first set of
simulations, and varying values of µ(X, Y) and fr(X, Y) in the vehicle for the second and
third sets of simulations. Details will be provided in the coming discussions.

4.1. Tracking a Circular Path at Different Speeds

We begin the numerical simulation discussions with a test that consists of showing the
sensibility of the tracking error, p̃(t), to the persistency of the excitation condition of the
controller. The following desired path is defined:

zr(t) =
[

Xzr(t)
Yzr(t)

]
=

[
rc cos(Wrt)
rc sin(Wrt)

]
[m].

With θr = Wrt, the desired pose, pr(t) = [zr(t)T θr(t)]T , is obtained. Three simulations
were carried out by using Wr = 1, 2, and 3 (rad/s), while rc = 10 (m) was used. The selected
gains are

Kp = diag{1, 1, 1},
K0 = diag{2, 2, 2},

where α1 = 1, α2 = 0.01, k11 = 100, k12 = 1, k21 = −k12, k22 = k11, k13, and k23 are
indicated in Proposition 2. In these simulations, the initial conditions are X(0) = 10 (m),
Y(0) = 10 (m), θ(0) = 0 (rad), vx(0) = 0 (m/s), vy(0) = 0 (m/s), and ω(0) = 0 (rad/s). The
friction parameters µ = 0.9 and fr = 0.1 were used in both the vehicle and the controller.

Figure 3 describes the path drawn by the vehicle in each one of the simulations.
Furthermore, in Figure 4 the time evolution of tracking errors p̃x(t) = Xz(t) − Xzr(t),
p̃y(t) = Yz(t) − Yzr(t), and p̃θ(t) = θ(t) − θr(t) can be appreciated. Clearly, the larger
the value of the path frequency, Wr, the smaller the pose error, p̃(t). In other words, the
trajectory tracking error decreases as the value of Wr increases. The root mean squared
(RMS) value of the components of the pose error vector, p̃(t), has been computed for each
one of the simulations. The obtained RMS values are given in Table 1 and they corroborate
the fact that tracking errors decrease as the value of Wr increases. We have confirmed
numerically that the closed-loop system is stable for a trajectory of zd(t), such that φ(t) in
(43) is persistently exciting.
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Figure 3. Proposed input–output linearization controller: path drawn by the vehicle by using Wr = 1,
2, and 3 (rad/s) in the desired pose, pr(t).
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Figure 4. Proposed input–output linearization controller: tracking errors p̃x(t) = Xz(t)− Xzr(t),
p̃y(t) = Yz(t) − Yzr(t), and p̃θ(t) = θ(t) − θr(t) using Wr = 1, 2, and 3 (rad/s) in the desired
pose, pr(t).



Machines 2023, 11, 988 16 of 24

Table 1. Proposed input–output linearization controller: RMS values of the trajectory tracking errors
p̃x(t) = Xz(t)− Xzr(t), p̃y(t) = Yz(t)−Yzr(t), and p̃θ(t) = θ(t)− θr(t) for Wr = 1, 2, and 3 (rad/s).
Percentage of improvement is computed with respect to the RMS value obtained with Wr = 1 (rad/s).

p̃ Wr = 1 Wr = 2 % Wr = 3 %

p̃x 8.8907 2.1699 75.59 1.0887 87.75
p̃y 9.7074 3.9841 58.95 2.9552 69.55
θ̃ 0.6042 0.1787 70.42 0.1858 69.24

4.2. Comparison with the Controllers [21,31]: Polynomial Path

A dynamic feedback linearization was introduced by Caracciolo et al. [21]. The con-
troller given there corresponds to a dynamic feedback linearization algorithm. Furthermore,
Jun et al. [31] proposed a controller using a backstepping technique that guarantees the
Lyapunov stability. The controllers reported in [21,31] have been numerically simulated in
order to compare their performance with respect to the controller introduced in this paper.

Let us consider the path given by

zr(t) =
[

Xzr(t)
Yzr(t)

]
=

[
3t

−0.018t3 + 0.3t2 + 0.3t

]
[m].

The desired pose is specified by pr(t) = [zr(t)T θr(t)]T , where θr = atan2(Ẏzr, Ẋzr).
The resulting desired pose is used to numerically simulate the Caracciolo et al. controller in
[21], the Jun et al. scheme in [31], and the proposed input–output linearization technique.

For the three controllers, the initial conditions are X(0) = 0 (m), Y(0) = 0 (m),
θ(0) = 0.17 (rad), vx(0) = 0.5 (m/s), vy(0) = 0.5 (m/s), and ω(0) = −2.2 (rad/s). The
robustness of the simulated controllers has been evaluated by means of varying values
of the friction coefficient, µ, and the rolling resistance coefficient, fr. In other words, the
simulation consists of perturbing the vehicle dynamics during the path-following task by
changing the characteristics of the terrain. Specifically, the friction coefficient has been
programmed into the vehicle as a function of position (X, Y); that is,

µ(X, Y) = 0.9(1 + 0.1(X− 25) exp(−0.005(X− 25)2)),

and
fr(X, Y) = 0.1(1 + 0.1(X− 25) exp(−0.005(X− 25)2)).

See Figure 5 for a graphical representation. The controllers have been implemented
with the rough constant estimations given by

µ̂ = 0.9, and f̂r = 0.1.
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Figure 5. Polynomial path: friction parameters as functions of the coordinates (X, Y) used in the
vehicle model.
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The gains used in the controllers are given in Table 2. By using a trial-and-error
process, the gains were selected until a similar performance of one controller to the another
was obtained. In particular, the gains for the proposed controller attain the conditions
established in Proposition 1, whereby the pose error, p̃(t), is expected to be uniformly
ultimately bounded according to Propositions 2 and 3.

Table 2. Polynomial path: gains used for the Caracciolo et al. technique, the Jun et al. scheme, and
the proposed input–output linearization scheme in (15)–(25).

Caracciolo et al. Jun et al. Proposed

Notation Value Notation Value Notation Value

Kp diag{300, 195} k1, k2 3, 15.8 K0 diag{40, 40}
Kv diag{100, 65} k3, k4 7.95, 1 Kp diag{40, 40, 40}
Ka diag{20, 13} k5, k6 0.0005, 5 α1, α2, 2, 0

k7 4.05 k11, k12 100, −10

The path drawn by the vehicle in (X, Y) coordinates using each one of the controllers
is depicted in Figure 6. Furthermore, Figure 7 shows the time evolution of the tracking
errors p̃x(t) = Xz(t)− Xzr(t), p̃y(t) = Yz(t)−Yzr(t), and p̃θ(t) = θ(t)− θr(t).

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

Figure 6. Polynomial path: path drawn by the vehicle for the Caracciolo et al. controller, the Jun et al.
scheme, and for the proposed input–output linearization controller.

In spite of the initial errors and terrain perturbations, all the controllers are able to
keep the tracking pose error bounded during the simulation time. In order to have a
better understanding of how good the tracking accuracy of the simulated controllers is, the
root mean squared (RMS) value of the components of the pose error vector p̃(t) has been
computed. Results are given in Table 3, where the notation PM% means the percentage of
improvement with respect to the RMS values obtained with the Caracciolo et al. technique.
Better tracking accuracy is obtained with the proposed approach.
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Figure 7. Polynomial path: time evolution of the tracking error the tracking errors p̃x(t) = Xz(t)−
Xzr(t), p̃y(t) = Yz(t)−Yzr(t), and p̃θ(t) = θ(t)− θr(t) for the Caracciolo et al. controller, the Jun et
al. scheme, and for the proposed input–output linearization controller.

Table 3. Polynomial path: RMS values of the trajectory tracking errors p̃x(t) = Xz(t) − Xzr(t),
p̃y(t) = Yz(t)−Yzr(t), and p̃θ(t) = θ(t)− θr(t) computed in the time interval 0 ≤ t ≤ 17 (s).

p̃ Caracciolo
et al. [21] Jun et al. [31] PM% Proposed PM%

p̃x 0.2504 0.1064 57.50% 0.0987 60.57%
p̃y 0.2656 0.1540 42.03% 0.0941 64.55%
p̃θ 0.0401 0.0148 63.20% 0.0044 89.13%

4.3. Comparison with the Controllers [21,31]: Sine Path

For this comparison, the task specified is that the vehicle should follow a sine path
described by

zd(t) =
[

b t
a sin(b t)

]
[m],

with a = 3 (m) and b = 0.5 (rad/s).
In addition, a discontinuous change in the vehicle friction parameters is considered:

µ(X, Y) =
{

0.9 for all X < 10, Y ∈ R,
1.8 for all X ≥ 10, Y ∈ R,

fr(X, Y) =
{

0.1 for all X < 10, Y ∈ R,
0.2 for all X ≥ 10, Y ∈ R,
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An illustration is provided in Figure 8. The estimations µ̂ = 0.9 and f̂r = 0.1 are
used in the controllers. The idea in this numerical test is to assess the performance of the
controllers by using an abrupt change in the terrain characteristic. For all the controllers,
the initial conditions are X(0) = 0 (m), Y(0) = 0 (m), θ(0) = 0.0 (rad), vx(0) = 1 (m/s),
vy(0) = 0 (m/s), and ω(0) = 0 (rad/s).
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Figure 8. Sine path: Friction parameters as functions of the coordinates (X, Y) used in the
vehicle model.

In Table 4, the gains used in the controllers are observed. Similarly to the comparison
using a polynomial path, the gains for the proposed technique satisfy all the conditions
established in Proposition 1. Thus, by Propositions 2 and 3, the pose error, p̃(t), satisfies
the definition of a uniformly ultimately bounded signal.

Table 4. Sine path: gains used for the Caracciolo et al. technique and proposed input–output
linearization scheme in (15)–(25).

Caracciolo et al. Jun et al. Proposed

Notation Value Notation Value Notation Value

Kp diag{250, 250} k1, k2 3, 15.8 K0 diag{250, 250}
Kv diag{50, 50} k3, k4 7.95, 1 Kp diag{100, 150, 50}
Ka diag{100, 100} k5, k6 0.0005, 5 α1, α2, 3.6 , 0

k7 4.05 k11, k12 110, 10

Figures 9 and 10 describe the path drawn by the vehicle and the evolution of the
tracking errors, respectively, with each one of the controllers. A visual examination of
Figure 9 may suggest at first sight that the Caracciolo et al. controller presents the best
performance. However, this is not correct at all. The RMS values of the components of
tracking error p̃(t) were computed and the results are provided in Table 5. The column
PM% shows the percentage of improvement of the Jun et al. scheme and the proposed
controller with respect to the results with the Caracciolo et al. technique. For the RMS
value p̃x(t), the largest percentage of improvement, PM%, was obtained with the Jun et
al. scheme. However, we can see that, for the RMS values of p̃y(t) and p̃θ(t), the largest
percentages of improvement, PM%, was obtained with the proposed controller. Averaging
the three percentages of improvement for each controller, we conclude that the best tracking
accuracy is obtained with the proposed technique.

We stress that the intention of the comparison was to show that the novel motion
control approach may provide equal or better tracking performance than other known
control algorithms.
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Figure 9. Sine path: path drawn by the vehicle for the Caracciolo et al. controller and for the proposed
input–output linearization controller.
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Figure 10. Sine path: time evolution of tracking errors p̃x(t) = Xz(t)− Xzr(t), p̃y(t) = Yz(t)−Yzr(t),
and p̃θ(t) = θ(t) − θr(t) for the Caracciolo et al. controller and for the proposed input–output
linearization controller.
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Table 5. Sine path: RMS values of the trajectory tracking errors p̃x(t) = Xz(t) − Xzr(t),
p̃y(t) = Yz(t)−Yzr(t), and p̃θ(t) = θ(t)− θr(t) computed in the time interval 0 ≤ t ≤ 40 (s).

p̃ Caracciolo
et al. [21] Jun et al. [31] PM% Proposed PM%

p̃x 0.2871 0.1423 50.42% 0.1891 34.12%
p̃y 0.4143 0.1627 60.71% 0.0824 80.11%
p̃θ 0.2914 0.2246 22.90% 0.0235 91.92%

5. Conclusions

In this paper, by using a nested control approach, the motion control of a skid-steering
mobile robot has been addressed. A two-level control approach was adopted in order to
ensure motion control. In the outer loop, a kinematic controller was used, while in the
inner loop an input–output linearization scheme was developed. A known theory on the
boundedness of solutions of perturbed systems was used to derive our theoretical results.
Without any special requirements or constraints in the desired reference trajectories, the
tracking error in the fixed earth frame was shown to be uniformly ultimately bounded.
One condition resulting from the proposed analysis is that an expression of the desired
velocity in the body frame should be persistently exciting, similarly to other results given
to ensure the motion controllers of mobile robots.

From the simulation results, the following conclusions were established:

• By using simulations concerning the task of drawing a circle at different speeds
in (X, Y) coordinates, we could conclude that the proposed input–output feedback
linearization controller may be well-adapted for tasks where the vehicle has to achieve
a task at high speed.

• The simulation results discussed in Sections 4.2 and 4.3 indicated that the proposed
controller may provide equal or better performance than other controllers, such as
the ones introduced in [21,31], in the presence either of smooth or discontinuous
terrain conditions.

Summarizing, we have confirmed theoretical results by using different comparisons and
complex desired pose trajectories.

Further research will include the exploration of the partial linearization technique as
suggested in [57,58], as well as gain selection based on controllability [59]. Furthermore, the
proposed controller will be restudied by adding the ability of adapting on-line unknown
vehicle parameters. The comparison of the reported algorithm and other novel schemes
derived from the ideas presented in this paper will be compared with known controllers
using some gain tuning optimization criterion.
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