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ABSTRACT. Classical work by Salmon and Bromwich classified singular intersections of two quadric surfaces.
The basic idea of these results was already pursued by Cayley in connection with tangent intersections of
conics in the plane and used by Schäfli for the study of hyperdeterminants. More recently, the problem has
been revisited with similar tools in the context of geometric modeling and a generalization to the case of two
higher dimensional quadric hypersurfaces was given by Ottaviani. We propose and study a generalization of this
question for systems of Laurent polynomials with support on a fixed point configuration.

In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of
the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called
the multivariate iterated discriminant, generalizing the classical Schäfli method for hyperdeterminants. This
iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We
show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding
dual variety has sufficiently high codimension. We also study when point configurations corresponding to
Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant
equal to their mixed discriminant.

1. INTRODUCTION

Let K be an algebraically closed field of characteristic zero and A ⊂Zn a finite lattice subset. A (Laurent)
polynomial p =∑a∈A caxa ∈K[x1, . . . ,xn] with support on the point configuration A is called an A-polynomial.

Classical work by Salmon [Sal82] and Bromwich [Bro71] classified singular intersections of two quadric
surfaces, corresponding to the case of two A-polynomials where A consists of the lattice points in the dilated
simplex 2∆3 in R3. The basic idea of these results was already pursued by Cayley in connection with tangent
intersections of conics in C2. More recently, the problem has been revisited with similar tools in [FNO89],
in the context of geometric modeling with focus on the real case; and in [ZJT+19], where these techniques
are used to classify singular Darboux cyclides. These are surfaces in 3-space that are the projection of the
intersection of two quadrics in dimension four. A generalization to the case of two higher dimensional quadric
hypersurfaces is given in [Ott13].

Consider two space quadrics, given in matrix form by

(1.1) pi = [1 x1 x2 x3] Mi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
x1
x2
x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, i = 0,1.

For generic matrices Mi ∈ K4×4, the intersection (p1 = p2 = 0) describes a non-singular curve of degree 4.
The non-generic intersections are described in [Sch53, GKZ94] in the following way. Consider the pencil of
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FIGURE 1. Transverse (left) and non-transverse (right) hyperbolas

quadrics given by p0+ t p1. Using the Schäfli decomposition method, the existence of a tangential intersection
can be studied by considering the zero locus of the following polynomial in the entries of M0,M1:

(1.2) D4∆1(det(M0+ tM1)),

where D4,∆1 is the univariate discriminant of the degree 4 polynomial det(M0 + tM1), considered as a
polynomial in t. For generic matrices this is a polynomial of degree 6 in its entries (that is, in the coefficients
of p0, p1), and it vanishes whenever det(M0+ tM1) does not have four simple roots. To classify the different
singular intersections, they then studied the Segre characteristics arising from the Jordan normal form of the
matrix M0+ tM1.

In this paper, we propose and study a generalization of this approach for any support A.
We consider Equation (1.2) to be an iterated process, as we are computing the discriminant of a dis-

criminant. Factorizations of iterated discriminants and resultants for polynomials of three variables where
studied in [BM09]. Our aim is to define and study an iterated discriminant generalizing Schäfli’s method for
hyperdeterminants, and to show when tangent intersections can be computed via iteration.

The theory of A-discriminants was introduced in [GKZ94] and has been extensively studied both from a
geometric and a computational viewpoint [DFS07, DRRS07, Est10, GHRS16]. Denote by XA ⊂ P∣A∣−1 the
projective variety defined as the closed image of the monomial embedding given by the A-monomials. The
dual variety Xν

A ⊂ P∣A∣−1ν
is the closure of the coefficient vectors of the A-polynomials p whose zero-locus

(p = 0) has a singular point x ∈ (K∗)n with nonzero coordinates. Equivalently, the dual variety is the closure
of the hyperplane sections of XA which are singular at a point with nonzero coordinates. The expected
codimension of Xν

A is one and when this is the case we say that A is non-defective. When A is non-defective
the irreducible polynomial DA ∈ Z[(ca)a∈A] defining (up to sign) the dual variety: Xν

A = (DA = 0), is called
the A-discriminant [GKZ94]. We will use the notation DA((ca)a∈A) =DA(p).

If n = 1 and A = {0,1,2}, then p = c2x2+c1x+c0 and DA(p) = c2
1−4c0c2 is the classical discriminant of a

degree two polynomial. More generally, D{0,1,...,δ} coincides with the classical discriminant of univariate
polynomials of degree δ . This D0,1,...,δ is a polynomial of degree 2(δ −1) in the coefficients, which we
denote by Dδ∆1 . The case of multi-linear polynomials (i.e. tensors) corresponds to the case in which the
convex hull of A equals the product ∆n1 × . . .×∆nl where ∆s denotes the unit simplex of dimension s. This
multivariate A-discriminant is also referred to as the hyperdeterminant of size (n1+1)× . . .×(nl +1) [GKZ94,
Chapter 14]. This is a classical object defined originally by Cayley [Cay45].
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Note that for a quadratic polynomial p with associated matrix M as in (1.1), that is for A consisting of the
lattice points in 2∆3, the existence of a singular point in (p = 0) implies that the linear forms given by its
partial derivatives vanish and so det(M) = 0. Indeed, DA(p) = det(M) (up to an integer factor). This suggests
that an iterated discriminant should be connected to the notion of discriminant for a system of polynomials.
This notion is called the mixed discriminant [GKZ94, CCD+13, DEK14], which is a natural generalization
of the classical A-discriminant.

Given r+1 finite configurations A0, . . . ,Ar ⊂Zn, and a system of Ai-polynomials p0, . . . , pr

(1.3) p0 = p1 = . . . = pr = 0, pi = ∑
a∈Ai

ci,axa,

we call an isolated solution x ∈ (K∗)n a non-degenerate multiple root for the system (1.3) if the r+1 gradient
vectors ∇x pi(x), i = 0, . . . ,r are linearly dependent but any subset of r of them is linearly independent. The
associated mixed discriminantal variety is the closure of the locus of coefficients for which the system has a
non-degenerate multiple root. If this variety is a hypersurface, it is defined by a single irreducible polynomial
which we call the mixed discriminant, denoted MDA0,...Ar . If it is not a hypersurface, we call the system
defective and set MDA0,...Ar = 1.

Observe that when r = 0, MD0,A0 = DA0 equals the A0 discriminant. In fact, in the non-defective case,
mixed discriminants are special cases of discriminants of a single polynomial. This was settled in [GKZ94],
but without the hypothesis of non-degeneracy of the common multiple root and in [CCD+13] for the case
r+1 = n. Given A0, . . .Ar, the associated Cayley configuration C =C(A0, . . . ,Ar) ⊂ Zn+r is the union of the
lifted configurations ei×Ai ∈Zn+r for i = 0, . . . ,r, where e0 = 0 and ei is the standard ith basis vector in Zr for
i ≥ 1. As sparse discriminants are affine invariants of lattice configurations [GKZ94], we could equivalently
consider C ⊂Zn+r+1, where now e0, . . . ,er denote the canonical basis in Zr+1. We introduce r+1 new variables
λ0, . . . ,λr and encode the initial system by one auxiliary C-polynomial:

Pλ = λ0 p0+ . . .+λr pr ∈K[λ0, . . . ,λr,x1, . . . ,xn].

We will denote both this polynomial and its tuple of coefficients by Pλ where λ = (λ0, . . . ,λr). In Proposi-
tion 3.3 we prove that when C is non-defective, MD(A0, . . . ,Ar)(p0, . . . , pr) can be computed as DC(Pλ ) for
any r.

This characterization leads to the following definition of multivariate iterated discriminant of order r. In
the present paper we consider the case when A0 = . . . = Ar = A and use the notation MDr,A ∶=MDA,...,A. Notice
that DA(Pλ ) is a homogeneous polynomial of degree deg(DA) in λ0, . . . ,λr.

Definition 1.1. Given A ⊂Zn non-defective, denote by d the codimension of the singular locus of the dual
variety Xν

A . Given r ≥ 0, the multivariate iterated discriminant of order r is the polynomial IDr,A on the
coefficients of (r+1) A-polynomials p0, . . . , pr defined by

⎧⎪⎪⎨⎪⎪⎩

IDr,A(p0, . . . , pr) ∶=DδA∆r(DA(Pλ )), if d ≥ r,

IDr,A(p0, . . . , pr) ∶= 0, otherwise.

It is worth noting that in the classical case of r = 0, all these polynomials coincide by definition:

MD0,A = ID0,A =DA, and Dδ∆0(DA(λ pA)) =DA.

The latter equality is a consequence of the fact that the discriminant (in the variable λ ) of the monomial
DAλ

δ is the coefficient DA [Jou91]. Moreover, when A consists of the vertices of a simplex, IDr,A coincides
with the hyperdeterminant Schäfli decomposition [GKZ94, Ch. 14].
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Our main results give a precise relation between MDr,A and IDr,A. The advantage of relating MDr,A

with IDr,A is that the latter polynomial is much easier to compute. We show that in the non-defective case
MDr,A is always an irreducible factor of IDr,A, as a consequence of biduality (see Section 4). Therefore,
if IDr,A(p0, . . . , pr) ≠ 0, we get a certificate that the intersection (p0 = ⋅ ⋅ ⋅ = pr) is smooth. When A is non-
defective, we denote by sing(Xν

A ) the subscheme of Xν

A defined by the ideal generated by the partial derivatives
of DA. We show that IDr,A can have other irreducible factors given by the Chow forms ChYk of the higher
dimensional irreducible components of the schematic singular locus of the dual variety Xν

A . We recall the
notion of Chow forms at the beginning of Section 4. Theorem 4.4 and Proposition 4.5 imply the following
Theorem.

Theorem. Assume A ⊂Zn is non-defective and let r ∈Z with 0 ≤ r ≤ dim(XA). Then, the mixed discriminant
MDr,A always divides the iterated discriminant IDr,A. Moreover:

(1) If codimXν

A
(sing(Xν

A )) > r, then IDr,A =MDr,A.
(2) If codimXν

A
(sing(Xν

A )) = r, then IDr,A =MDr,A∏`
i=kChµk

Yk
, where Y1, . . . ,Y` are the irreducible compo-

nents of sing(Xν

A ) of codimension r, with respective multiplicities µk ≥ 2.
(3) If codimXν

A
(sing(Xν

A )) < r, then IDr,A = 0.

The paper is organized as follows. In Section 2 we present some examples that motivate the theory of
iterated discriminants. In Section 3 we present material on mixed discriminants and Cayley configurations.

In Section 4 we develop the theory of iterated discriminants and prove our main results Theorem 4.4
and Proposition 4.5. We prove in Proposition 4.8 that the multiplicities µk in Theorem 4.4 are at least two.
Very few is known in general about these multiplicities, except for the homogeneous case of three variables
studied in [BM09] and the general results in [LMcC09]. Based on this evidence and some examples we
computed, we state Conjecture 4.9. The difficulty in determining these multiplicities relies in the fact that
for general point configurations A, a complete description of the components of the singular locus of the
dual varieties XA and their codimensions is out of reach for the moment. By a result of Katz (Prop. 3.4
in [Kat73]) it is expected that the codimension one components correspond to the double point locus (the
closure of those hypersurfaces with two different non-degenerate singular points) and the cusp locus (the
closure of those hypersurfaces having a single degenerate singular point with an A2-singularity). The case of
hyperdeterminants has been exhaustively described in Theorem 0.5 in [WZ96], where it is shown that in the
non-defective case only one irreducible component with codimension one can exist, or there could be several
irreducible components of codimension one of both types. Already the univariate sparse case poses some
challenges [DHT17]. Even the particular case of the existence of a cusp component with codimension one
when DA corresponds to the mixed discriminant of two planar configurations, recently studied in [Ni21], is
not trivial. A general approach to describe the irreducible components (and much more information) via the
computation of tropical fans and characteristic classes is developed in [Est18].

In Section 5 we ask more broadly when mixed and iterated discriminants are equal, for products of scaled
simplices, that is, when XA is a Segre-Veronese variety. The case of Segre varieties was solved in [WZ96],
via a careful study of the singularities of hyperdeterminant varieties. As a corollary of our results, we show in
Proposition 5.2 that the iterated method to characterize singular complete intersections for r+1 hypersurfaces
of the same degree d > 1 in Pn gives the corresponding mixed discriminant if and only if r = 1 and d = 2 (the
case of two quadric hypersurfaces already found in [Ott13, Theorem 8.2]).

Our Conjecture 5.3 is the following, with notation as in Section 5:



ITERATED AND MIXED DISCRIMINANTS 5

Conjecture. The equality deg(IDr,A`,d,k) = deg(MDr,A`,d,k) holds if and only if

Pr(1)×Pk1(d1)×⋯×Pk`(d`)

is of one of the following cases:

(1) Pr ×Pm×Pm, m ≥ 1, r = 1,2,
(2) (P1)4,
(3) P1×Pn(2).

A partial answer is given in Theorem 5.6 and Proposition 5.2.
Finally, in Section 6 we analyze the case of plane curves. Theorem 6.3 shows that for planar configurations

A consisting of the lattice points of a smooth polygon, the only case where MD1,A equals ID1,A are the known
cases in which the polygon is the unit square (the bilinear case) or 2∆2, the standard triangle of size 2. This
implies that in all other cases, the singularities of the discriminant locus have codimension one; that is, there
are “many” different types of singular hypersurfaces defined by A-polynomials. A factorization of the iterated
discriminants gives all components of the singular locus of codimension one.

Acknowledgements. We thank Carlos D’Andrea, Frédéric Bihan, Laurent Busé, Bernard Mourrain, and
Giorgio Ottaviani for helpful discussions and references to previous work in this direction.

2. MOTIVATING EXAMPLES

In this section we present some motivating examples that we abstract in the paper. The first two correspond
to two classical cases in which the iterated discriminant actually computes the mixed discriminant. The last
two are the simplest cases which already show the occurrence of other factors of the iterated discriminant.

Example 2.1. Let A = {(0,0),(1,0),(0,1),(1,1)} be the vertices of the unit cube and let f = c00+c10x1+
c01x2+c11x1x2 be an A-polynomial. In this case, DA( f ) = c00c11−c10c01 is a polynomial of degree 2, which
equals the determinant of the matrix

( c00 c01
c10 c11

) .

In case r+1= 2, the mixed discriminant associated with two A-polynomials p0 = c1
00+c1

10x1+c1
01x2+c1

11x1x2

and p1 = c2
00 + c2

10x1 + c2
01x2 + c2

11x1x2, is the following degree four irreducible polynomial, which is the
hyperdeterminant of format 2×2×2 (see [GKZ94], pp. 475–479):

MD1,A(p0, p1) = c2
00

2
c1

11
2−2c2

00c2
01c1

10c1
11−2c2

00c2
10c1

01c1
11−2c2

00c2
11c1

00c1
11+

4c2
00c2

11c1
01c1

10+2c2
00c1

00c1
11

2−4c2
00c1

01c1
10c1

11+c2
01

2
c1

10
2+4c2

01c2
10c1

00c1
11−

2c2
01c2

10c1
01c1

10−2c2
01c2

11c1
00c1

10+2c2
01c1

00c1
10c11+c2

10
2
c1

01
2−

2c2
10c2

11c1
00c1

01+2c2
10c1

00c1
01c1

11+c2
11

2
c1

00
2−2c2

11c1
00

2
c1

11+c1
00

2
c1

11
2
,

It vanishes at (p0, p1) with respective coefficient vectors (1,1,−2,−1) and (1,1,−3,−2), corresponding to
the tangent hyperbolas in Figure 1.

One form of computing DA is as the iterated discriminant ID1,A. Write

det( c1
00+λc2

00 c1
01+λc2

01
c1

10+λc2
10 c1

11+λc2
11

) = ∆0+∆1λ +∆2λ
2,
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and then compute
MD1,A(c1,c2) = ∆

2
1−4∆0∆2,

as the univariate resultant of the degree 2 polynomial ∆0 +∆1λ +∆2λ
2 in λ with coefficients in Z[c1,c2].

This compact formula is the simplest case of Schäfli’s formula to compute the mixed discriminant MD1,A.

Example 2.2. Let us consider again the case discussed in the Introduction corresponding to the singular
intersections of two quadric surfaces p0, p1 in three-space. We display their common support A as the columns
of the following 3×10 matrix:

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2

⎤⎥⎥⎥⎥⎥⎦
.

We also display the corresponding Cayley configuration C = ∆1×A as the columns of the following 5×20-
matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 2 1 1 0 0 0 0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0 0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2 0 0 0 1 0 0 1 0 1 2
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, we know that (XC)ν is a hypersurface by [DR14]. Thus we have that the polynomial
MD1,A(p0, p1) cuts out the closure of the locus of coefficients for which the two quadrics lie tangent
to one another at a point and it can be computed via the discriminant DC by Proposition 3.3. It can be also
computed as the iterated discriminant in (1.2). This polynomial can be studied through tropical discriminants
as in [DFS07].

Moreover, one can compute the univariate discriminant D4∆1 of a degree 4 polynomial as the discriminant
of its cubic resolvent from Galois theory. Let ∆i denote the coefficient λ

i in det(M0+ tM1). Then

MD1,A(p0, p1) =
4p3−q2

27
,

where p = 12∆4∆0−3∆3∆1+∆
2
2, and q = 72∆4∆2∆0+9∆3∆2∆1−27∆4∆

2
1−27∆0∆

2
3−2∆

3
2.

This gives a compact and feasible way of computing the mixed discriminant MD1,A we are interested in. In
fact, expanding this expression in terms of the coefficients of p0, p1 is beyond the capabilities of the excellent
Computer Algebra System Macaulay2 [GS] in a standard computer, because it is a polynomial of degree
24 which has degree 12 in both the coefficients of p0 and p1. Note that a general polynomial of bidegree
(12,12) in two groups of 10 variables has more than 4 ⋅1011 monomials!

The general case is hinted in the following simple examples.

Example 2.3. Consider the two dimensional configuration A = {(0,0),(1,0),(2,0),(0,1),(1,1)} corre-
sponding to the first Hirzebruch surface F1.
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Given a generic polynomial f with support A:

f (x,y) = a0+a1x+a2x2+y(b0+b1x),

the A-discriminant coincides with the resultant of the two univariate polynomials a0+a1x+a2x2 and b0+b1x
and thus is equal to the degree 3 polynomial

DA( f ) = a0b2
1−a1b0b1+a2b2

0.

The mixed discriminant MD1,A has degree 8, while the iterated discriminant ID2,A has degree 2 ⋅3 ⋅(3−1)1 = 12
by (4.12) . There is another irreducible factor that we explain in Theorem 4.4 and compute in Example 4.6.

Example 2.4. We now consider the case of a univariate polynomial of degree 3 with A = {0,1,2,3} and
r = 1. Given two cubic polynomials p0, p1 depending on a variable x, their mixed discriminant equals the
discriminant of the Cayley configuration

C = {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)}

at the polynomial p0 + t p1 in one more variable t. In fact, DC(p0 + t p1) equals the univariate resultant
Res3,3(p0, p1). This resultant can be computed as the determinant of the associated Sylvester matrix and
therefore has degree 6 in the vectors of coefficients of p0, p1. Since the discriminant DA of a cubic univariate
polynomial has degree 4, the iterated discriminant ID1,A =D4∆1(DA(p0+ t p1)) instead has degree 2 ⋅4 ⋅3 = 24
according to (4.12). It has another irreducible factor of degree 6 raised to the third power, which is the Chow
form of the singular locus of DA = 0 corresponding to degree 3 polynomials with a triple root (a degenerate
multiple root), predicted by Theorem 4.4.

3. THE MIXED DISCRIMINANT AND THE DISCRIMINANT OF THE CAYLEY CONFIGURATION

In this section we show in Proposition 3.3 that the mixed discriminant MD(A0, . . . ,Ar) coincides in
the non-defective case with the discriminant of the associated Cayley configuration DC, thus generalizing
Theorem 2.1 in [CCD+13]. Note that when C is defective these varieties need not coincide, as shown in
Example 2.2 in [CCD+13]. We also characterize, in Proposition 3.4, non-defectivity of C when all Ai are
equal. The latter result relies on a classical criterion by Katz, stated as Lemma 3.1 below, and is a simple
consequence of [WZ94, Th. 0.1].

Recall that for a projective variety X , the dual defect of X is defined to be

(3.1) def(X) ∶= codim(Xν)−1,

where Xν is the dual variety consisting of singular hyperplane sections to X . In particular, if the dual variety
is a hypersurface as expected, then the dual defect is equal to 0 and X is said to be non-defective. When
X = XA for some finite lattice configuration A, we also say that A is non-defective. In this context, we have the
following lemma due to Katz.

Lemma 3.1. [Kat73] Let A ⊂ Zn be a lattice configuration with ∣A∣ = N +1. Let Hp( f ) denote the Hessian
matrix of an A-polynomial f . Then

codimXν

A = 1+min f (corank(Hu( f )))

where u is a general point and f varies among the polynomials with support in A vanishing at u.
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In particular, codimXν

A = 1 implies that polynomials vanishing at a general point u together with their
partial derivatives have Hessian of maximal rank.

Observe that Lemma 3.1 is equivalent to saying that in the non-defective case, the closure of the singular
A-polynomials coincides with the closure of the nodal A-polynomials, that is, polynomials only admitting
non-degenerate multiple roots.

Corollary 3.2. If A is a non-defective finite lattice configuration, then

Xν

A = { f ∈ PNν ∶ f (u) = 0,
∂ f
∂xi

(u) = 0 and det(H( f ))(u) ≠ 0 for some u ∈ (K∗)n}.

Proof. The inclusion “⊆” follows by definition and the inclusion “⊇” follows by Lemma 3.1. �

Let us now consider the Cayley configuration C associated to r+1 finite lattice configurations A0, . . . ,Ar

in Zn. We remark that the r in [GKZ94] corresponds to our r−1. We use the following notation: (λ ,x) =
(λ0, . . . ,λr,x1, . . . ,xn). A polynomial f with support on C has the form

f =
r

∑
0

λi pi,

where pi are Ai-polynomials in the variables x. Consider the Jacobian matrix [∇x(p0)(u) . . . ∇x(pr)(u)]
of p0, . . . , pr at u. Notice that f ∈ Xν

C if there exists

(λ ,u) ∈ (Cν)r+1×(Cν)n s.t. p0(u) = ⋅ ⋅ ⋅ = pr(u) = 0 and λ ∈ ker[∇x(p0)(u) . . . ∇x(pr)(u)]T
;

or equivalently, if ∑r
i=0 λi∇x(pi)(u) = 0 and thus the gradients are linearly dependent. In particular,

rank([∇x(p0)(u) . . . ∇x(pr)(u)]) ≤ r.

We will now prove that the locus where the rank is exactly r characterizes the dual variety Xν

C , assuming it is
a hypersurface.

Proposition 3.3. Let A0, . . . ,Ar and C as above and assume that C is non-defective. Then,

MD(A0, . . . ,Ar)(p0, . . . , pr) =DC(
r

∑
i=0

λi pi),

where pi are Ai-polynomials for i = 0, . . . ,r and (λ0, . . . ,λr) are variables.

Proof. Let φ f be the tuple of coefficients of f . Corollary 3.2 implies that

Xν

C = {φ f ∶ f (λ ,u) = 0, pAi(u) = 0, i = 0, . . . ,r,
r

∑
j=0

λ j
∂ pA j

∂xi
(u) = 0 and det(H( f ))(λ ,u) ≠ 0},

where (λ ,u) ∈ (Cν)r+1×(Cν)n. Here, H( f )(λ ,u) means the following: as f is homogeneous in the variables
λ and λ ∈ (Cν)r+1, we assume that λ0 = 1 and that (λ1, . . . ,λr) are its affine coordinates. Thus, H( f )(λ ,u)
is the Hessian of f with respect to the variables (λ1, . . . ,λr,x1, . . . ,xn) . This Hessian matrix is of the form

H(u,λ)(φ f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑λiH(pAi)(u)
⎡⎢⎢⎢⎢⎢⎣

∇(pA1)(u)
. . .

∇(pAr)(u)

⎤⎥⎥⎥⎥⎥⎦

T

⎡⎢⎢⎢⎢⎢⎣

∇(pA1)(u)
. . .

∇(pAr)(u)

⎤⎥⎥⎥⎥⎥⎦
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It follows that if φ f ∈ Xν

C and detH( f )(λ ,u) ≠ 0, which happens for generic points in Xν

C by Corollary 3.2,

then rank

⎡⎢⎢⎢⎢⎢⎣

∇(pA1)(u)
. . .

∇(pAr)(u)

⎤⎥⎥⎥⎥⎥⎦
= r, that is, the gradients of the polynomials pAi(u) for i ≠ 0 form a matrix of rank r,

that is, they are linearly independent. This happens similarly for the gradients of any subset of r polynomials
pA j(u). Moreover, this is exactly the condition implying that φ f belongs to the mixed-discriminantal variety
MD(A0, . . . ,Ar) = 0 which we denote by XMD. It follows that Xν

C ⊆ XMD and that XMD is also a hypersurface,
i.e. MD(A0, . . . ,Ar) ≠ 1.

The reverse inclusion follows essentially from the definition. In fact if φ f ∈ XMD is generic, then there is a
common zero u ∈ (Cν)n of pA0 , . . . , pAr and a linear dependency ∑λi∇(pAi)(u) = 0 with all λi ≠ 0, because

all the maximal minors in the matrix

⎡⎢⎢⎢⎢⎢⎣

∇(pA0)(u)
. . .

∇(pAr)(u)

⎤⎥⎥⎥⎥⎥⎦
are assumed to be nonzero. It follows that φ f ∈ Xν

C . �

Notice that if A0 = A1 = . . . = Ar = A then C = {e0, . . . ,er}×A, which is usually written as C = ∆r ×A.
Following [WZ94], we define the following quantity associated to a projective variety X :

(3.2) µ(X) = dim(X)+def(X),

where the defect of X has been defined in (3.1). We end this section with the following result about
non-defectivity.

Proposition 3.4. Let A be a non-defective finite lattice configuration. Then, the associated Cayley configura-
tion C = ∆r ×A is non-defective if and only if r ≤ dim(XA).

Proof. Note that XC equals the Segre embedding of Pr ×XA. We can then use Theorem 0.1 in [WZ96], which
says that

µ(Pr ×XA) =max(r+dim(XA),r+def(Pr),dim(XA)+def(XA)).
According to (3.2), we have that µ(XC) = r+ dim(XA)+ def(XC). Since def(Pr) = r, and by hypothesis
def(XA) = 0, we get that

µ(XC) =max(r+dim(XA),2r,dim(XA)).
When r ≤ dim(XA), we get that µ(XC) = r+dim(XA) which implies that def(XC) = 0. On the other side, when
r > dim(XA), we have that µ(XC) = 2r and so def(XC) = r−dim(XA) > 0. �

4. THE MULTIVARIATE ITERATED DISCRIMINANT

In the remainder of the paper we will consider the case Ai = A for i = 0, . . . ,r. In order to establish an
iterated process for the mixed discriminant it is convenient to consider the geometric iterated discriminant
JDr,A introduced in Definition 4.2 below. In Proposition 4.5 we prove that this polynomial coincides with the
iterated discriminant IDr,A from Definition 1.1. It implies that Theorem 4.4, which can be considered the
main result of this paper, also holds for IDr,A, as stated in the Introduction.

Recall that given an irreducible and reduced projective variety Y ⊂ PN of codimension s, its Chow form
ChY is defined as follows. Consider linear subspaces of dimension ` in PN , L ∈Gr(`+1,N +1). If s ≥ `+1,
any generic L will not intersect Y. The irreducible subvariety

{L ∈Gr(`+1,N +1) ∶ L∩Y ≠ ∅}
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parametrizing the exceptional intersection locus, has codimension (s−`) in Gr(`+1,N +1). In case ` = s−1
the defining polynomial is denoted by ChY and it is called the Chow form of Y [GKZ94, page 99].

We also need to recall two classical facts which will be used in the proof of our main Theorem 4.4.

Remark 4.1. Given a finite lattice configuration A and a generic singular hyperplane section of XA, we can
recover the intersection point by means of the gradient of the discriminant DA. Precisely,

(1) As we are assuming that char(K) = 0, if a regular point H in the dual variety Xν

A is tangent to XA at
a regular point yH , then this projective point is unique and yH = ∇DA(H) [GKZ94, Th.1.1, Ch. 1].
This is referred to as biduality.

(2) When Xν

A ⊂ (PN)ν is a hypersurface, biduality implies that the Gauss map γ ∶ Xν

A ⇢ Pn is defined by
H ↦∇DA(H) = yH and the closure of its image equals XA.

Let A = {a0, . . . ,aN} ⊂Zn be a lattice configuration. We will assume henceforth that A is non-defective and
that DA is a homogeneous polynomial of degree δ > 0.

Given A-polynomials

pi =
N

∑
j=0

ci jxa j , i = 0, . . .r,

we also denote by (p0, . . . , pr) ∈ (P(r+1)(N+1)−1)ν the vector of their coefficients. For any λ = (λ0, . . . ,λr) ∈Pr

we write

Pλ ∶= λ0 p0+ . . .+λr pr ∈ (PN)ν .

Definition 4.2. Consider the incidence variety

(4.1) Σ =
⎧⎪⎪⎨⎪⎪⎩
((p0, p1, . . . , pr),λ) ∈ (P(r+1)(N+1)−1)ν ×Pr ∶ ∑

j
ci j

∂DA

∂c j
(Pλ ) = 0, i = 0, . . . ,r

⎫⎪⎪⎬⎪⎪⎭
.

Let π ∶ Σ→ (P(r+1)(N+1)−1)ν be the linear projection onto the first factor. The r-multivariate iterated dual
scheme π(Σ) is defined by the projective elimination ideal

(4.2) πI = (I ∶m∞)∩C[c],

where C[c] is the ring of polynomials in the variables ci j, m is the the irrelevant ideal of Pr, and I is the ideal

I = ⟨∑
j

ci j
∂DA

∂c j
(Pλ ), i = 0, . . . ,r⟩ .

When π(Σ) has codimension one, we denote by JDr,A ∈Z[c] a generator (unique up to multiplication by a
nonzero constant) of the union of the codimension one components of πI and we call it the geometric iterated
discriminant.

Notice that the projection is in general not irreducible; see for instance Example 2.3. We will see in
Proposition 4.5 below that the geometric iterated discriminant JDr,A coincides with the more naive definition
of the iterated discriminant IDr,A from Definition 1.1.
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Let (p,λ) = ((p0, . . . , pr),(λ0, . . . ,λr)) ∈ Σ. In order to understand the projection π we consider two
auxiliary maps, φ ∶ Σ→ Xν

A and T ∶ (P(r+1)(N+1)−1)ν ⇢Gr(r+1,N +1) ∶

Σ Xν

A

π(Σ) Gr(r+1,N +1)

φ

T

defined by φ(p,λ) =Pλ and T(p0, . . . , pr) =Tp, where we denote by Tp the projective linear span of p0, . . . , pr.

Lemma 4.3. Let p = (p0, . . . , pr) ∈ (P(r+1)(N+1)−1)ν such that JDr,A(p) = 0. Then, Tp is tangent to Xν

A at
some point ξ .

Proof. If JDr,A(p0, . . . , pr) = 0 then there exists λ such that (p,λ) ∈ Σ; let ξ = Pλ . Consider the equalities

(4.3) 0 =∑
j

ci j
∂DA

∂c j
(Pλ ), i = 0, . . . ,r.

Note that these equations equal the derivatives with respect to λ0, . . . ,λr of the composed function ( f ,µ) →
DA(∑r

i=0 µi fi) at the point (p,λ). The Euler relation implies that DA(Pλ )=0, and thus Pλ ∈Xν

A . Moreover (4.3)
implies that each pi lies in TXν ,ξ , which is equivalent to Tp ⊂ TXν ,ξ . �

Recall that we denote by sing(Xν

A ) the subscheme of Xν

A defined by the ideal generated by the partial
derivatives of DA.

Theorem 4.4. Assume A⊂Zn is non-defective and let r ∈Z with 0≤ r ≤ dim(XA). Then, the mixed discriminant
MDr,A always divides the geometric iterated discriminant JDr,A. Moreover:

(1) If codimXν

A
(sing(Xν

A )) > r, then JDr,A =MDr,A.
(2) If codimXν

A
(sing(Xν

A )) = r, then JDr,A =MDr,A∏`
i=kChµk

Yk
, where Y1, . . . ,Y` are the irreducible compo-

nents of sing(Xν

A ) of maximal dimension r, with respective multiplicities µk ≥ 2.
(3) If codimXν

A
(sing(Xν

A )) < r, then π(Σ) = (P(r+1)(N+1)−1)ν , and JDr,A = 0.

Proof. As already observed, in the classical case of r = 0 we have ID0,A = MD0,A = DA. Note also that by
Propositions 3.4 and 3.3, deg(MDr,A) > 0 and it is irreducible.

Observe that the map φ is surjective since for any F ∈ Xν

A , F = φ(F, . . . ,F, 1
(r+1) , . . . ,

1
(r+1)) and we have

(F, . . . ,F, 1
(r+1) , . . . ,

1
(r+1)) ∈ Σ. The rational map T is defined over the open dense subset UT = {p ∶ Tp ≃ Pr}

of all p with linear span of projective dimension r. Notice also that T is surjective and that for each H ∈
Gr(r+1,N+1), the fiber T−1(H) has dimension (r+1)2−1. Let Σ

○ = φ
−1((Xν

A )reg) and Σ
′ = φ

−1(sing(Xν

A ));
that is, let

Σ
○ = {(p,λ) ∈ Σ ∶ Pλ ∈ (Xν

A )reg}, Σ
′ = {(p,λ) ∈ Σ ∶ Pλ ∈ sing(Xν

A )}.
It follows that π(Σ) = π(Σ

○)∪π(Σ
′).

We claim that π(Σ○) ⊆V(MDr,A). In fact, take a generic point (p,λ) ∈ π(Σ
○). We can then assume that

not only Pλ ∈ (Xν

A )reg, but also there is a unique regular point y = (xm0 ∶ . . . ∶ xmN) ∈ XA with x ∈ (K∗)n such that
Pλ (x) = 0 and ∂Pλ

∂xi
(x) = 0, i = 1, . . . ,n. By Remark 4.1, y = ( ∂DA

∂c0
(Pλ ) ∶ . . . ∶ ∂DA

∂cn
(Pλ )). The equations ∂Pλ

∂xi
(x) = 0

for i = 1, . . . ,n mean that ∑λi∇(pi)(x) = 0. Moreover pi(x) = 0 for all i because

(4.4) pi(x) =∑
j

ci jy j = k∑
j

ci j
∂DA

∂c j
(Pλ ) = 0, i = 0, . . .r
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for some k ∈K∗ such that y = k∇DA(Pλ ). This implies that MDr,A(p0, . . . , pr) = 0.
We now show that V(MDr,A) ⊆ π(Σ). Let (p0, . . . , pr) be a generic element in the zero locus of MDr,A.

Then there exists (u,λ) ∈ (K∗)n+r+1 such that

p0(u) = ⋯ = pr(u) = 0 and [∇p0(u) ⋯ ∇pr(u)]
⎡⎢⎢⎢⎢⎢⎣

λ0
⋮

λr

⎤⎥⎥⎥⎥⎥⎦
= 0.

We claim that (p,λ) ∈ Σ. If Pλ ∈ sing(Xν

A ) then ∂DA
∂c j

(Pλ ) = 0 and thus (p0, . . . , pr) ∈ π(Σ). If instead Pλ ∈
(Xν

A )reg is generic, then biduality gives ∇DA(Pλ ) = y with y = (um0 ∶ . . . ∶ umN) and thus ∑ j ci j
∂DA
∂c j

(Pλ ) =
pi(u) = 0 as in (4.4), implying again that (p0, . . . , pr) ∈ π(Σ). We have then proved that

(4.5) π(Σ○) ⊆V(MDr,A) ⊆ π(Σ).

Consider the non-embedded primary components of the ideal ⟨ ∂DA
∂c j

, j = 0, . . . ,N⟩ defining the singular
locus of Xν

A . Correspondingly, we consider the decomposition into irreducible components sing(Xν

A ) = ⋃Yk.
Define

(4.6) Vk = {H ∈Gr(r+1,N +1) ∶H ∩Yk ≠ ∅} and Σk = φ
−1(Yk).

Recall that codimGr(r+1,N+1)(Vk) =max{0,codimPN(Yk)− r}.
Assume that codimXν

A
(sing(Xν

A )) > r. Then codimGr(r+1,N+1)(Vk) ≥ 2 for all k. It follows that for all i

codimP(r+1)(N+1)−1ν (π(Σi)) = codimP(r+1)(N+1)−1ν (π(Σi)∩UT ) ≥ codimP(r+1)(N+1)−1ν (T−1(Vi)) ≥ 2.

The containment in Equation (4.5) then implies that π(Σ) is of codimension one and set-theoretically
coincides with V(MDr,A). If codimXν

A
(sing(Xν

A )) = r, then codimGr(r+1,N+1)(Vk) = 1 and thus by definition
π(Σk) =V(Chµk

Yk
) for some integer exponents µk. We prove that these multiplicities are at least equal to 2 in

Proposition 4.8 below.
As the mixed discriminant MDr,A is irreducible, it remains to show that the multiplicity of MDr,A in IDr,A

is equal to 1. For that, it is enough to show that there exists (pν

0 , . . . , pν
r ) ∈ V(MDr,A) and λ

ν such that
(pν ,λ ν) ∈ Σ and dπ((pν ,λ ν)) has maximal rank.

We start by choosing a point ξ ∈ reg(Xν

A ) such that rank(H) = n+1, where H =Hess(DA)(ξ). Notice that
H = Jac(γ)(ξ), where γ ∶ Xν

A ⇢ XA is the Gauss map defined as γ(y) = ∇DA(y) which in affine coordinates
has generic rank equal to n = dim(XA). Up to a change of coordinates, H can be assumed to be of the form

(4.7) H = [In+1 0
0 0

] .

Consider Z = {M ∈Gr(r+1,N+1) ∶ ξ ∈M ⊂ TXν

A ,ξ
}. Note that for every p ∈ T−1(Z), we have ξ ∈ Tp ⊂ TXν

A ,ξ

and dim(Tp) = r as p ∈UT . It follows that there exists a unique λ
∗ such that (p,λ∗) ∈ Σ and φ(p,λ∗) = ξ .

Consider the (r+1)×(N +1) matrix Cp whose i-th row corresponds to the coefficients of pi. Without loss of
generality, the matrix Cp can be assumed to be of the form [Ir+1,C].

The matrix M of the lifted linear map π ∶ (C(r+1)(N+1))ν ×Cr+1 → (C(r+1)(N+1))ν is equal to M =
[I(r+1)(N+1),0], where 0 denotes the zero matrix of size (r+1)(N +1)× (r+1). Let us call g0, . . .gr the
defining equations of Σ in (4.1). It follows that dπ(p,λ∗) is of maximal rank if and only if the square
(r+1)(N +1)+(r+1)-matrix M′ with upper rows consisting of the Jacobian of g0, . . . ,gn with respect to the
variables (c01, . . . ,c0N , . . . ,cr0, . . . ,crN ,λ0, . . . ,λr) evaluated at (p,λ∗) and lower rows given by the matrix M,
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has maximal rank. But given the form of M, this is equivalent to the fact that the (r+1)×(r+1) submatrix
H∗ at the right upper corner of M′ has maximal rank r+1. Recall from the proof of Lemma 4.3 that g0, . . .gr

equal the derivatives with respect to λ0, . . . ,λr of the composed function ( f ,λ) →DA(∑r
i=0 λi fi). Then, H∗

consists of the Hessian matrix with respect to the λ -variables of this composed function. Therefore, we have
that

(4.8) H∗ =Cp HCt
p.

Recall that we assume that r ≤ n, and thus r+1 ≤ n+1. Given the form of the coefficient matrix Cp and of the
Hessian matrix H in (4.7), we deduce that H∗ is of maximal rank because it is the identity matrix Ir+1.

Assume that codimXν

A
(sing(Xν

A )) < r. Then codimPN(Yk) < r+1 for all k. The assumption also implies
that any element of the Grassmannian belongs to Vk for all k (defined in (4.6)) and that π(Σ

′) ∩UT =
T−1(Gr(r+1,N +1)) =UT . It follows that P(r+1)(N+1)−1 =UT = π(Σi)∩UT = π(Σi) ⊂ π(Σ) and thus π(Σ) =
(P(r+1)(N+1)−1)ν . �

The following Proposition 4.5 explains the name geometric iterated discriminant: we show that under
the hypotheses of Theorem 4.4, the polynomial JDr,A in Definition 4.2 equals the polynomial IDr,A in
Definition 1.1, and thus when it is nonzero it can be computed as a discriminant of a discriminant.

Recall that, given a natural number d, we denote by d∆r in Rr+1 the lattice configuration given by
the integer points in the dilated unit simplex d times, and by Dd∆r the associated discriminant. For any
homogeneous polynomial H =H(λ0, . . . ,λr) of degree d, the discriminant of H equals, up to constant, the
resultant of its partial derivatives:

(4.9) Dd∆r(H) = Resd−1(
∂H
∂λ0

, . . . ,
∂H
∂λr

) ,

where Resd−1 denotes the homogeneous resultant associated to r+1 homogeneous polynomials of degree
d−1 (see Prop. 1.7, Ch. 13 in [GKZ94]). Moreover, the following universal property is proved in [Jou91]
(see Theorem 3.8 in [Bu06] for an English concise version). Let G0, . . . ,Gr ∈ Z[u][λ0, . . . ,λr] have degree
d−1 with generic coefficients u:

Gi(u,λ) = ∑
∣α ∣=di

ui,α λ
α .

Denote by IG the ideal ⟨G0, . . . ,Gr⟩ ⊂ Z[u][λ0, . . . ,λr] generated by G0, . . . ,Gr. Then, Res(G0, . . . ,Gr) is a
generator of the (generic) projective elimination ideal

(4.10) πIG = (IG ∶m∞)∩Z[u].

In particular. for any variable λi and any N >∑i di−n, it holds that

(4.11) λ
N
i Resd−1(G0, . . . ,Gr) ∈ ⟨G0, . . . ,Gr⟩.

Thus, such an equality holds for any specialization of the coefficients u in a ring.
Let A be a non-defective configuration with codim(sing(Xν

A )) ≥ r. Call δ = deg(DA) and for a choice
of A-polynomials p0, . . . , pr consider the evaluation DA(Pλ ) = DA(∑r

i=0 λi pi), which is either zero or a
homogeneous polynomial in λ = (λ0, . . . ,λr) of degree δ .

Proposition 4.5. Under the hypotheses of Theorem 4.4, the following equality holds:

JDr,A = IDr,A.
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Moreover, when codimXν

A
(sing(Xν

A )) ≥ r, the degree of the iterated discriminant equals

(4.12) deg(IDr,A) = (r+1)δ(δ −1)r.

Proof. By Theorem 4.4 and Definition 1.1, we can assume that codimXν

A
(sing(Xν

A )) ≥ r.
Let (p0

0, . . . , p0
r ,λ

0) be a point in the incidence variety Σ defined in (4.1). Note that for any i = 0, . . . ,r, we
have that

0 = ∑
j

ci j
∂DA

∂c j
(

r

∑
i=0

λ
0
i p0

i ) =
∂

∂λi
DA(

r

∑
i=0

λi p0
i )(λ

0).

Then, IDr,A =Dδ∆r(DA(∑r
i=0 λi p0

i )) = 0. As we pointed out in (4.9), this homogeneous discriminant equals,
up to constant, the resultant

Resδ−1(
∂

∂λ0
DA(

r

∑
i=0

λi p0
i ), . . . ,

∂

∂λr
DA(

r

∑
i=0

λi p0
i )) .

It then follows that if Dδ∆r(DA(∑r
i=0 λi p0

i )) = 0, then there exists λ
0 ∈ Pr which is a common zero of all

these partial derivatives. We deduce from Equation (4.11) that for any ring R containing the coefficients of
DA(Pλ ) and for any i = 0, . . . ,r, the iterated discriminant Dδ∆r(Pλ ) lies in the ideal generated by the partial
derivatives ∂

∂λ j
DA(∑r

i=0 λi p0
i ), j = 0, . . . ,r, in each localization R[λ0, . . . ,λr]λi . Moreover, we have that the

ideal πI in (4.2) is the specialization of the ideal πIG in (4.10). Then, IDr,A = JDr,A, as claimed.
To see that Equation (4.12) holds, recall that deg(DA) = δ and so the degree of DA(∑r

i=0 λi pi) in the
coefficients of p0, . . . , pr as well as in the λ variables is equal to δ . On the other side, the degree of Dδ∆r is
equal to (r+1)δ

r. �

4.1. The exponents in Theorem 4.4. We first present two examples that illustrate Theorem 4.4 with r+1= 2.
In the first one, the singular locus has codimension r+1 = 2, which implies a factor (with multiplicity 2) of
the iterated discriminant. In the second one, the singular locus has codimension bigger than 2, which implies
equality between MD1,A and ID2,A.

Example 4.6. [Example 2.3, continued.] Consider again the two dimensional configuration corresponding to
the first Hirzebruch surface F1:

A = {(0,0),(1,0),(2,0),(0,1),(1,1)}.
Given a generic A-polynomial f (x,y) = a0+a1x+a2x2+y(b0+b1x), we saw that DA( f ) = a0b2

1−a1b0b1+a2b2
0.

The ideal defining the singular locus S of Xν

A is generated by

b2
0,b0b1,b2

1,−a1b1+2a2b0,2a0b1−a1,b0.

This ideal has multiplicity 2 and its radical is generated by b0,b1. In this case, ID2,A has another irreducible
factor ChS of degree 2 coming from the Chow form of S, to the second power:

ID2,A =MD1,A ⋅Ch2
S,

where ChS((a0,a1,a2,b0,b1),(A0,A1,A2,B0,B1)) = B0b1−B1b0.

Example 4.7. Let XA be the Segre embedding of P1 ×P1 ×P1, so DA is the hyperdeterminant of format
(2,2,2) of degree 4, whose singular locus has codimension greater than 2 by [WZ96]. Take r = 2, so that
MD1,A equals the discriminant of the hyperdeterminant of format (2,2,2,2) (corresponding to the Segre
embedding of P1 ×P1 ×P1 ×P1). In this case, MD1,A equals the iterated discriminant ID2,A and thus has
degree 2 ⋅4 ⋅ (4−1)1 = 24.
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This is the only known case of polynomials of degree bigger than 2 for which the iterated and the mixed
discriminants coincide.

We have not completely identified the exponents µk occurring in the factorization of the iterated discrimi-
nant in Theorem 4.4 by the difficulties expressed in the Introduction, where we gave the only references to the
literature we are aware of, but the following proposition shows that these exponents are strictly bigger than 1.

Proposition 4.8. With notation and assumptions as in Theorem 4.4, the exponents µk in item (2) satisfy
µk ≥ 2 for all k.

Proof. To simplify the notation, assume that codimXν

A
(sing(Xν

A )) = r = 1, sing(Xν

A ) =Y and JDr,A =MDr,AChµ

Y .
Considering a generic point (p0, p1) such that MD(p0, p1) ≠ 0 and ChY (p0, p1) = 0 we have that:

∂ ID
∂ci,a

(p0, p1) = µChµ−1
Y (p0, p1)MD1,A(p0, p1)

∂ChY

∂ci,a
(p0, p1)+Chµ

Y (p0, p1)
∂MD
∂ci,a

(p0, p1)

for all a ∈ A and i = 0,1. By genericity we may assume that ∂ChY
∂ci,a

(p0, p1) ≠ 0 for some ci,a. We can conclude

that if µ = 1 then ∂ ID
∂ci,a

(p0, p1) ≠ 0 for some ci,a and thus that ∂ ID
∂ci,a

(p0, p1) = 0 for all ci,a would imply µ ≥ 2.
We will prove that this is the case.

Recall that ChY (p0, p1) = 0 implies that the line spanned by p0, p1 intersects Y at some point which we
denote by p0+λ

∗p1. This means that DA(p0+λ
∗p1) = ∂DA

∂ca
(p0+λ

∗p1) = 0 for all a ∈ A. Let DA(p0+λ p1) =
∑δ

0 Γ j(c0,a,c1,a)a∈Aλ
j and recall that IDr,A(p0, . . . , pr) ∶=Dδ (DA(p0+λ p1)) by Theorem 4.5. It follows that:

∂ ID
∂ci,a

(p0, p1) =
δ

∑
1
(∂Dδ

∂Γ j
(DA(p0+λ

∗p1))
∂Γ j

∂ci,a
(p0, p1).

Observe that:
∂DA(p0+λ

∗p1)
∂c0,a

= ∂DA

∂ca
(p0+λ

∗p1) = 0,
∂DA(p0+λ

∗p1)
∂c1,a

= λ
∗ ∂DA

∂ca
(p0+λ

∗p1) = 0.

Moreover:

0 = ∂DA(p0+λ
∗p1)

∂ci,a
=

δ

∑
j=0

∂Γ j

∂ci,a
(p0, p1)(λ

∗) j.

Recall that if ∂Dδ

∂Γ j
(DA(p0+λ

∗p1) ≠ 0 for some j then by biduality ∂Dδ

∂Γ j
(DA(p0+λ

∗p1)) = (λ
∗) j, which

would conclude the proof. If otherwise ∂Dδ

∂Γ j
(DA(p0+λ

∗p1)) = 0 for all j then the assertion is also true. �

Iterated discriminants with respect to one variable appear frequently in the study and applications of
the Cylindrical Algebraic Decomposition proposed by Collins in 1975, and this lead to try to describe the
singularities of discriminant hypersurfaces. In particular, the best detailed study is done by Busé and Mourrain
in Theorem 6.8 and Corollary 6.9 in [BM09] for homogeneous polynomials of three variables (or more, but
iterating twice the computation of a discriminant with respect to one of the variables) using resultants, with
proofs that cannot be extended for general configurations A.

An interesting subsequent work is the paper by Lazard and McCallum [LMcC09]. Again, they consider
polynomials f in variables (x,y,z1, . . . ,zm) and univariate iterated discriminants in x and y (thinking of f
in the ring k[z1, . . . ,zm][x,y]) with rather elementary techniques. They identify the factors of their iterated
discriminants but don’t identify the exponents in general. However, they prove a series of very nice general
and useful results, in particular Proposition 9 about the regular points of the discriminant (which is a version
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of biduality), and Propositions 10 through 14 about the singular points, that could be used to identify the
exponents µk in particular cases.

Based on the computation of different examples (see for instance Examples 2.3 and Example 4.6), and the
results in [BM09] and [LMcC09] that we mentioned, we see some evidence of the following.

Conjecture 4.9. The multiplicity µk are equal to 2 if Yk is a component of codimension one corresponding to
the closure of the locus of those p for which there are two different non-degenerate multiple roots (the double
point locus), while µk equals 3 when Yk is a component of codimension one corresponding to the locus of
those p for which there is a degenerate multiple root (the cusp locus).

5. COMPARING MIXED AND ITERATED DISCRIMINANTS

In this section we consider the case when A equals the lattice points in a cartesian product of dilates of
standard simplices: d1∆k1 ×⋯×d`∆kl , for some ` ≥ 1. In other words we investigate Segre-Veronese varieties
XA = Pk1(d1)×⋯×Pk`(d`).

The symbol Pk(d) denotes the Veronese embedding of degree d in dimension k, i.e. the variety Pk

embedded in P(
k+d

d )−1 by the global sections of the line bundle OPk(d). We occasionally denote Pk(1) by Pk.
The symbol Pk1(d1)×⋯×Pk`(d`) denotes the Segre embedding of the above defined Veronese embeddings,

more precisely the variety Pk1 ×⋯×Pk` embedded via the global sections of the line bundle π
∗
1OPk1 (d1)⊗

. . .⊗π
∗
` OPk` (d`), where πi denotes the ith projection πi ∶ Pk1 ×⋯×Pk` → Pki . These are toric embeddings

corresponding to the configurations of lattice points of the polytopes d1∆k1 × . . .×dl∆k` .
When di = 1 we recover the case of hyperdeterminants, which has been completely solved in [WZ96]. In

Proposition 5.2 we show that when ` = 1 there is equality if and only if r = 1 and d1 = 2. We then conjecture
that these are all the possible cases (see Conjecture 5.3), that is, in all other cases the singularities of the
discriminantal locus have codimension one in the dual variety. We conclude with Theorem 5.6, which covers
the case in which all di > 1.

To determine when the iterated and mixed discriminants of Segre-Veronese varieties are equal, we start
with the following lemma, which allows us to compute the degree of MDr,d∆n , that is, the case in which we
consider (r+1) polynomials of degree d in n variables. Recall that when r ≤ n, we know by Proposition 3.3
that the mixed discriminant equals the discriminant of the Cayley configuration given by the lattice points in
the product of simplices ∆r ×d∆n.

Lemma 5.1. If r ≤ n then deg(MDr,d∆n) = (n+1)(n
r)dr(d−1)n−r.

Proof. We will use [GKZ94, Ch. 13, Theorem 2.4], which tells us that this degree is equal to the coefficient
of the monomial xryn in the expansion of

S(x,y) = 1

((1+x)(1+y)−x(1+y)−dy(1+x))2 =
1

(1−(d−1)y−dxy)2 .

We may write

S(x,y) = ( 1
1−q

)
2

= ∑
n≥0

(n+1)qn,

where q = (d−1)y+dxy = y((d−1)+dx).
Since

qn =
⎛
⎝

n

∑
j=0

(n
j
)(d−1)n− jd jx j⎞

⎠
yn,
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we have

(5.1) S(x,y) = ∑
n≥0

n

∑
j=0

(n+1)(n
j
)(d−1)n− jd jx jyn.

From this expansion, we see that the coefficient of xryn is equal to

(n+1)(n
r
)(d−1)n−rdr

when r ≤ n, and is equal to 0 if r > n. This completes the proof.
�

Proposition 5.2. Let 1 < d and 1 ≤ r ≤ n. Then MDr,d∆n = IDr,d∆n if and only if r = 1 and d = 2.

The fact that this equality holds in the case of r = 1 and d = 2 was shown in [Ott13, Theorem 8.2]. Although
we include this in our proof for completeness, the main contribution of this result is that equality does not
hold in any other case.

Proof. For any d > 1, the configuration of lattice points in d∆n is non-defective [BJ14] and as r ≤ n, it is
enough to check that deg(MDr,d∆n) = deg(IDr,d∆n) by Propositions 3.3 and 3.4.

From Lemma 5.1 we know that

deg(MDr,d∆n)) = (n+1)(n
r
)dr(d−1)n−r.

By Proposition 4.5 we also know that

deg(IDr,d∆n) = (n+1)(d−1)n(r+1)((n+1)(d−1)n−1)r.

To determine when these are equal, we will consider the ratio of the two degrees, both of which are nonzero
for d > 1. We have

deg(IDr,d∆n)
deg(MDr,d∆n)

= (n+1)(d−1)n(r+1)((n+1)(d−1)n−1)r

(n+1)(n
r)dr(d−1)n−r

= (d−1)r(r+1)((n+1)(d−1)n−1)r)
(n

r)dr
.

For any d > 1 we have

(n+1)(d−1)n−1 = n(d−1)n+(d−1)n−1 ≥ n(d−1)n,

with equality if and only if d = 2. Thus the numerator satisfies

(d−1)r(r+1)((n+1)(d−1)n−1)r ≥ (d−1)r(r+1)(n(d−1)n)r = (d−1)r(n+1)(r+1)nr.

Since (n
r) ≤

nr

r! , we have

deg(IDr,d∆n)
deg(MDr,d∆n)

≥ (d−1)r(n+1)(r+1)nr

nr

r! dr
= (d−1)r(n+1)(r+1)!

dr = ((d−1)n+1

d
)

r

⋅ (r+1)!

If d = 2, then this ratio is (r+1)!
dr = (r+1)!

2r ≥ 1, with equality if and only if r = 1. If d > 2, then (d −1)n+1 ≥
(d−1)2 ≥ 2(d−1) = 2d−2 > d. Thus (d−1)n+1

d > 1, and so

deg(IDr,d∆n)
deg(MDr,d∆n)

> (r+1)!.

Thus except possibly in the case of d = 2 and r = 1, we have deg(IDr,d∆n) > deg(MDr,d∆n).
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To see that d = 2 and r = 1 gives deg(MDr,d∆n)) = deg(IDr,d∆n), note that in this case the ratio of the degrees
is

(2−1)1(1+1)((n+1)(2−1)n−1)1)
(n

1)21
= 2(n+1−1)

2n
= 1.

�

Geometrically, Proposition 5.2 shows that for Pr(1)×Pn(d) the associated mixed discriminant is equal to
the iterated discriminant only when r = 1 and d = 2. Note that we don’t consider the case d = 1 because this
case is defective.

It is natural to consider the same question for any product-of-simplices :

Pr(1)×Pk1(d1)×⋯×Pk`(d`).
Setting d = (d1, . . . ,d`) and k = (k1, . . . ,k`), let A`,d,k denote the configuration corresponding to Pk1(d1)×⋯×
Pk`(d`).

We conjecture the following:

Conjecture 5.3. We have IDr,A`,d,k = MDr,A`,d,k if and only if Pr(1)×Pk1(d1)×⋯×Pk`(d`) is of one of the
following forms:

(1) Pr ×Pm×Pm,m ≥ 1,r = 1,2,
(2) (P1)4,
(3) P1×Pn(2).

This conjecture was inspired by the question posed in [GKZ94, Chapter 14, pg 479], which coincides with
the above conjecture when di = 1 for all i. Their conjecture (and thus our conjecture in this special case) was
proved in [WZ96]. Note that Proposition 5.2 implies that Conjecture 5.3 is true when ` = 1, which puts us
into case (3).

To study our conjecture in general, the following theorem giving the degree of the mixed discriminant
MDr,A`,d,k will be useful. Let B = B` be the set of all non-empty subsets Ω ⊂ {0,1, . . . ,`}. For each Ω ∈ B, let

dΩ = ∑
j∈Ω

d j.

Let δ(Ω) ∈ Z`+1
+ be the characteristic vector of Ω. For every κ = (r,k1, . . . ,k`) ∈ Zr+1

+ , let P(κ) denote
the set of all partitions of κ into a sum of vectors δ(Ω); in other words, P(κ) is the set of all non-negative
integral vectors (mΩ)Ω∈B such that ∑Ω∈B mΩδ(Ω) = κ .

Theorem 5.4 (Theorem 13.2.5, [GKZ94]). The degree of MDr,A`,d,k is given by

∑
(mΩ)∈P(κ)

(1+ ∑
Ω∈B

mΩ)!∏
Ω∈B

(dΩ−1)mΩ

mΩ!
.

Note that any partition using the vector δ({0}) = (1,0, . . . ,0) will not contribute to this sum, since
d{0}−1 = 0. Letting C be the set of all nonempty subsets of {1, . . . ,`} and letting k = (k1, . . . ,k`) as before,
we have that deg(IDr,A`,d,k) = (r+1)δ(δ −1)r, where

δ = ∑
(mΩ)∈P(k)

(1+ ∑
Ω∈C

mΩ)!∏
Ω∈C

(dΩ−1)mΩ

mΩ!
.

When it is clear from context, we will abbreviate deg(MDr,A`,d,k) as deg(MD) and deg(IDr,A`,d,k) as deg(ID).
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Example 5.5. Let us compare the degrees of the mixed and the iterated discriminant when r = 1, ` = 2, and
k1 = k2 = 1. To compute the degree of the mixed discriminant, we consider all partitions of κ = (1,1,1). We
may discount any partition with the vector (1,0,0), as this partition would contribute a term of 0 to deg(MD).
Thus, the only relevant partitions are

● (1,1,1),
● (1,1,0)+(0,0,1), and
● (1,0,1)+(0,1,0).

The contributions from these terms to deg(MD) are

● 2! ⋅ (d1+d2)1
1! = 2(d1+d2) ,

● 3! ⋅ d1
1 ⋅(d2−1)1

1!⋅1! = 6d1(d2−1), and

● 3! ⋅ d1
2 ⋅(d1−1)1

1!⋅1! = 6d2(d1−1),

respectively. (Note that some of these contributions will be zero if one or both of d1 and d2 are equal to 1.)
Adding these gives

deg(MD) = 2(d1+d2)+6d1(d2−1)+6d2(d1−1) = 12d1d2−4d1−4d2 = 4(3d1d2−d1−d2).

To compute deg(ID), we must consider the partitions of k = (1,1). There are only two: (1,1) and (1,0)+
(0,1). The contributions of these to δ are

● 2! ⋅ (d1+d2−1)1
1! = 2(d1+d2−1) and

● 3! ⋅ (d1−1)1(d2−1)1
1!⋅1! = 6(d1−1)(d2−1),

respectively. Thus δ = 2(d1+d2−1)+6(d1−1)(d2−1) = 6d1d2−4d1−4d2+4. It follows that

deg(ID) = 2δ(δ −1) = 2(6d1d2−4d1−4d2+4)(6d1d2−4d1−4d2+3).

We will now argue that deg(ID) > deg(MD), unless d1 = d2 = 1. First we perform the change of variables
d1 = d′1+1 and d2 = d′2+1, to remove some of the negatives. This gives

deg(MD) = 4(3d′1d′2+2d′1+2d′2+1)

and

deg(ID) = 2(6d′1d′2+2d′1+2d′2+2)(6d′1d′2+2d′1+2d′2+1).

Now, if either d1 or d2 is greater than 1, then (6d′1d′2+2d′1+2d′2+1) is at least 3, meaning that

deg(ID) ≥ 6(6d′1d′2+2d′1+2d′2+2) = 36d′1d′2+12d′1+12d′2+12.

This is certainly greater than

deg(MD) = 12d′1d′2+8d′1+8d′2+4,

since d′1 and d′2 are nonnegative. So, in this case deg(ID) > deg(MD). If we do have d1 = d2 = 1, then
deg(MD) = 4 = deg(ID). This equality was predicted by case (1) of Conjecture 5.3.

We will now prove that Conjecture 5.3 holds in the case that r = 1 and di > 1 for all i.

Theorem 5.6. Suppose di > 1 for all i. Then the only case where MD1,A`,d,k = ID1,A`,d,k is when ` = 1 and
d1 = 2.
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Proof. This proposition holds when ` = 1 by Proposition 5.2, and when ` = 2 and k1 = k2 = 1 by Example 5.5.
Thus it suffices to prove that we have deg(MD1,A`,d,k) < deg(ID1,A`,d,k) for ` = 2 with (k1,k2) ≠ (1,1), and for
` ≥ 3.

First we consider how partitions of κ = (1,k1, . . . ,k`) relate to partitions of k = (k1, . . . ,k`). Each partition
of κ gives rise to a partition of k simply by deleting the first coordinate and grouping together vectors that
are now identical. Note that no partition (mΩ) contributing to deg(MD) uses the vector (1,0, . . . ,0). Also,
exactly one vector in each partition of κ is of the form (1,∗, . . . ,∗). Call the support of this vector Ψ((mΩ)),
or simply Ψ when the context is clear. Note that mΨ = 1. Let Ξ denote Ψ∖{0}. Isolating Ψ and Ξ, we may
write

deg(MD) = ∑
(mΩ)∈P(κ)

(1+ ∑
Ω∈B

mΩ)!∏
Ω∈B

(dΩ−1)mΩ

mΩ!

= ∑
(mΩ)∈P(κ)

(1+ ∑
Ω∈B

mΩ)! ⋅ (dΨ−1)mΨ

mΨ!
⋅ (dΞ−1)mΞ

mΞ!
∏

Ω∈B,Ω≠Ψ,Ξ

(dΩ−1)mΩ

mΩ!

= ∑
(mΩ)∈P(κ)

(1+ ∑
Ω∈B

mΩ)! ⋅ (dΨ−1) ⋅ (dΞ−1)mΞ

mΞ!
∏

Ω∈B,Ω≠Ψ,Ξ

(dΩ−1)mΩ

mΩ!
.

Given (mΩ) a partition of κ , let (nΩ) be the corresponding partition of k. So, if the term in deg(MD) coming
from (mΩ) is

(1+ ∑
Ω∈B

mΩ)! ⋅ (dΨ−1) ⋅ (dΞ−1)mΞ

mΞ!
∏

Ω∈B,Ω≠Ψ,Ξ

(dΩ−1)mΩ

mΩ!
,

then the term in δ coming from (nΩ) is

(1+ ∑
Ω∈B

mΩ)! ⋅ (dΞ−1)mΞ+1

(mΞ+1)!
∏

Ω∈B,Ω≠Ψ,Ξ

(dΩ−1)mΩ

mΩ!
.

Note that dΞ = dΨ−1. We know that dΞ ≠ 1 by our assumption that di > 1 for all i, so the change in factor
between these two contributions is

dΞ−1
dΞ(mΞ+1)

.

Since dΞ > 1, this is at least 1
2(mΞ+1) . In general, mΩ ≤max{ki} for any Ω; since the vector δ(Ψ) also appears

in the partition of κ , we in fact have mΞ ≤ max{ki}−1. So, mΞ +1 ≤ max{ki}. It follows that 1
2(mΞ+1) is

greater than or equal to 1
2max{ki} . So, passing from a partition of κ to a partition of k, the corresponding term

in δ is at least 1
2max{ki} times the corresponding term in deg(MD).

Now we consider how many partitions of κ give rise to the same partition of k. Given a partition (nΩ)
of k, all relevant partitions of κ that map to it can be constructed by choosing a single vector used in (nΩ),
and appending a 1 to the 0th coordinate. Thus, the number of partitions of κ mapping to (nΩ) is equal to the
number of distinct vectors used in (nΩ). The number of distinct vectors in this partition can be bounded by
k1+ . . .+k`, since this is the total sum of all the entries of all the vectors used. Thus, we have that

δ ≥ 1
2max{ki}(k1+⋯+k`)

deg(MD).
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It follows that

deg(ID) = 2δ(δ −1) ≥2
1

2max{ki}(k1+⋯+k`)
deg(MD) ⋅ (δ −1)

= δ −1
max{ki}(k1+⋯+k`)

⋅deg(MD).

To show that deg(ID) > deg(MD), it remains to show that δ −1 >max{ki}(k1+⋯+k`).
First, rewrite

δ = ∑
(mΩ)∈P(k)

(1+ ∑
Ω∈C

mΩ)!∏
Ω∈C

(dΩ−1)mΩ

mΩ!

= ∑
(mΩ)∈P(k)

(1+ ∑
Ω∈C

mΩ) ⋅ (∑Ω∈C mΩ)!
∏Ω∈C mΩ!

∏
Ω∈C

(dΩ−1)mΩ

= ∑
(mΩ)∈P(k)

(1+ ∑
Ω∈C

mΩ) ⋅( ∑Ω∈C mΩ

mΩ1 , . . . ,mΩt

)∏
Ω∈C

(dΩ−1)mΩ .

For any partition of k, we have that ∑Ω∈C mΩ ≥ max{ki}, since ki vectors (counted with multiplicity) must
have nonzero ith coordinate. Moreover, a multinomial coefficient (a1+a2+⋯+as

a1,a2,⋯,as
) can be rewritten as the product

(a1
a1
)(a1+a2

a2
)⋯(a1+a2+⋯+as

as
), so it is at least as large as (a1+a2+⋯+as

as
). Of course, we may reorder the ai’s in any

way we desire. So, as long as some ai satisfies 0 < ai < a1 +⋯+as, we have (a1+a2+⋯+as
a1,a2,⋯,as

) ≥ (a1+a2+⋯+as
ai

) ≥
(a1+a2+⋯+as

1 ) = (a1+⋯+as). This means that if (mΩ) is a partition of k that uses at least two different vectors,
we have ( ∑Ω∈C mΩ

mΩ1 ,...,mΩt
) ≥∑Ω∈C mΩ ≥max{ki}. Finally, the product∏Ω∈C(dΩ−1)mΩ is greater than or equal to 1.

Thus, every partition of k that uses at least distinct two vectors contributes at least (1+max{ki}) ⋅max{ki} to
δ . We will now argue that there are at least ` such partitions of k.

To do this, we split into two cases: where ` = 2, and where ` ≥ 3. If ` = 2 and (k1,k2) ≠ (1,1), then there
are indeed at least two such partitions of k = (k1,k2). For instance, we could use (1,1)+(k1−1)(1,0)+(k2−
1)(0,1) and k1(1,0)+k2(0,1). Both do indeed use at least two distinct vectors since at least one of k1−1
and k2−1 is nonzero.

Assume now ` ≥ 3. We can construct a partition of k that uses at least two vectors by choosing any 0−1
vector with support size at least 2 and at most `−1, and then completing the partition by using standard basis
vectors. The condition on the support size guarantees that at least one other vector will be used, and that this
new standard basis vector has not already been used. There are 2`−2−` such initial vectors, which is greater
than or equal to ` since ` ≥ 3. Thus, at least ` partitions of k contribute at least (1+max{ki}) ⋅max{ki} to δ .

Note that `max{k1} ≥ k1+⋯+k`. It follows that

δ ≥`(1+max{ki}) ⋅max{ki}
≥`max{ki} ⋅max{ki}+`
>`max{ki} ⋅max{ki}+1

≥max{ki}(k1+⋯+k`)+1

Equivalently, δ −1 >max{ki}(k1+⋯+k`). This implies that deg(ID) > deg(MD), as desired. �
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6. CURVES IN THE PLANE

In this section we will determine when the mixed and iterated discriminants associated to a planar
configuration are equal. Let A = P∩Z2, where P is a smooth lattice polygon of dimension 2. Let vA, pA,
and VA denote the normalized area areaZ(P) (that is, twice its Euclidean area), the lattice perimeter (that
is, the number of points in A on the edges of P), and the number of vertices of P, respectively. It is well
known [GKZ94] that in this smooth case the degree δA of DA equals

δA = 3vA−2pA+VA.

The degree of the mixed discriminant can be computed from Corollary 3.15 in [CCD+13] as

deg(MD(A,A)) = 2(areaZ(2P)−areaZ(P)− pA) = 2(4vA−vA− pA) = 6vA−2pA.

We can reformulate these equations in terms of the number of interior lattice points of P. Let iA denote the
number of interior lattice points of P. Then we know by Pick’s Theorem that

vA = 2iA+ pA−2,

which can be rewritten as vA− pA = 2iA−2. This allows us to write

deg(MD(A,A)) = 6vA−2pA = 4vA+2(vA− pA) = 4vA+4iA−4 = 4(vA+ iA−1).

and

δA = 3vA−2pA+VA = vA+2(vA− pA)+VA = vA+4(iA−1)+VA

Example 6.1. Let A = ((0,0),(2,0),(0,2)). Let us verify that deg(MD(A,A)) = deg(ID1,A), as implied by
Proposition 5.2. We have vA = 4, iA = 0, and VA = 3. This gives us

deg(MD(A,A)) = 4(vA+ iA−1) = 4(4−0−1) = 12

and

δA = vA+4(iA−1)+VA = 4+4(0−1)+3 = 3.

This means that deg(ID1,A) = 2δA(δA−1) = 2 ⋅3 ⋅2 = 12 = deg(MD(A,A)).

Example 6.2. Assume A = conv((0,0),(1,0),(0,1),(1,1)). Let us verify that deg(MD(A,A)) = deg(ID1,A),
as implied by Example 2.1. We have vA = 2, iA = 0, and VA = 4. This gives us

deg(MD(A,A)) = 4(vA+ iA−1) = 4(2−0−1) = 4

and

δA = vA+4(iA−1)+VA = 2+4(0−1)+4 = 2.

This means that deg(ID1,A) = 2δA(δA−1) = 2 ⋅2 ⋅1 = 4 = deg(MD(A,A)).

It turns out that these two examples are the only smooth polygons P where the iterated and the mixed
discriminants associated to the configuration of lattice points in P coincide.

Theorem 6.3. The only smooth polygons P with an associated discriminant without singularities in codimen-
sion bigger than 1 are the known cases of the triangle 2∆2 and the unit square.
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Proof. Assume P is such a polygon, A = P∩Z2 and δA = deg(DA). Using our formulas for MD(A,A) and δA,
we have that

4(vA+ iA−1) = 2(vA+4(iA−1)+VA)(vA+4(iA−1)+VA−1),

which is equivalent to

2(vA+ iA−1) = (vA+4(iA−1)+VA)(vA+4(iA−1)+VA−1).

Suppose for the sake of contradiction that iA > 0. Then vA + iA − 1 ≤ vA + 4(iA − 1) < vA + 4(iA − 1) +VA.
Now, if a,b,c,d are positive real numbers with ab = cd, then b < c implies a > d. This means that 2 >
vA+4(iA−1)+VA−1 ≥ vA+VA−1 ≥ vA+2. In other words, vA < 0, a contradiction. Thus we know that iA = 0.

Setting iA = 0 reduces our equation to

2(vA−1) = (vA+VA−4)(vA+VA−5).

By a classification result due to [Koe91] and presented again in [Cas12], all convex lattice polygons with no
interior lattice points are equivalent to either the triangle 2∆2 = conv((0,0),(2,0),(0,2)), or to a polygon of
the form conv((0,0),(0,1),(a,0)),(b,1), where a ≥ b ≥ 0 and a ≥ 1. These polygons are illustrated in Figure
2. All of these polygons have either three or four vertices. So, we must have VA = 3 or VA = 4.

(0, 0) (2, 0)

(0, 2)

(0, 0) (a, 0)

(0, 1) (b, 1)

(a ≥ b ≥ 0 and a ≥ 1)

FIGURE 2. All lattice polygons with no interior lattice points

If VA = 3, our equation becomes

2(vA−1) = (vA−1)(vA−2).

This means that either vA = 1, or 2 = vA−2; that is, vA = 1 or vA = 4. If vA = 1, the only possibility for P is the
primitive lattice triangle of normalized 1; but this gives a degenerate system, and so is removed from our con-
sideration. If vA = 4, the only possibilities of P are conv((0,0),(2,0),(0,2)) and conv((0,0),(4,0),(0,1)).
The second polygon is not smooth, so the only possible triangle is conv((0,0),(2,0),(0,2)).

If VA = 4, our equation becomes

2(vA−1) = vA(vA−1).

This means that either vA = 1 (which is impossible impossible with VA = 4), or that vA = 2. The only polygon
with 4 vertices and area 2 is the square conv((0,0),(1,0),(0,1),(1,1))

Thus we have shown that conv((0,0),(2,0),(0,2)) and conv((0,0),(1,0),(0,1),(1,1)) are the only
possibilities for P. Having already verified that deg(MD(A,A)) = 2δA(δA−1) for both these polygons, this
completes the proof. �
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