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Construction of a semilocal exchange density functional from a three-dimensional
electron gas collapsing to two dimensions
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In a recent paper [Horowitz et al., Phys. Rev. B 107, 195120 (2023)], an alternative route has been proposed
to construct the so-called exchange-correlation (xc) enhancement factor Fxc of density-functional theory, defined
as the enhancement of a realistic xc energy density over its local exchange-only counterpart. This new route,
based on the ab initio calculation of the exact exchange energy density of a family of electron-density profiles,
was implemented on the basis of jellium-slab exact-exchange self-consistent calculations. Here, we follow this
route to construct a meta-generalized-gradient approximation (MGGA) for exchange from a nonuniform one-
dimensional coordinate scaling, which we implement on the basis of a number of calculations performed for
model densities of electrons confined by infinite-barrier walls, as the electron system is shrunk from three to two
dimensions. Our MGGA yields exchange energies that approach in the two-dimensional (2D) limit the exact
exchange energy of a 2D electron gas, by appealing to a scaling of the MGGA exchange enhancement factor.
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I. INTRODUCTION

Density-functional theory (DFT) is well known to be
widely used nowadays for the description of many-electron
systems by introducing, as the basic variable, the ground-state
electron density n(r) [1,2]. This formalism, however, relies
on the knowledge of a generally unknown quantity, which
is the so-called exchange-correlation (xc) energy functional
Exc[n] that needs to be approximated [3]. A hierarchy of local,
semilocal, and fully nonlocal approximations can be found in
Ref. [4]. Here, we focus on the development of a semilocal
approximation: the so-called meta-generalized-gradient ap-
proximation (MGGA) [5–7], which relies on the knowledge
of the dimensionless reduced density gradient,

s(r) = |∇n(r)|
2(3π2)1/3n(r)4/3

(1)

and the parameter

α(r) = t (r) − tW(r)

tunif(r)
, (2)
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where t is the kinetic-energy density [8,9], tW = |∇n|2/8n
represents its von Weizsäcker counterpart [8,9], and tunif =
(3/10)(3π2)2/3n5/3 is the kinetic-energy density of a three-
dimensional (3D) spin-compensated uniform electron gas.
Since tW is known to be a lower bound of t [10], α � 0.
The reduced density gradient s(r) represents a measure of the
variation of the density at the scale of the local Fermi wave
length λF , and the parameter α(r) is sometimes referred to as a
dimensionless deviation of an arbitrary many-electron system
from single-orbital shape.

Available MGGAs are either (i) semiempirical function-
als, built to best reproduce existing data of real systems of
interest (see, e.g., Ref. [5]); or (ii) nonempirical functionals,
constructed to satisfy exact constraints (see, e.g., Refs. [6,7]).
Here, we follow an alternative route [11], based on the ab
initio calculation of the exact exchange energy of a family
of electron-density profiles, which we now take to be model
densities of electrons confined in one direction by infinite-
barrier walls, as the electron system is shrunk from three to
two dimensions by means of a nonuniform one-dimensional
coordinate scaling. This allows us to propose a new MGGA
that describes very well the dimensional crossover of the exact
exchange functional and should be particularly suited for the
description of two-dimensional (2D) systems [12,13], lay-
ered van der Waals materials [14], and surfaces of transition
metals [15].
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The present work is organized as follows: The nonuniform
one-dimensional coordinate scaling and the infinite barrier
model are introduced in Secs. II and III. We then describe,
in Sec. IV, our so-called generalized and MGGA exchange
enhancement factors, which lead, in Sec. V, to a parametrized
MGGA that we test for the exchange energy of a many-
electron system as it shrinks from three to two dimensions. We
find that our MGGA yields exchange energies that approach,
in the 2D limit, the exact exchange energy of a 2D electron
gas.

II. NONUNIFORM ONE-DIMENSIONAL
COORDINATE SCALING

Coordinate scaling represents a valuable tool in the de-
velopment of xc-energy functionals, as it leads to exact
constraints that exact functionals should meet. Here, we take
a many-electron slab with translational invariance in a plane
normal to the z axis, and we consider a nonuniform one-
dimensional coordinate scaling of the 3D density of the form

n(z) → nλ(z) := λ n(λ z), (3)

with 0 < λ < ∞. Under this scaling, the bidimensional den-
sity N/A := ∫

dz n(z) remains the same and the true 2D limit
is reached as λ → ∞.

For a many-electron system that is finite along the z axis
and in a quasi-2D regime with only one occupied slab discrete
energy level (SDL = 1), the exact exchange energy functional
per electron is found to be given by the following expression
[16–18]:

Ex[n]

N
= − 4π2e2

(
k2D

F

)4

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ F (|z − z′|) n(z) n(z′),

(4)

where N represents the total number of electrons,
k2D

F = 2π/λ2D
F (λ2D

F being the 2D Fermi wave length),
and

F (y) = 1

2|y|
[

1 − I1
(
2k2D

F |y|)
k2D

F |y| + L1
(
2k2D

F |y|)
k2D

F |y|
]
, (5)

I1 and L1 being, respectively, modified Bessel and Struve
functions of the first kind. The 2D Fermi wave length is λ2D

F =√
2πr2D

s a0, with r2D
s being the dimensionless 2D Seitz radius,

i.e., the radius of the section (in the x-y plane) that encloses on
average one electron, i.e., π (a0r2D

s )2 = A/N ; here, a0 denotes
the atomic Bohr radius and A represents a normalization area
in the x-y plane. Using Eq. (3) and expanding in the limit
λ � 1 (2D limit), we find

Ex[nλ]

N
= −4e2k2D

F

3π
+ π2e2

(
k2D

F

)2
λ

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ |z − z′|

× n(z) n(z′)

− 32πe2

45k2D
F λ2

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ |z − z′|2 n(z) n(z′)

+ O[λ−3]. (6)

FIG. 1. Ex[nλ]/N , as a function of L/Lmax = 1/λ, for the IBM
electron density of Eq. (7) and for two values of r2D

s : 2 and 4. The
solid lines represent the exact Ex[nλ]/N , as obtained from Eq. (4).
Dashed (red) and dotted (green) lines represent Ex[nλ]/N , as obtained
from Eq. (6) up to first order in 1/λ and up to second order in 1/λ,
respectively.

In obtaining the first term of Eq. (6), we have taken into
account that

∫ ∞
−∞ dz n(z) = (k2D

F )2/(2π ). This term, which
represents the strict 2D limit, coincides, as expected, with the
well-known expression for the exchange energy per particle of
a uniform 2D electron gas [19]. The second term, which scales
as λ−1, cancels out exactly half of the Hartree contribution to
the slab total energy for a spin-compensated system as we are
considering here. It is easy to see that for a fully spin-polarized
many-electron slab, the cancellation is complete.

Equations (4)–(6) describe the exchange energy per par-
ticle of an arbitrary many-electron system in the quasi-2D
regime. For the practical evaluation of this quantity with the
electron density nλ(z) dictated by Eq. (3), we model the slab
as a quantum well of thickness L in the z direction. In the
infinite barrier model (IBM) [20], which is well suited for
the description of the nonuniform one-dimensional coordinate
scaling of Eq. (3), the Kohn-Sham (KS) effective one-electron
potential is replaced by zero inside infinitely high potential
walls at z = 0 and z = L. The quasi-2D regime, where only
the lowest energy level is occupied in the z direction, occurs
when L < Lmax, with Lmax = √

3 λ2D
F /2 [21]. In this regime,

the IBM electron density at 0 � z � L is simply

n(z) = 4π

L
(
λ2D

F

)2 sin2
(π z

L

)
, (7)

and vanishes for z � 0 and z � L. By replacing in Eq. (7) the
quantum-well thickness L by L/λ, the scaled electron density
nλ(z) of Eq. (3) is obtained.

We display in Fig. 1 the exchange energy per particle
Ex[nλ]/N of Eq. (4), as a function of L/Lmax = 1/λ, together
with the expansion of Eq. (6) up to first order (dashed lines)
and second order (dotted lines). The bidimensional density
N/A is kept constant in this model, so the curves in this
figure are all fully determined by the particular value of r2D

s
alone. The exact values of the exchange energy per particle
as λ → ∞ are Ex[nλ]/N = −0.150 Ha and −0.300 Ha, for
r2D

s = 4 and r2D
s = 2, respectively.
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We note that under the scaling of Eq. (3), the MGGA
parameters s(z) and α(z) scale with λ as follows:

s[n](z) = |dn(z)/dz|
2(3π2)1/3n(z)4/3

→ s[nλ](z) = λ2/3 s[n](λz) (8)

and

α[n](z) = 5

3(3π2)2/3
(
r2D

s

)2

1

n(z)2/3
→

α[nλ](z) = λ−2/3 α[n](λz). (9)

As the electron system collapses from three to two dimensions
(λ → ∞), s[nλ](z) diverges, while α[nλ](z) becomes arbi-
trarily small [22]; the product of these two quantities stays,
however, finite. It should be noted that the simple expression
for α[n](z) in Eq. (9) is only valid for SDL = 1.

III. INFINITE BARRIER MODEL BEYOND THE QUASI-2D
REGIME

Still in the IBM but beyond the quasi-2D regime, the
electron density at 0 � z � L normalized by the density of
a neutralizing positive background n+ is found to be given by
the following expression [20]:

n(z)

n+
= 3

2x

lM∑
l=1

(
1 − l2

4x2

)
sin2

(
π lz

L

)
, (10)

where x = L/λF , lM denotes the highest occupied en-
ergy level, and λF is the 3D Fermi wave length λF =
(32π2/9)1/3rs a0, and rs being the dimensionless 3D Seitz
radius. Besides, n+ represents the density of a neutralizing
jellium background at −a/2 < z < a/2, the quantity a being
dictated by a global neutrality condition [20]. For lM = 1,
Eq. (7) is recovered. The densities n(z) and n+ both depend
on rs. However, the normalized electron density n(z)/n+ of
Eq. (10), as well as the parameters s(z) and α(z), are easily
found to be “universal,” i.e., independent of rs and r2D

s , as
long as the coordinate z and the quantum-well thickness L are
both expressed in units of λF and λ2D

F , respectively (see the
Appendix).

The normalized electron density of Eq. (10) is displayed
in Fig. 2, together with the corresponding parameters s(z)
and α(z) for various values of the quantum-well thickness: (i)
L = 0.8 λF , with one single energy level occupied (lM = 1);
(ii) L = 1.6 λF (lM = 3); and (iii) L = 2.6 λF (lM = 5). All
curves are universal, i.e., the same for all values of rs. We note
that the normalized density (i) vanishes at the infinite barrier
at z = L and (ii) approaches—well inside the larger slabs—its
bulk value n(z)/n+ = 1. As for the parameters s[n](z) and
α[n](z), they both diverge at the infinite barrier. Well inside
the slab, the parameter s[n](z) vanishes every time the density
is minimum or maximum, while the parameter α[n](z) oscil-
lates and approaches its unit bulk value as L increases.

It should be noted that in our quantum-well “training set”
of densities to be used in the next section, densities with small
values of α(z) are not common, unless one drives the quantum
well toward the extreme quantum limit, in which case and
according to Eq. (9) arbitrarily small values of α(z) become
accessible. This is visible in Fig. 2(c), where the smallest α(z)
occurs, near the quantum-well center, for the narrowest slab.

FIG. 2. Normalized electron density n(z)/n+, s(z), α(z), and the
generalized enhancement factor f γ

x [n](z) of Eq. (11), versus z/λF ,
for three different quantum-well widths: L/λF = 0.8, with lM = 1
(black curves); L/λF = 1.6, with lM = 3 (red curves); and L/λF =
2.6, with lM = 5 (green curves). Thick and thin curves in panel
(d) correspond to γ = 1/3 and γ = 0, respectively. For comparison,
in the case of the largest slab (L/λF = 2.6) the corresponding self-
consistent (with no external potential) normalized electron density
n(z)/n+ is represented (for rs = 2) by a blue curve in panel (a). The
neutralizing jellium background at −a/2 < z < a/2 is represented
by dotted horizontal and vertical lines. In all cases, z = 0 is at the
middle of the quantum well, resulting in a right-wall location at
z = L/2. All IBM curves are universal, i.e., the same for all values
of rs.

IV. GENERALIZED AND MGGA EXCHANGE
ENHANCEMENT FACTORS

Now we define a generalized exchange enhancement factor
as follows [11]:

f γ
x [n](z) := ε

γ
x [n](z)

εunif
x (n(z))

, (11)

where εunif
x (n) = −(3e2/4π )(3π2n)1/3 is the exchange energy

per particle of a spin-compensated 3D uniform system of
electron density n, and ελ

x [n](z) represents a γ -transformed
exact exchange energy per particle:

εγ
x [n](z) = −2e2

n(z)

occ.∑
l,l ′

∫ ∞

−∞
dz′ γll ′ [(1 + γ )z − γ z′]

× gll ′ (|z − z′|)γl ′l [γ z + (1 − γ )z′], (12)

which integrates to the total exchange energy:

Ex[n] = A
∫ ∞

−∞
dz n(z) εγ

x [n](z)

= A
∫ ∞

−∞
dz n(z) εunif

x (n(z)) f γ
x [n](z) (13)
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for all values of γ (0 � γ � 1). Here, γll ′ (z) = φ∗
l (z)φl ′ (z),

with φl (z) being occupied single-particle orbitals, and [23]

gll ′ (u) = kl
F kl ′

F

4π

∫ ∞

0

dρ

ρ

J1
(
ρkl

F

)
J1

(
ρkl ′

F

)
√

ρ2 + u2
, (14)

with J1(x) being the cylindrical Bessel function of the first
order and kl

F = √
2m(μ − εl )/h̄. Here, εl are single-particle

energies and μ represents the chemical potential, which is
determined from the global neutrality condition. In the IBM,
the normalized single-particle orbitals and energies are

φl (z) =
√

2

L
sin

(
π lz

L

)
θ (z)θ (L − z) (15)

and

εl = h̄2

2m

(
lπ

L

)2

, (16)

with l = 1, 2, ..., and the electron density is given by Eq. (10).
Figure 2(d) displays the generalized exchange enhancement
factor f γ

x [n](z) for γ = 0 and for γ = 1/3, and for quantum
wells of increasing size. For γ = 0, the so-called “conven-
tional” choice, the generalized exchange enhancement factor
diverges when z approaches the infinite barrier and cannot,
therefore, be expressed as a bounded enhancement factor
that fulfills the local Lieb-Oxford (LO) lower bound on the
exchange energy [24]. For 0 < γ < 1, however, f γ

x [n](z) is
always bounded [25]. Here, we choose γ = 1/3, as in our
previous work [11].

In the MGGA [26], one writes

EMGGA
x [n] = A

∫ ∞

−∞
dz n(z) εunif

x (n(z)) Fx(s(z), α(z)), (17)

where Fx(s, α) is the so-called MGGA exchange enhancement
factor, which we build by simply comparing Eqs. (13) and
(17). With this purpose in mind, we first calculate s(z), α(z),
and f γ

x [n](z) in the IBM, for many different values of the
normalized quantum-well thickness L/λF and within each
L/λF for a large number of normalized z/λF coordinates.
We have considered on the order of 1000 z coordinates and
about 10 000 different values of L/λF , from sufficiently large
quantum wells to very narrow wells in the 2D limit (L → 0).
It is not difficult to see from Eq. (11) that in the IBM the gen-
eralized exchange enhancement factor f γ

x [n](z) is universal,
i.e., independent of the 3D Seitz radii rs and r2D

s , as in the case
of the normalized electron density n(z)/n+ and the parameters
s(z) and α(z). An explicit proof of this universality is given in
the Appendix. Proceeding in this way, we obtain numerically
the mapping f γ

x [n](z) → f γ
x [n](s, α).

Depending on the electron-density profile n(z), various
values of f γ

x [n](s, α) correspond to the very same values of
s and α, as expected. This fact is visible in Fig. 3, where
we have plotted, as a function of the reduced density gradi-
ent s, the exchange enhancement factors f γ

x [n](s, α) that we
have obtained for fixed values of the parameter α (colored
dots). For the electron densities under study, the exchange
enhancement factor f γ

x [n](s, α) is mostly uniquely defined as
a function of s and α, but a few narrow bands are visible for
the largest values of α under consideration, generally coming
from large values of the normalized quantum-well thickness

FIG. 3. Colored dots represent the exchange enhancement fac-
tor f γ=1/3

x (s, α), as obtained from Eq. (11) for those z coordinates
corresponding to given values of s and α and a large variety of
quantum-well thicknesses L, both below and above Lmax. The gray
area covers the exchange enhancement factors f γ=1/3

x (s, α) obtained
for all possible values of the parameter α. Dashed dotted lines rep-
resent the exchange enhancement factor we obtain, as a function of
s, each for a specific quantum-well thickness L/Lmax = 1/λ, going
from L = Lmax (λ = 1) to thinner quantum wells with λ = 7 and
λ = 47. The dashed horizontal line represents the 3D local Lieb-
Oxford (LO) bound B = 1.3423.

L/λF allowing for Friedel oscillations. As the quantum well is
made to collapse from three to two dimensions, various values
of the parameter α occur, with α getting smaller as L → 0.
The gray area covers all possible values of f γ

x [n](s, α) that we
have found numerically through the generation of thousands
of quantum-well densities. We note that the results exhibited
in Fig. 3 do not depend on the electron-density parameters
rs and r2D

s , since the IBM exchange enhancement factor is
“universal,” as discussed above. This is not so for the self-
consistent electron-density profiles discussed in Ref. [11].

The dashed horizontal line in Fig. 3 represents the 3D
local Lieb-Oxford (LO) bound B = 1.3423 (see, e.g., Refs.
[27,28]), which stays above our exchange enhancement factor
f γ
x (s, α) for all electron densities under study, as long as

0 < γ < 1. This LO bound has been discussed and extended
to lower dimensional cases in Ref. [29].

V. PARAMETRIZED MGGA
EXCHANGE ENHANCEMENT FACTOR

In Fig. 4, we have plotted, as a function of the parameter α

and on a log-log scale, all generalized exchange enhancement
factors f γ=1/3

x [n](s, α) that we have obtained for various val-
ues of the reduced density gradient from s ∼ 0.01 to s ∼ 40.
This figure clearly shows that f γ=1/3

x [n](s, α) increases, for
all density gradients, as α1/2 for small values of α, while it
decreases, also for all density gradients, as α−1/2 for larger
values of α. On the other hand, the results of Fig. 3 are plotted
again in Fig. 5, as a function of the reduced density gradient s
and for various values of the parameter α, but now on a log-log
scale, showing that f γ=1/3

x [n](s, α) remains essentially con-
stant for all values of α when the reduced density gradient s
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FIG. 4. As in Fig. 3, colored dots represent the exchange en-
hancement factor f γ=1/3

x (s, α), as obtained from Eq. (11) for those
z coordinates corresponding to given values of α and s and a large
variety of quantum-well thicknesses L, but now as a function of
α for various values of s and in a log-log scale. The gray area
covers the exchange enhancement factors f γ=1/3

x (s, α) obtained for
all possible values of the reduced density gradient s. Black solid
lines represent our proposed MGGA exchange enhancement factor
Fx (s, α) of Eq. (19). For comparison, the dash dotted lines represent
α1/2 and α−1/2 asymptotics for values of the parameter α that are
small and large, respectively. The dashed horizontal line represents
the 3D local Lieb-Oxford (LO) bound B = 1.3423.

is small, while it decreases, again for all values of α, as s−1

when the reduced density gradient s is large.
The behavior f γ=1/3

x [n](s, α → 0) ∼ α1/2 that is clearly
visible in Fig. 4 can be derived by first introducing the
nonuniform one-dimensional coordinate scaling of Eq. (3)
into Eq. (17):

EMGGA
x [nλ] = λ1/3A∫ ∞

−∞
dz n(z) εunif

x (n(z)) Fx (λ2/3s(z), α(z)/λ2/3),

(18)

FIG. 5. As in Fig. 4, but now as a function of s for various values
of α. Here, the gray area covers the exchange enhancement factors
f γ=1/3
x (s, α) obtained for all possible values of the parameter α, black

solid lines represent our proposed MGGA exchange enhancement
factor Fx (s, α) of Eq. (19), and the dash dotted line represents the
asymptotics dictated by s−1.

and then noticing that for EMGGA
x [nλ] to stay finite as λ → ∞

(collapse to two dimensions) the MGGA exchange enhance-
ment factor Fx(s, α) needs to behave as Fx(s, α → 0) ∼ λ−1/3,
since for λ � 1, λ2/3s � 1 and α/λ2/3 
 1. One can then
easily conclude from Eq. (9) that Fx(s, α → 0) ∼ α1/2.

At the level of the GGA, it can be easily seen from Eq. (8)
that for the exchange energy to stay finite as λ → ∞ the ex-
change enhancement factor Fx(s) needs to behave as Fx(s →
∞) ∼ s−1/2, as discussed before [7,15,24,30]. Indeed, this
was the reason behind the choice γ = 1/3 in our previous
work, as discussed in the Appendix of Ref. [11]. At the level of
the MGGA, however, the finite 2D limit is obtained by simply
taking Fx(s, α → 0) ∼ α1/2 [31], so the large-s limit can be
reserved for the satisfaction of other exact constraints; work
along this direction is now in progress. The limiting behavior
Fx(s, α → 0) ∼ α1/2, which is obtained from the nonuniform
one-dimensional coordinate scaling of Eq. (3), is not restricted
to the IBM electron densities considered above, so it would
also apply, in particular, to the self-consistent surface electron
densities used, e.g., in Refs. [16–18].

By gathering all the information provided by Figs. 4 and 5,
we propose here the following parametrized MGGA exchange
enhancement factor:

Fx (s, α)

= 2.7 α1/2

1 + 2.7α(0.8788 + s) − A(s) αB(s) + 0.924 ln(1 + α3)e−10s
,

(19)

where A(s) = 2.5/(5 + s)0.4 and B(s) = 0.96 × e−0.5s0.3
. This

parametrization allows us to identify the following fea-
tures: (i) Fx(s, α → 0) ∼ 2.7 α1/2; (ii) Fx(s, α → ∞) ∼
α−1/2/(0.8788 + s) ; (iii) Fx(s → 0, α → 1) → 1, fulfilling
the bulk limit constraint; and (iv) Fx(s → ∞, α) ∼ s−1. Fig-
ures 4 and 5 show an excellent agreement between the
exchange enhancement factor f γ=1/3

x [n](s, α) (colored dots)
and our parametrized MGGA of Eq. (19) (solid lines) for all
IBM electron densities under study.

With the aim of testing the accuracy of our meta-GGA
parametrization, we have evaluated the MGGA exchange en-
ergy of Eq. (17) by using Eq. (19) and by also using, for
comparison, other existing GGA and MGGA parametriza-
tions: GGA-PBE [32], GGA-Q2D [15], GGA-HPP [11],
MGGA-MS [33,34], and MGGA-SCAN [7]. Figure 6 clearly
shows that our MGGA [Eq. (19)] yields exchange energies
that are in excellent agreement with the exact result for
all quantum-well widths, from the strict 2D limit (L → 0)
to the quasi-2D regime (0 < L < Lmax), and also for L �
Lmax (see the inset). In particular, our MGGA approaches
very accurately, in the 2D limit, the exact exchange energy
of a 2D electron gas (E2D

x /N = −8/(3
√

2πr2D
s )(e2/a0) =

− 0.150 Ha for r2D
s = 4), within an error bar of 1%. Most

existing MGGAs diverge in the 2D limit, with the excep-
tion of the SCAN MGGA [7], which was constructed to
fulfill the limiting behavior Fx(s → ∞, α) ∼ s−1/2. This con-
straint guarantees that the exchange energy be finite in the
2D limit, but it leads to a 2D exchange energy per particle
that is too negative by an order of magnitude for r2D

s = 4,
while our constraint Fx(s, α → 0) ∼ α1/2 describes the 3D to
2D collapse very accurately. GGAs with the correct limiting
behavior Fx(s → ∞) ∼ s−1/2, like GGA-Q2D [15] and GGA-
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FIG. 6. Ex[nλ]/N , as function of L/Lmax = 1/λ for the IBM
electron density of Eq. (10) with r2D

s = 4. The black dotted line
represents the exact Ex[nλ]/N of Eq. (13). The red solid line repre-
sents the MGGA exchange energy per particle that we have obtained
from Eq. (17) by using the exchange enhancement factor of Eq. (19)
(this work). The other solid lines represent, for comparison, GGA
and MGGA exchange energies per particle obtained by using the
the following parametrizations: GGA-PBE [32] (purple), GGA-Q2D
[15] (cyan), GGA-HPP [11] (green), MGGA-MS [33,34] (blue), and
MGGA-SCAN [7] (orange). The inset at the top shows a zoom
of the region near the 2D limit. The inset at the bottom shows a
continuation of the dotted line (exact) and solid red line (this work)
for larger values of the quantum-well width L. A close inspection
of the main figure and the bottom inset shows that the exchange
energy exhibits little kinks, with the location of the kinks denoted
by arrows. These kinks are the result of a new subband (for the z
motion) becoming occupied every time the quantum-well width L
increases by a multiple of λF /2.

HPP [11], yield rather accurate values for the 2D exchange
energy, but they are still too negative in the quasi-2D regime,
as the electron gas collapses from three to two dimensions.

VI. CONCLUSIONS

In summary, we have constructed, from first principles,
a MGGA for exchange, by using a non-uniform one-
dimensional coordinate scaling that we have implemented
on the basis of IBM electron densities as the quantum well
shrinks from three to two dimensions. We have found that, at
least for our trial set of IBM electron densities, the MGGA
exchange enhancement factor Fx(s, α) behaves as (i) ∼α1/2

for small values of α, (ii) ∼ α−1/2 for large values of α, and
(iii) ∼ s−1 for large values of the reduced density gradient s.
We have proposed a simple parametrized form of the MGGA
enhancement factor Fx(s, α) [Eq. (19)], which has been found
to yield exchange energies that are very accurate in the whole
range of quantum-well widths and approach in the 2D limit
the true finite exchange energy of a 2D electron gas.

A crucial aspect of our parametrization, suggested by both
our numerical calculations and analytical scaling arguments,
is the fulfillement of the limit Fx(s, α → 0) ∼ α1/2. This
scaling provides a natural and accurate collapse of the ex-
change energy per particle toward its finite strict 2D limit,
as compared to the scaling Fx(s � 1, α) ∼ s−1/2 employed in

existing MGGA parametrizations for the satisfaction of the
same constraint, which leads to a 2D exchange energy per
particle that is finite but too negative. We suggest that a α1/2

limiting behavior should be generally enforced at small α,
while keeping the large-s limit for the satisfaction of other ex-
act constraints, as for example the correct asymptotic behavior
of the exchange potential.

As our MGGA describes particularly well the dimensional
crossover of the exact exchange functional, it should be well
suited for the description of 2D systems, layered van der
Waals materials, and transition-metal surfaces.
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APPENDIX

In this Appendix, we demonstrate that, in the IBM, the gen-
eralized exchange enhancement factor of Eq. (11) is universal,
i.e., independent of rs (r2D

s ), as long as the coordinate z and
the quantum-well thickness L are both expressed in units of
λF (λ2D

F ).
We start by deriving the scaling of the IBM eigenfunctions

of Eq. (15) with respect to λF , as follows:

φl (z) =
√

2

L
sin

(
π lz

L

)
= 1√

λF

√
2λF

L
sin

(
π lz/λF

L/λF

)

=:
1√
λF

φ̄l (z), (A1)

with φ̄l (z) being the same for all background densities n+,
when λF is used as unit of length. Passing now to Eq. (12), we
have

γi j (z) = φ∗
i (z)φ j (z) = 1

λF
φ̄∗

i (z)φ̄ j (z) =:
1

λF
γ̄i j (z), (A2)

and regarding the Kohn-Mattson function gi j (u) [23],

gi j (u) = ki
F k j

F

4π

∫ ∞

0

dρ

ρ

J1
(
ρki

F

)
J1

(
ρk j

F

)
√

ρ2 + u2
=:

1

λ3
F

ḡi j (u),

(A3)
with ḡi j (u) being the same as gi j (u), but with all length scales
measured in units of λF . Replacing everything into Eq. (11),
we obtain

f γ
x [n](z) = 1

2πg(z/λF )4/3

occ.∑
i, j

∫ ∞

−∞
d

(
z′

λF

)

× γ̄i j[(1 + γ )z − γ z′]
× ḡi j (|z − z′|)γ̄ ji[γ z + (1 − γ )z′], (A4)

which is the analytical proof of the universality of the gener-
alized exchange enhancement factor f γ

x [n](z).
We note that this universality, which occurs for IBM elec-

tron densities and not, in general, for other electron-density
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profiles, refers only to rs and not to the quantum-well thick-
ness L, as can be seen in the right lower panel of Fig. 2. On
the other hand, we note that this universality also applies to
the bidimensional density N/A defined just after Eq. (3) and
the 2D electron-density parameter r2D

s introduced just after
Eq. (5), which are both kept constant in Figs. 1 and 6 as the
IBM quantum well collapses from three to two dimensions.
This is easily proven by noting that

N

A
= an+ =

(
k2D

F

)2

2π
= 2π(

λ2D
F

)2 , (A5)

with n+ = 8π/3λ3
F , so that

λF =
(

a

3π2λ2D
F

)1/3

λ2D
F . (A6)

Here, a represents the width of the neutralizing jellium back-
ground.

Using Eq. (A6), it is clear that the universality displayed in
Eq. (A4) with regard to rs yields the universality of f γ

x [n](z)
with regard to r2D

s as well.
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