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A broadly used strategy to go beyond the well-known local-density approximation of density functional theory
relies on the choice of a so-called exchange-correlation (xc) enhancement factor Fxc, defined as the enhancement
of a realistic xc energy density over its local exchange-only counterpart. To date, this density functional, Fxc,
has been constructed by following either semiempirical strategies or nonempirical schemes that impose the
fulfillment of exact constraints. Here, we follow a totally different route, which is based on an attempt to construct
a universal exchange enhancement factor Fx from the exact exchange energy density of a given family of electron
density profiles and which we implement on the basis of jellium-slab exact-exchange self-consistent calculations.
We find that such an enhancement factor can, indeed, be built which obeys, within our sample of electron-density
profiles, most exact constraints and thus represents a benchmark towards the construction of a universal exchange
enhancement factor suitable for all electron densities. We provide, in particular, an analytical parametrization of
our ab initio calculations at the level of the generalized gradient approximation.

DOI: 10.1103/PhysRevB.107.195120

I. INTRODUCTION

Introduced in 1964, density functional theory (DFT) has
become the method of choice for the calculation of the
electronic structure of atoms, molecules, clusters, and solids
[1–3], mainly due to a reasonable balance between accuracy
and computational cost. DFT is also employed for the descrip-
tion of phonon excitations [4] and is now being widely used
in the search for new materials with topological properties, a
field with tremendous current activity [5]. Even the ubiquitous
electron-phonon coupling [6] and the related superconducting
state [7] are within the reach of first-principles calculations
using suitable generalizations of DFT. Such generalizations
include finite-temperature DFT [8] and time-dependent DFT
[9], which allows for ab initio description of excited states.

In the framework of ground-state DFT, there is only
one quantity that needs to be approximated, which is the
exchange-correlation (xc) energy functional Exc[n], known,
for example, to represent the main ingredient of the glue that
binds atoms together to form molecules and solids [10]. In
their pioneering paper in 1965 [2], Kohn and Sham (KS)
introduced the local-density approximation (LDA) by replac-
ing, at each position r, the exact xc energy density by the
corresponding xc energy density of a uniform system with the
local electron density n(r). The next step beyond the LDA
was to consider a second-order density-gradient expansion
[11]. This approach, however, worsens the predictions of the
LDA for real systems due to the fact that it does not inherit
many of the exact constraints satisfied by the LDA. Some
of these constraints were restored by a generalized gradient
approximation (GGA) [12–15] and, later, by a more accurate
meta-GGA (MGGA) [16–19]. While the LDA relies only on

the knowledge of the local electron density n(r), the GGA also
relies on the knowledge of the local electron-density gradient
s(r) = |∇n(r)|/[2(3π2)1/3n(r)4/3], and the MGGA relies on
both s(r) and the parameter α(r) [20]. These approximations
may be compactly expressed as follows:

El
xc[n] =

∫
dr n(r) εunif

x (n(r)) F l
xc(n, s, α, . . . ), (1)

with l = LDA, GGA, MGGA, etc. Here, εunif
x (n) rep-

resents the exchange energy per particle of a three-
dimensional uniform system of electron density n: εunif

x (n) =
−e2(3/4π )(3π2n)1/3. The dimensionless density gradient
s(r) is zero for a uniform system, and as such it represents a
measure of the system inhomogeneity. The MGGA parameter
α(r) is easily found to be equal to 0 for a single-orbital two-
electron density, equal to 1 for a uniform electron density, and
very large in the case of weak bonds, so it can be taken to be a
dimensionless deviation of an arbitrary many-electron system
from single-orbital shape [21].

All GGA and MGGA xc energy functionals to date have
been constructed by following two distinct routes: (i) semiem-
pirical functionals, built to best reproduce existing data of
real systems of interest (see, e.g., Refs. [13,16]), and (ii)
nonempirical functionals, constructed by imposing the ful-
fillment of as many exact constraints as possible (see, e.g.,
Refs. [15,17–19]).

In this work, we follow a totally different approach, which
is based on an attempt to construct a universal GGA or
MGGA exchange enhancement factor Fx from the exact
exchange energy density of a given family of electron-density
profiles and which we implement on the basis of jellium-slab
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FIG. 1. s(z) and α(z) (black and red solid lines) for rs =
6.0 [27] and three slabs of increasing width: d = 0.30λF , 0.98λF ,
and 1.73λF . The dashed line represents the normalized slab density
n(z)/n̄ for d = 1.73λF . z = 0 is always at the slab center.

exact-exchange self-consistent calculations [22–26] with two
parameters: the jellium width d and the electron-density pa-
rameter rs [27]. Fx represents the dominant contribution to
the xc enhancement factor Fxc = Fx + Fc in the high-density
(rs → 0) limit. We leave the ab initio building of Fc for future
work.

Figure 1 shows plots of the density gradient s(z) (black
solid lines) and the MGGA parameter α(z) (red solid lines) for
three slabs of increasing width. Since our slabs are symmetric
with respect to the slab center, the density n(z) always has zero
slope at this point, which implies s(z = 0) = 0. In the case of
the narrowest slab under consideration, which has one slab
discrete level (SDL) occupied (SDL = 1), the ground-state
density has no oscillations, thus leading to a density gradi-
ent s(z) that monotonically increases from its zero value at
the slab center as a consequence of the vanishing density in
the denominator. On the other hand, α(z) has a finite value
at the slab center and also increases monotonically in the
vacuum region. For wider slabs with more than one occu-
pied SDL, the electron density n(z) exhibits the well-known
Friedel oscillations inside the slab region, which lead to nodes
of s(z) at points of zero-slope density and also to an oscillatory
behavior of α(z) around its bulk value ᾱ = 1. In the vacuum
region, both s(z) and α(z) increase exponentially for all jel-
lium slabs. We note that the minimum value of α, which in the
case of our narrowest slabs with SDL = 1 occurs at the center
of the slab, decreases as the slab width decreases but reaches
α = 0 (which is the case for a single-orbital two-electron
density) only when the electron gas collapses from three to
two dimensions [28]. This regime is not addressed here, so
our α parameter is never equal to zero, even when SDL = 1.

II. TOWARDS A UNIVERSAL FIRST-PRINCIPLES
EXCHANGE ENHANCEMENT FACTOR

The exchange energy of an arbitrary many-electron system
can be expressed as follows:

Ex[n] =
∫

dr n(r) εx[n](r), (2)

where εx[n](r) represents an exchange energy per particle,
typically defined (conventional choice) as the interaction of a
given electron at r with its own exchange hole. In the case of
a jellium slab with translational invariance in a plane normal
to the z axis, one writes [25]

εconv
x [n](z) = −2 e2

n(z)

occ∑
i, j

γi j (z)
∫ ∞

−∞
dz′gi j (|z − z′|) γ ji(z

′),

(3)
where γi j (z) = φ∗

i (z)φ j (z), with φi(z) and εi being the
occupied eigenfunctions and eigenvalues of the effective one-
dimensional (1D) exchange-only KS Hamiltonian [23] and
i = 1, 2, 3, . . . being the SDL index. Also,

gi j (u) = ki
F k j

F

4π

∫ ∞

0

dρ

ρ

J1
(
ρki

F

)
J1

(
ρk j

F

)
√

ρ2 + u2
, (4)

with J1(x) being the cylindrical Bessel function of the first
order and ki

F = √
2me(μ − εi )/h̄, with μ being the chemi-

cal potential, which is determined from the global neutrality
condition. We obtain the single-particle orbitals φi(z) and
energies εi by introducing the exchange-only version of the
KS xc potential vxc (Eq. (20) in Ref. [24]) into the effec-
tive 1D exchange-only KS Hamiltonian, which we then solve
self-consistently. The ground-state electron density is simply
n(z) = ∑occ

i (ki
F )2|φi(z)|2/2π , where the factor (ki

F )2/(2π )
comes from the integration over the parallel (in the x-y plane)
degrees of freedom.

A comparison of the exchange-only version of Eq. (1) with
Eq. (2) leads us to define a generalized exchange enhancement
factor as follows:

fx[n](z) = εx[n](z)/εunif
x (n(z)), (5)

with the GGA and MGGA exchange enhancement factors
F GGA

x =: Fx(s) and F MGGA
x =: Fx(s, α) entering the exchange-

only version of Eq. (1) being simply particular approximations
of fx[n](z) [29].

The enhancement factors Fx(s) and Fx(s, α) are expected
to satisfy as many exact constraints as possible, with the aim
of delivering the best possible approximation to Exc[n]. One
of these exact constraints is the 3D Lieb-Oxford (LO) lower
bound on the indirect part of the expectation value of the
electron-electron interaction [30], which yields, in the case of
an arbitrary spin-unpolarized electron density n, the inequality
[31]

Exc[n] � B ELDA
x [n], (6)

with B = 1.804. Recent work has found a tighter lower bond,
B = 1.3423, when the wave function can be written as a
single Slater determinant [32], while in the case of a spin-
unpolarized two-electron ground state B = 1.174 has been
found [21]. Similar lower bounds have been derived for the
xc energy of a many-electron system in reduced dimensions
[33].

The correlation energy is well known to never be positive,
so the right-hand side of Eq. (6) also represents a lower bound
on the exchange energy [31]:

Ex[n] � B ELDA
x [n], (7)
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which is fulfilled, at the level of the GGA or MGGA, if the
respective enhancement factors Fx(s) and Fx(s, α) satisfy

Fx(s), Fx(s, α) � B (8)

for all s and α. Equation (8) is clearly a sufficient local condi-
tion for a GGA or MGGA to satisfy the global LO bound of
Eq. (7). Perdew et al. [21] went further to point out that Eq. (8)
is also a necessary condition if the exchange enhancement
factor is to be universal, i.e., valid for all electron densities.

The conventional exchange energy per particle of Eq. (3)
yields, however, εconv

x [n](z) → − e2/(2z) in the density tail
of a jellium slab [25], so f conv

x [n](z) = εconv
x [n](z)/εunif

x (n(z))
diverges on the vacuum side of a jellium surface as z → ∞
and cannot possibly be expressed as a bounded enhancement
factor Fx(s) or Fx(s, α) that fulfills Eq. (8) for all s and α,
which occurs for other localized systems like helium and neon
atoms [34] and the G2 set of molecules [35]. Nevertheless,
this violation of the local form of the LO bound may be
eliminated by simply introducing the following 1D coordinate
transformation with 0 � λ < 1 (see the Appendix):

ελ
x [n](z) = −2e2

n(z)

occ.∑
i, j

∫ ∞

−∞
dz′ γi j[(1 + λ)z − λz′]

× gi j (|z − z′|)γ ji[λz + (1 − λ)z′], (9)

which also integrates to the total exchange energy of Eq. (2)
[36]. This λ-dependent exchange energy per particle ελ

x (z)
is symmetric around λ = 0.5. When λ = 0, the conventional
εconv

x (z) in Eq. (3) is recovered. The exchange enhancement
factor f λ

x [n](z) = ελ
x [n](z)/εunif

x (n(z)) is found to diverge at
0 � λ < 0.25 far outside the jellium surface into the vac-
uum, it tends at λ = 0.25 to a positive constant as z → ∞,
it remains bounded for all z at 0.25 � λ � 0.5, and it ex-
hibits the fastest decay at λ = 0.5 (see the Appendix). We
find that, expressed as a function of the density gradient s,
it decays as s−1/2 in the large-s limit when the parameter
λ = 1/3 (see the Appendix), thus fulfilling the high-density
constraint describing the collapse of a system from three to
two dimensions [21]. We also find that λ = 1/3 yields an
exchange enhancement factor that is always below the local
LO bound B = 1.3423, as shown in Fig. 2.

III. BUILDING OF THE GGA AND MGGA
ENHANCEMENT FACTORS

First of all, we proceed with the construction of a GGA
enhancement factor of the form Fx(s) from a generalized
f λ
x [n](z) with λ = 1/3. This generalized enhancement factor

is, however, in general, not unique for each value of the
density gradient s and all possible electron-density profiles,
as it is a functional of the electron density n(z). Our aim
here is to build a GGA exchange enhancement factor Fx(s)
that is representative of all the values of f λ=1/3

x [n](z) that are
found for a given s. With this purpose in mind, we proceed
as follows: First, we calculate both s(z) and f λ=1/3

x [n](z) for a
large number of jellium slabs and within each slab for a large
number of z coordinates. We have considered on the order of
1000 z coordinates and about 1500 jellium slabs with (i) rs

in the range of 2–20 and (ii) slab widths going from narrow
slabs with d ∼ a0 to sufficiently wide slabs with d ∼ 100a0,

FIG. 2. GGA exchange enhancement factor Fx (s) (black solid
line), as obtained after the mappings f λ

x [n](z) → f λ
x (s) → Fx (s),

with λ = 1/3. The gray band here comprises all f λ=1/3
x (s) cor-

responding, at each s, to different ground-state electron-density
profiles n(z). It includes slabs with rs = 2, 6, 10, 20 and illustrates
the first mapping f λ

x [n](z) → f λ
x (s). The GGA Fx (s) parametrization

in Eq. (10), represented by a black solid line, corresponds to the
second mapping f λ

x (s) → Fx (s). Similar results are obtained for other
values of the parameter λ in the range 0.25 < λ � 0.5 (not shown
here): while the lower bound of the gray band stays the same for all
values of λ in this range, the upper bound increases as λ increases,
with its minimum at λ ≈ 0.26 and its maximum at λ = 0.5 slightly
above the local LO bound B = 1.3423 (dashed line). The green
solid curve represents the second-order gradient expansion (GE2)
F GE2

x (s → 0) = 1 + μGE2 s2, with μGE2 = 10/81 [37]. The red and
blue solid curves represent well-known GGAs: F PW91

x (s) [38] (red
line) and F PBE

x (s) [15] (blue line). The remaining curves (pink and
yellow) are explained in the text.

with a0 being the Bohr radius. We find that, depending on the
electron-density profile n(z), there are, in general, a number of
values of f λ=1/3

x [n](z) corresponding to the very same density
gradient s, as expected. They all lie, however, within a very
well defined band (gray area in Fig. 2), which always stays
below the LO bound B = 1.3423; we symbolize this first step
as the f λ

x [n](z) → f λ
x (s) mapping. This allows us to define,

as a second step and within this band, a parameterized GGA
enhancement factor Fx(s) (black solid line in Fig. 2), which
we have constructed in such a way that the uniform-density
limit Fx(s → 0) → 1 + μGE2 s2 and the large-s limit Fx(s 

1) → s−1/2 are both guaranteed. We symbolize this second
step as the f λ

x (s) → Fx(s) mapping. Our explicit GGA Fx(s)
parametrization is as follows:

Fx(s) = 1 + 10s2/81

1 + 0.19s2.5 − 0.01 ln (1 + 400s2)
. (10)

In Fig. 2, we plot this parametrization together with
the second-order gradient expansion (GE2) and two well-
known GGAs: Perdew-Wang 91 (PW91) and Perdew-Burke-
Ernzerhof (PBE). These approximations (GE2, PW91, and
PBE) all violate the local LO bound, and none of them be-
haves as s−1/2 at large s. We also include two examples of
the first mapping f λ

x [n](z) → f λ
x (s) by plotting f λ

x (s) for two
particular slabs: (i) a narrow slab with one SDL occupied,
which exhibits a one-to-one correspondence between s and
z (see Fig. 1) and therefore a single-valued function f λ

x (s)
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FIG. 3. Exact Ex/N versus the slab width 2d/λF (black dotted
line) for rs = 6, together with the result we obtain with the GGA
parametrization in Eq. (10) (black solid line) and also the LDA (yel-
low solid line), GE2 (green solid line), and the standard GGAs PW91
(red solid line) and PBE (blue solid line). The horizontal dashed line
denotes the bulk d → ∞ result Ēx/N = −(3/4π )(9π/4)1/3r−1

s .

(pink solid line), and (ii) a wider slab with SDL = 5 ex-
hibiting a multivalued f λ

x (s) function at low values of the
density gradient s (yellow solid line). We have recalculated
the mapping f λ

x [n](z) → f λ
x (s) for these two particular slabs

by using a self-consistent ground-state electron density that
includes LDA correlation [39], and we have found results that
are indistinguishable to the naked eye, as expected.

Figure 2 clearly shows that for a narrow slab (pink solid
line) the uniform-density limit is never reached for small
values of s. As our GGA parametrization (black solid line)
is constructed to fulfill the uniform-density limit, it cannot
possibly reproduce the exchange enhancement factor f λ

x (s) for
narrow slabs. For the calculation of integrated quantities, like
the exchange energy per particle (see Fig. 3), this shortcoming
can be compensated by a particular choice of the second and
third terms in the denominator of Eq. (10), which results in an
increase in our parameterized exchange enhancement factor,
still within the gray area, for s � 0.6.

With the aim of testing the accuracy of our GGA
parametrization, we have inserted Eq. (10) into Eq. (1) in
order to obtain a GGA exchange energy per particle EGGA

x /N ,
as shown in Fig. 3. For comparison, also included in Fig. 3
the exact optimized effective potential (OEP) exchange energy
per particle (black dotted line) and the results obtained by
using the three parametrizations in Fig. 2, GE2, PW91, and
PBE, as well as the LDA. The exchange energy per parti-
cle oscillates, as expected, and approaches the corresponding
bulk value from above, with local minima each time a new
subband for the z motion becomes occupied, which happens
at specific values of the slab width d . This oscillatory behav-
ior reflects the competition between intrasubband exchange
(dominant at high occupancy of the last occupied subband)
and intersubband exchange (dominant at low occupancy of
the last occupied subband). As is usually the case, the LDA
overestimates the exchange energy, which is, to some extent,
overcorrected by the GE2 and the GGAs under study (PW91
and PBE), thus leading to an underestimation of Ex/N . Our

ab initio constructed GGA corrects the LDA substantially and
get, for most slabs, very close to the exact Ex/N ; it is only
for those slab widths for which a new subband starts to be
occupied that our GGA overestimates the exact result. We
conclude that our ab initio approach allows for the construc-
tion of a parameterized GGA, leading, overall, to accurate
total exchange energies for the electron densities under study.

To construct a MGGA enhancement factor Fx(s, α), we
proceed in a similar way, but with a different protocol for
the construction of the second mapping. We first calculate
s(z), α(z), and f λ=1/3

x [n](z) for the same jellium slabs and z
coordinates as in the case of the GGA. We find that, depending
on the electron-density profile n(z), there are, in general, still
various exchange enhancement factors corresponding to the
same (s, α), again as expected, but now within much nar-
rower bands, as shown in the top panels of Figs. 4 and 5,
which always stay below the LO bound B = 1.3423. This
is the f λ

x [n](z) → f λ
x (s, α) mapping. Then we perform, for

each value of the parameters s and α, a simple average over
the results that we obtain for all z coordinates (and jellium
slabs) leading to those particular values of s and α. This
average yields the exchange enhancement factor Fx(s, α) that
we plot with solid lines in the bottom panels of Figs. 4 and
5 for various values of α as a function of s (Fig. 4) and as
a function of α for various values of s (Fig. 5). This is the
f λ
x (s, α) → Fx(s, α) mapping.

We note that due to the intrinsic features of our electron-
density profiles, (i) the emerging α parameter displays a
natural clustering around α ∼ 1 for small s (uniform limit),
(ii) larger values of α are found only when s is large [40],
(iii) intermediate values of s [typically around the jellium-
vacuum interface with (s, α) represented by the crosses in the
bottom panel of Fig. 4] occur only when α � 1, and (iv) only
electron-density profiles corresponding to thin jellium slabs in
the SDL = 1 regime allow for small values of the parameter
α (see also Fig. 1). Furthermore, it is precisely for these
small values of α that one value of the exchange enhancement
factor f λ=1/3

x [n](z) is found for each (s, α), thus providing, for
α < 1, a unique definition of the MGGA enhancement factor
Fx(s, α).

Figure 4 shows very clearly that for the smallest value of
α under study (α = 0.3), Fx(s, α) stays below the very tight
local bound B = 1.174 for all s, which was shown by Perdew
et al. [21] to hold at α = 0. Perdew et al. [21] went further
to conjecture that the very tight bound B = 1.174 should still
hold for all α > 0 since the enhancement factor was expected
to decrease as α increases [21]. This is, however, not what
we find here. In the case of large slabs (semi-infinite jellium),
we do find an exchange enhancement factor Fx(s, α) that
decreases monotonically with α, but this monotonic decrease
does not occur in the case of thin jellium slabs due to finite-
size effects. Indeed, Figs. 4 and 5 show that the enhancement
factor Fx(s, α) for small s first increases for values of α going
from α � 0.3 to α � 0.5, still below the local LO bound B =
1.3423 but above B = 1.174, and then decreases for larger
values of α. Similar results to those exhibited in Figs. 4 and
5 for rs = 6 are obtained for the other rs values under study:
rs = 2, 10, 20.

Figures 4 and 5 also show that at low values of the density
gradient s [typically corresponding to z coordinates inside the

195120-4



TOWARDS A UNIVERSAL EXCHANGE ENHANCEMENT … PHYSICAL REVIEW B 107, 195120 (2023)

FIG. 4. The bottom panels shows the MGGA exchange enhance-
ment factor Fx (s, α) (solid lines), as obtained after the mappings
f λ
x [n](z) → f λ

x (s, α) → Fx (s, α), with λ = 1/3, rs = 6, and various
values of α as a function of s. The top panel, which illustrates the
first mapping f λ

x [n](z) → f λ
x (s, α), comprises all f λ=1/3

x (s, α) corre-
sponding, at each (s, α), to different ground-state electron-density
profiles n(z). Our average MGGA exchange enhancement factor
Fx (s, α), represented by solid lines in the bottom panel, corresponds
to the second mapping f λ

x (s, α) → Fx (s, α). The crosses joined by
the dotted line in the bottom panel represent the (s, α) parameters
corresponding to a z coordinate at the jellium-vacuum interface. The
dashed line represents the local LO bound B = 1.3423.

slab, where the electron density n(z) becomes increasingly
uniform as the slab center is approached], the exchange en-
hancement factor is a very well defined function of s an α,
while at larger values of s (typically corresponding to z coor-
dinates on the vacuum side of the surface where the electron
density decreases considerably) various values of f λ=1/3

x cor-
respond to the same parameters s and α, although still within
a narrow band. This is an expected result, as it is precisely
in this region where the use of the MGGA is less justified,
but the fact that all different values of the exchange factor for
given values of s and α stay within narrow bands indicates
that the MGGA scheme is still expected to represent a good
approximation for the electron-density profiles under study.

The lack of data in Figs. 4 and 5 for α → 0 precludes
us from providing a MGGA parametrization of the exchange
enhancement factor Fx(s, α). The reason for this is that small

FIG. 5. Same as Fig. 4, but now as a function of α for various
values of s. The cross in the bottom panel denotes the uniform-gas
MGGA exchange enhancement factor Fx = 1 that is expected to
occur at s = 0 and α = 1.

values of α can be obtained only when the electron gas
collapses from three to two dimensions, i.e., by keeping the
electron density constant in two dimensions as the jellium slab
gets thinner, which is beyond our scope here. Work in this
direction is now in progress.

IV. CONCLUSIONS

In summary, we have reported an ab initio attempt to
construct universal GGA and MGGA exchange enhancement
factors based on a family of jellium-slab exact-exchange self-
consistent calculations. We found that both Fx(s) and Fx(s, α)
lie within very well defined bands that stay, for all s and α,
below the local form of the Lieb-Oxford bound B = 1.3423
reported very recently for a situation where the wave function
can be written as a single Slater determinant [32]. In the case
of the GGA, our first-principles calculations allow us to devise
a parametrization of Fx(s) that yields very accurate exchange
energies per particle. In the case of the MGGA exchange
enhancement factor, we find that (i) for small values of α

(α = 0.3) Fx(s, α) stays, for all s, below the very tight bound
B = 1.174, which was found in Ref. [21] to hold in the case
of a spin-unpolarized two-electron ground state with α = 0,
(ii) for small s and values of α such that 0.3 � α � 0.5 the
enhancement factor Fx(s, α) increases, due to the presence
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of finite-size effects, above the very-tight bound B = 1.174
but is still below the LO bound B = 1.3423, and (iii) for
larger values of α the exchange enhancement factor decreases
monotonically with α. For α = 1 and low values of the density
gradient s, Fx(s, α) → 1, showing that in this regime the exact
exchange energy per particle approaches the exchange energy
per particle of a uniform electron gas at local density, as
expected.

We believe that our ab initio construction of exchange en-
hancement factors Fx(s) and Fx(s, α) represents a benchmark
towards the construction of a universal exchange enhancement
factor suitable for all electron densities. A similar scheme
could be used, in principle, for the ab initio construction of xc
enhancement factors Fxc(s) and Fxc(s, α). A suitable starting
point could be to follow the procedure described in Ref. [41]
to investigate the electronic subband structure of semiconduc-
tor quantum wells, where carriers are free to move within a
plane while being confined in the remaining direction.
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APPENDIX

In this Appendix, we present the derivation of the one-
dimensional (1D) coordinate transformation of Eq. (9), as
well as proof of the invariance of the Kohn-Sham (KS) exact-
exchange potential vx[n](z) under this transformation and the
derivation of the large-s limit, Fx(s 
 1) ∼ s−1/2.

1. Derivation of Equation (9)

In the case of a jellium slab with translational invariance in
a plane normal to the z axis, the exchange energy functional
Ex[n] can be written as follows [26]:

Ex[n] = πe2A
∫ ∞

−∞
dz n(z)

∫ ∞

0
ρdρ

∫
du

hx(z; ρ, z + u)

(ρ2 + u2)1/2
,

(A1)
with

hx(z; ρ, z + u) = −1

2n(z)

∣∣∣∣∣
occ∑

i

ki
F J1

(
ρki

F

)
πρ

φi(z)φ∗
i (z + u)

∣∣∣∣∣
2

(A2)

being the exchange hole density at coordinate (ρ, z + u)
(observational point) due to the presence of an electron at
coordinate (0, z).

We proceed now by performing the appropriate 1D trans-
formation (z, z + u) → (z1, z2), where z = az1 + bz2 and z +
u = cz1 + dz2, with a, b, c, and d being constants to be fixed.
As in Ref. [21], but now transforming only in one dimension,
we impose that u = z2 − z1 and J (a, b, c, d ) = ad − bc =
1, with J being the Jacobian of the coordinate transforma-

tion. We obtain the solution a = 2 − d , b = d − 1, and c =
1 − d . Also, z = (2 − d )z1 + (d − 1)z2 = z1 + u(d − 1), and
z + u = (1 − d )z1 + z2d = z1 + ud . Under this 1D transfor-
mation, Eq. (A1) yields

Ex[n] = −e2A

2π

∫
dz1

∫
du

∫ ∞

0

dρ

ρ(ρ2 + u2)1/2

×
∣∣∣∣∣

occ∑
i

ki
F J1

(
ρki

F

)
φi[z1 + u(d − 1)]φ∗

i (z1 + ud )

∣∣∣∣∣
2

=: A
∫ ∞

−∞
dz1 n(z) ed

x [n](z1), (A3)

with εd
x [n](z) = ed

x [n](z)/n(z) being the “d-transformed” ex-
change energy per particle of Eq. (9). Under a change in
integration variables, one finds that Ex[n] does not depend on
the parameter d , as expected. In the main text, we have taken
d = λ.

2. Invariance of vx[n](z)

Here, we show that the KS exact-exchange potential
vx[n](z) remains invariant under the 1D coordinate transfor-
mation described in the previous section, as expected. For the
sake of simplicity, we assume that only one slab discrete level
is occupied, i.e., SDL = 1. In this case, Eq. (A3) can be written
as follows:

Ex[n] = −8π2e2A

(k1
F )2

∫
dz

∫
dz′ n(z + λz′) g11(|z′|)

× n[z + (λ − 1)z′]. (A4)

As the exchange energy of Eq. (A4) is an explicit func-
tional of the electron density n(z), the derivation of the
corresponding Kohn-Sham exchange potential is straightfor-
ward:

vλ
x [n](z) = 1

A

δEx

δn(z)
= −8π2e2(

k1
F

)2

∫
dz1

∫
dz2 g11(|z2|)

×{n(z1 + λz2) δ[z − z1 − (λ − 1)z2]

+ n[z1 + (λ − 1)z2] δ(z − z − λz2)}

= −8π2e2(
k1

F

)2

∫
dz2 g11(|z2|)[n(z + z2) + n(z − z2)]

= −16π2e2(
k1

F

)2

∫
dz2 g11(|z2|)n(z + z2)

= −16π2e2(
k1

F

)2

∫
dz′g11(|z − z′|) n(z′). (A5)

In passing from Eq. (A4) to the first line in Eq. (A5), we have
used the functional derivative rule δ f (x)/δ f (x′) = δ(x − x′).
Clearly, vλ

x [n](z) does not depend on the parameter λ. In
addition, taking into account that [26]

g11(|z|) =
(
k1

F

)2

8π |z|

[
1 − I1

(
2k1

F |z|)
k1

F |z| + L1
(
2k1

F |z|)
k1

F |z|

]
, (A6)

the well-known expression for the SDL = 1 KS exchange
potential is recovered [24]. I1(x) and L1(x) entering Eq. (A6)
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represent the modified Bessel and Struve functions, respec-
tively.

3. Asymptotic analysis of the exchange enhancement factor

We start by introducing a change in the integration variable
z′ in Eq. (9) by setting t = λz + (λ − 1)z′. Equation (9) may
then be rewritten as follows:

ελ
x [n](z) = −2e2

n(z)

occ.∑
i, j

∫ ∞

−∞

dt

1 − λ
γi j

×
(

z − λt

1 − λ

)
gi j

(∣∣∣∣ z − t

1 − λ

∣∣∣∣
)

γ ji(t ). (A7)

In the asymptotic limit z → ∞ (far deep into the vacuum re-
gion), the KS orbitals whose arguments are (z − λt )/(1 − λ)
collapse to the case i = j = M, with M being the last occu-
pied SDL, which is the one with the slowest decay length.
This leads to the following simplification of Eq. (A7):

ελ
x [n](z → ∞) → −2e2

n(z → ∞)

∫ ∞

−∞

dt

1 − λ
γMM

×
(

z − λt

1 − λ

)
gMM

(∣∣∣∣ z − t

1 − λ

∣∣∣∣
)

γMM (t ).

(A8)

Assuming now an exponential decay for the last occupied
KS orbital, n(z → ∞) ∼ |ξM (z → ∞)|2 = γMM (z → ∞) ∼

e−2zβM , Eq. (A8) may be estimated, to exponential accuracy,
as follows:

ελ
x [n](z → ∞) ∼ e2zβM e−2zβM/(1−λ) = e−2zβMλ/(1−λ), (A9)

with the λ-dependent exponential factor being the estimated
contribution of the factor γMM[(z − λt )/(1 − λ)], after taking
it outside the integral by neglecting the contribution propor-
tional to λt inside its argument.

Returning now to Eq. (5), we obtain the following estimate:

f λ
x [n](z → ∞) = ελ

x [n](z → ∞)

εunif
x (n(z → ∞))

∼ e−2zβMλ/(1−λ)

e−2zβM/3
= e−2zβM {(4λ−1)/[3(1−λ)]}.

(A10)

For f λ
x [n](z → ∞) to remain finite, the quantity 4λ − 1

should be greater than zero, which implies λ > 0.25. In par-
ticular, for λ = 1/3 one obtains:

f λ=1/3
x [n](z → ∞) ∼ e−zβM/3. (A11)

From the asymptotic analysis of s(z), at large z we find z →
(3/2βM ) ln[s(z)]. Introducing this into Eq. (A11), we find the
large-s limit f λ=1/3

x [n](z → ∞) ∼ Fx(s → ∞) ∼ s−1/2.
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