
Journal of Physics A: Mathematical and Theoretical

PAPER • OPEN ACCESS

Optimal entanglement generation in GHZ-type
states
To cite this article: N Giovenale et al 2023 J. Phys. A: Math. Theor. 56 495302

 

View the article online for updates and enhancements.

You may also like
Dynamics of entanglement and state-
space trajectories followed by a system of
four-qubit in the presence of random
telegraph noise: common environment
(CE) versus independent environments
(IEs)
L T Kenfack, M Tchoffo, M N Jipdi et al.

-

Open-system dynamics of entanglement:a
key issues review
Leandro Aolita, Fernando de Melo and
Luiz Davidovich

-

Quantifying entanglement resources
Christopher Eltschka and Jens Siewert

-

This content was downloaded from IP address 181.116.169.48 on 19/12/2023 at 19:09

https://doi.org/10.1088/1751-8121/ad0a44
https://iopscience.iop.org/article/10.1088/2399-6528/aac0ef
https://iopscience.iop.org/article/10.1088/2399-6528/aac0ef
https://iopscience.iop.org/article/10.1088/2399-6528/aac0ef
https://iopscience.iop.org/article/10.1088/2399-6528/aac0ef
https://iopscience.iop.org/article/10.1088/2399-6528/aac0ef
https://iopscience.iop.org/article/10.1088/2399-6528/aac0ef
https://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001
https://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001
https://iopscience.iop.org/article/10.1088/1751-8113/47/42/424005


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 56 (2023) 495302 (20pp) https://doi.org/10.1088/1751-8121/ad0a44

Optimal entanglement generation in
GHZ-type states

N Giovenale1, L Hernandez-Martinez2, A P Majtey1
and A Valdés-Hernández2,∗
1 Instituto de Física Enrique Gaviola, CONICET and Universidad Nacional de
Córdoba, Ciudad Universitaria, X5016LAE Córdoba, Argentina
2 Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal
20-364, Ciudad de México, Mexico

E-mail: andreavh@fisica.unam.mx

Received 17 August 2023; revised 26 October 2023
Accepted for publication 7 November 2023
Published 17 November 2023

Abstract
The entanglement production is key for many applications in the realm of
quantum information, but so is the identification of processes that allow to
create entanglement in a fast and sustained way. Most of the advances in this
direction have been circumscribed to bipartite systems only, and the rate of
entanglement in multipartite system has been much less explored. Here we
contribute to the identification of processes that favor the fastest and sustained
generation of tripartite entanglement in a class of 3-qubit GHZ-type states. By
considering a three-party interaction Hamiltonian, we analyze the dynamics of
the 3-tangle and the entanglement rate to identify the optimal local operations
that supplement the Hamiltonian evolution in order to speed-up the generation
of three-way entanglement, and to prevent its decay below a predetermined
threshold value. The appropriate local operation that maximizes the speed at
which a highly-entangled state is reached has the advantage of requiring access
to only one of the qubits, yet depends on the actual state of the system. Other
universal (state-independent) local operations are found that conform schemes
to maintain a sufficiently high amount of 3-tangle. Our results expand our
understanding of entanglement rates to multipartite systems, and offer guid-
ance regarding the strategies that improve the efficiency in various quantum
information processing tasks.
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1. Introduction

In the realm of quantum information, generating entanglement in a sustained way typically
requires controlled operations that may pose significant difficulties. This calls for studies that
can guide us in effectively harnessing interactions that facilitate the entanglement production,
and prevent such resource from being lost under certain dynamics. In particular, the efficient
generation ofmultipartite entanglement represents a relevant challenge, both theoretically and
experimentally. It deserves attention mainly because multipartite systems can exhibit differ-
ent types of entanglement that are key resources for many quantum information processing
tasks. In 3-partite systems, specifically, genuine tripartite entanglement generation is an active
area of research, and new techniques and advancements are continuously emerging. In recent
years, efforts have been invested in exploring novel experimental platforms, refining exist-
ing techniques, and developing new theoretical frameworks to further understand and exploit
the power of genuine tripartite entanglement for various applications in quantum information
processing and quantum communication [1–7].

Along with the goal of generating multipartite entangled states, it is desirable to generate
them as fast as possible, and to prevent its eventual decay induced by the specific dynamics that
govern the evolution of the system. Achieving this will impact the applicability of multipartite
systems in quantum computing tasks. The production of entanglement in the minimal possible
time has been explored from various perspectives. One line of research that has attracted con-
siderable attention focuses on identifying the most efficient use that can be made of a given
Hamiltonian for generating entanglement, by studying the Hamiltonian entanglement capabil-
ities and the entanglement rates. The entanglement rate of a non-local Hamiltonian acting on a
two-qubit system was introduced in [8], where it was shown that the entangling process can be
more efficient by supplementing the action of the Hamiltonian with local unitary operations or
by using ancilla systems. Entangling capabilities of unitary transformations acting on a bipart-
ite quantum system of arbitrary dimension were studied in [9]. In [10] a geometric approach
to quantify the capability of creating entanglement for a general physical interaction acting on
two qubits is developed. Bounds for the entanglement capabilities have been further explored
in [11–16]. Other related approaches attempt to answer what is the minimum time for reach-
ing a target entangled state, leading for example to the study of the quantum braquistochrone
problem [17]. Recent works focus on the problem of speeding up the entanglement genera-
tion in hybrid systems, in which interactions between superconducting and atomic qubits are
mediated by the bosonic fields of a cavity [18, 19].

Most of the aforementioned studies circumscribe to bipartite systems, hence are limited
to the production of bipartite entanglement. Only in [10] the first steps to study the genu-
ine three-qubit entanglement capability is presented. In a system of three qubits, there are
two inequivalent ways in which the parties can be genuinely entangled (meaning that non-
vanishing correlations exists across all three bipartitions of the system) [20–23]. Two families
of states are identified, according to the type of entanglement exhibited by its elements: the
first family corresponds to GHZ-type states, which posses a non-zero 3-tangle [20, 24–26],
indicating that a three-way entanglement is present [24]. The second family corresponds to
W-type states, characterized by having vanishing 3-tangle, so all the entanglement across a
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given bipartition decomposes as sums of pairwise correlations. The GHZ-type and the W-type
states have different properties and applications in quantum information processing [5–7].

In this paper we contribute to the study of fast generation of genuine entanglement in a class
of 3-qubit states that pertain to the GHZ-type family. By considering a three-party interaction
Hamiltonian that preserves the structure of the initial state along its evolution, we analyze
the dynamics of the 3-tangle and the entanglement rate to design appropriate local operations,
some of them requiring access to only one of the qubits, aimed at increasing the speed at which
a highly-entangled state is reached. Protocols are proposed that combine the Hamiltonian
evolution with single-qubit operations to prevent the 3-tangle from decaying below a certain
desired threshold value. Our results offer guidance in the understanding of entanglement rates
in multipartite systems, with potential impact in the implementation of more efficient quantum
information processing tasks with enhanced entanglement properties [4].

The article is structured as follows. Section 2 introduces the system of interest, and provides
an analysis of the Hamiltonian dynamics of the tripartite-entanglement and the entanglement
rate, focusing on the extremal values of these quantities. In section 3 we tackle the problem
of optimizing the entanglement rate by means of unitary operations that are performed on a
single qubit, in combination with the Hamiltonian evolution. Section 4 is devoted to study
different schemes that enable a fast generation of an entangled state while maintaining a high
degree of entanglement throughout the evolution, by supplementing theHamiltonianwith local
operations. Finally, in section 5, we present some final remarks.

2. Entanglement dynamics in 3-qubit GHZ-like states

2.1. Hamiltonian evolution

We explore the entanglement evolution of GHZ-like states with the following structure

|ψ⟩= α|000⟩+β |111⟩, (1)

with |α|2 + |β|2 = 1, and {|0⟩, |1⟩} the eigenestates of the Pauli operator σz with eigenvalues
{+,−}, respectively. We will confine our attention to Hamiltonians that involve interactions
among the 3 qubits [4], and preserve the structure of the state (1). In particular, we focus on
interaction Hamiltonians of the form

H=
∑
ijk

gijkσi⊗σj⊗σk, (2)

where i, j,k ∈ {x,y}, and σx and σy are the Pauli operators. By an appropriate redefinition of
the interaction coupling constants, and considering its action on states (1), the Hamiltonian (2)
can be substituted by the simpler expression

H= γxσx⊗σx⊗σx+ γyσy⊗σy⊗σy, (3)

which is the one considered in what follows.
An initial state of the form

|ψ0⟩= sinϕ |000⟩+ eiφ cosϕ |111⟩, (4)

with ϕ ∈ [0,π/2] and φ ∈ [0,2π], evolves under the evolution operator U= e−iHt/ℏ, with H
given by (3). The state at time t thus reads

|ψ (t)⟩= eiα1(t)
√
p(t) |000⟩+ eiα2(t)

√
1− p(t) |111⟩, (5)
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with 0⩽ p(t)⩽ 1, and α1,2(t) real functions given by

tanα1 (t) =
tan

(
π
2
t
T

)
(−r cosφ + sinφ)

√
r2 + 1 tanϕ + tan

(
π
2
t
T

)
(r sinφ + cosφ)

, (6)

tanα2 (t) =

√
r2 + 1 sinφ − r tan

(
π
2
t
T

)
tanϕ

√
r2 + 1 cosφ − tan

(
π
2
t
T

)
tanϕ

, (7)

p(t) = sin2
(π
2
t
T
+ϕ

)
− b sin

(
π
t
T

)
sin2ϕ, (8)

where we defined r= γx/γy, and introduced a characteristic time

T=
πℏ

2|γy|
√
r2 + 1

, (9)

uniquely determined by the Hamiltonian parameters. The additional parameter b reads

b=
1
2

(
1− r sinφ + cosφ√

r2 + 1

)
, (10)

and is determined by the Hamiltonian and the initial relative phase φ. It can be seen that,
independently of r, this parameter takes values in the interval [0,1].

The state (5) is physically equivalent to |ψ̃(t)⟩= e−iα1(t)|ψ (t)⟩, which has the form

|ψ̃ (t)⟩=
√
p(t) |000⟩+ eiφ(t)

√
1− p(t) |111⟩

= sinϕ(t) |000⟩+ eiφ(t) cosϕ(t) |111⟩, (11)

with ϕ(t) ∈ [0,π/2] defined from sinϕ(t)≡
√
p(t), and φ(t) = α2(t)−α1(t). Therefore, the

evolved state has always the same structure as the initial one.

2.2. Tripartite entanglement

Since we are dealing with a GHZ-type 3-qubit state, we will resort to the 3-tangle [24] to
quantify the amount of tripartite (genuine) entanglement. The 3-tangle is defined as

τ = C2
a|bc−C2

a|b−C2
a|c (12)

where Ci|j is the concurrence between subsystems i and j [27–29]. For a general 3-qubit state
of the form

|η⟩=
∑

n,l,m=0,1

cnlm|nlm⟩, (13)

and in terms of aij ≡ c0ij and bij ≡ c1ij, the 3-tangle can be directly computed from

τ = 4|d1 − 2d2 + 4d3|, (14)

where [24]

d1 = a200b
2
11 + a201b

2
10 + a210b

2
01 + a211b

2
00, (15a)

d2 = a00a11b00b11 + a01a10b10b01 +(a10b01 + a01b10)(a00b11 + a11b00) , (15b)
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d3 = a00a11b10b01 + a01a10b00b11. (15c)

From here and equation (11) the 3-tangle takes the simple form

τ (t) = 4p(t) [1− p(t)] = sin2 2ϕ(t) . (16)

The square of τ coincides, for the particular family of states considered, with the recently
introduced triangle measure E△ of 3-partite entanglement [30]. From equation (8) it follows
that

τ (t) = 1−∆(t) , (17)

with

∆(t) = [(1− 2b) sin2ϕ sin(π t/T)− cos2ϕ cos(π t/T) ]2 . (18)

From this last expression, it can be verified that T is precisely the period of τ . In what follows
we will use the simplified notation t̃ to refer to the dimensionless time

t̃≡ t
T
=

2|γy|
√
r2 + 1

πℏ
t. (19)

2.2.1. Maximal values of 3-tangle. Themaximum value of τ equals 1, and is reached at times
t̃max so

τmax = τ (̃tmax) = 1, (20)

with t̃max determined by the positive roots of∆(t), i.e. determined by positive solutions of the
equation

(1− 2b)sin2ϕ sinπt̃max = cos2ϕ cosπt̃max. (21)

If cos2ϕ = 0, then τ(0) = 1 and the times at which this maximum value is attained again
are integers multiples of the period T, so in this case the solutions to (21) are

t̃max = k, k= 1,2, . . . . (22)

If sin2ϕ = 0 (meaning that τ(0) = 0), equation (21) reduces to cosπt̃max = 0, with solutions

t̃max =
1
2
(2k+ 1) , k= 0,1, . . . (23)

that are half integers multiples of the period T.
If 1− 2b= 0 (with cos2ϕ ̸= 0), the solutions to equation (21) are the same as those in (23).
For (1− 2b) ̸= 0, cos2ϕ ̸= 0, and sin2ϕ ̸= 0, we get

t̃max =
1
π

{
arctan

[
1

(1− 2b) tan2ϕ

]
+ kπ

}
, (24)

with k= 0,1,2, . . . suitably chosen to ensure that t̃max > 0.
For all initial states of the form (4) t̃max ⩽ T, so all initial states reach the maximum entan-

glement under the Hamiltonian evolution. This can be verified in figure 1, which shows the
first time at which the maximal 3-tangle is attained, as a function of b and ϕ.

The particular case, which has been excluded in the above analysis, with b= 1/2 and
cos2ϕ = 0 corresponds to an initial state with

ϕs =
π

4
and φs = arctan

(
−1
r

)
+ kπ, (25)
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Figure 1. Time t̃max at which the state |ψ0⟩ reaches τ = 1 for the first time (lowest pos-
itive solution of equation (24)), as a function of the initial state’s parameters ϕ and b.

where k= 0,1 . . . , and is a maximally entangled (τ(t) = 1) eigenstate of the Hamiltonian (3).

2.2.2. Minimal values of 3-tangle. The minimal value of equation (17) is given by

τmin = τ (̃tmin) = 4b(1− b)sin2 2ϕ = 4b(1− b)τ (0) , (26)

where in the last equality we used (16) to write τ(0) = sin2 2ϕ. Equation (26) shows that while
all states |ψ0⟩ eventually becomemaximally entangled, not all of them become separable along
their evolution.

The times t̃min are solutions of the equation ∆(̃tmin) = ∆max, namely

(1− 2b)sin2ϕ cosπt̃min =−cos2ϕ sinπt̃min. (27)

Comparison with equation (21) gives for the solutions of (27)

t̃min = t̃max ±
1
2
. (28)

2.3. Entanglement rate

The maximal loss of entanglement experienced during the evolution is given by

∆τ = τmax − τmin = 1− 4b(1− b)τ (0) , (29)

and such amount of entanglement is lost in a time interval given by∆t̃= 1/2, in line with the
relation (28).

For fixed Hamiltonian parameters, the period of τ(t) (equation (9)) is the same regardless
of the initial conditions, yet the entanglement loss depends on the initial state. This means that
there are states whose 3-tangle evolves more rapidly than others, as can be seen in figure 2,
which shows τ vs t̃ for maximally entangled initial states (ϕ = π/4), with relative phase φ= 0
(green curve) and φ = π/3 (pink curve). We clearly see that the loss of entanglement in an
interval [0, t̃] with t̃< 1 differs significantly between the two states. In particular, the state

6
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Figure 2. Evolution of the 3-tangle for two initial states |ψ0(ϕ,φ)⟩ that are maximally
entangled, with φ= 0 (green curve) and φ = π/3 (pink curve) (in both cases we fix
r= 2). The latter exhibits the maximal loss of 3-tangle within a period, therefore has
maximal entanglement rate for all t̃ ̸= t̃min,max.

corresponding to the pink curve always has an entanglement velocity greater than the state
represented in green, except for the times in which the rate vanishes (maxima and minima of
τ ). This means that the greater the entanglement loss, the greater the maximal entanglement
rate. From equation (29) we thus conclude that the states with maximal entanglement rate will
be thus for which b= 0,1, and in turn these states will eventually become separable, having
τmin = 0, as follows from equation (26).

The above observations can be formally stated by analyzing the entanglement rate

Γ(t) =
dτ
dt
. (30)

Resorting to equations (17) and (19) we find

Γ(̃t) = TΓ(t) = Asin2πt̃+Bcos2πt̃, (31)

with

A= π
[
cos4ϕ+ 4b(1− b)sin2 2ϕ

]
, (32a)

B= π (1− 2b)sin4ϕ. (32b)

Equation (31) can be rewritten as

Γ(̃t) = σCsin (2πt̃+ η) , (33)

with C=
√
A2 +B2, η = arctan(B/A), and

σ =

{
+sign(B) if η ∈ (0,π) ,

−sign(B) if η ∈ (π,2π) .
(34)

Direct calculation resorting to (32a) gives

C= π
√

1+ 4b(1− b)D (35)

7
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where

D= 2τ (0)cos4ϕ+ 4b(1− b)τ 2 (0)− sin2 4ϕ. (36)

Recalling that τ(0) = sin2 2ϕ, it can be verified that −1⩽ 4b(1− b)D(ϕ,b)⩽ 0, whence
−π ⩽ Γ(̃t)⩽ π.

2.3.1. Maximal entanglement rate. According to the above results, the maximum value of Γ
is attained when the following two conditions are met: (i) σ =+, and (ii) 4b(1− b)D= 0. For
fixed (yet arbitrary) ϕ the latter condition implies that b should be either 0 or 1.

For b= 0we getB= π sin4ϕ andA= π cos4ϕ, so η = 4ϕ. Then, according to (34), the con-
dition σ =+will bemet providedϕ ∈ (0,π/4). In other words, b= 0maximizesΓwhenever
ϕ ∈ (0,π/4).

For b= 1 we have B=−π sin4ϕ and A= π cos4ϕ, thus η = 2π− 4ϕ. Again, resorting
to (34), the condition σ =+ holds provided ϕ ∈ (π/4,π/2), and we conclude that b= 1max-
imizes Γ whenever ϕ ∈ (π/4,π/2).

From the expression (10) we find that the condition b= 0 amounts to

r sinφ + cosφ√
r2 + 1

= 1. (37)

For fixed r, the solutions of this equation give the optimal phases, φI
op, that maximize Γ

whenever ϕ ∈ (0,π/4], namely

φI
op = arctan r+ 2nπ, φI

op ∈
(
−π
2
,
π

2

)
, (38)

with n an integer, and provided r ̸= 0. In particular,φI
op ∈ (−π/2,0)whenever r< 0, andφI

op ∈
(0,π/2) for r> 0.

On the other hand, the condition b= 1 implies that r and φ comply with

r sinφ + cosφ√
r2 + 1

=−1. (39)

Solving for φ with r fixed, we obtain the optimal phases, φII
op, valid for ϕ ∈ (π/4,π/2]:

φII
op = arctan r+π (2n+ 1) , φII

op ∈
(
π

2
,
3π
2

)
, (40)

with n an integer, and provided r ̸= 0. In particular, φII
op ∈ (π/2,π) whenever r< 0, and φII

op ∈
(π,3π/2) for r> 0.

Interestingly, if φ coincides with either one of the optimal phases, the relative phase of the
evolving state (11) will remain constant during the evolution, that is, φ(t) = φopt. This can be
verified by direct substitution of the expressions for φI,II

opt in equations (6) and (7).
As follows from equation (31) the initial entanglement rate Γ(0) = Γ0 is

Γ0 = B= π (1− 2b)sin4ϕ. (41)

For ϕ ∈ (0,π/4] the sign of Γ0 is the sign of 1− 2b, so the entanglement initially increases
whenever b< 1/2, and decreases for b> 1/2. According to the previous results, in this case
the optimal value of b is 0 (so the optimal phase is given by φI

op). As for ϕ, its optimal value
(the one that maximizes Γ0 in the interval ϕ ∈ (0,π/4]) reads ϕIop = π/8. Analogously, for ϕ ∈
(π/4,π/2] the sign of Γ0 is the sign of 2b− 1, so the entanglement initially increases whenever
b> 1/2, and decreases for b< 1/2. For fixed ϕ in this interval, Γ0 reaches it maximum value

8
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Figure 3. Initial entanglement rate Γ0 (equation (41)), as a function of b and ϕ. For
fixed ϕ, Γ0 attains its maximal value at b= 0 provided ϕ ∈ (0,π/4), and at b= 1 for
ϕ ∈ (π/4,π/2).

Table 1. Sign of Γ0 depending on the Hamiltonian and the initial state parameters.

ϕ ∈ [0,π/4] ϕ ∈ [π/4,π/2]

0⩽ rsinφ+ cosφ≤
√
r2 + 1 + −

−
√
r2 + 1⩽ rsinφ+ cosφ⩽ 0 − +

when the relative phase is φII
op, and in this case, the optimal value for ϕ is given by ϕIIop = 3π/8.

Figure 3 showsΓ0 as a function of b andϕ. It clearly verifies that forϕ ∈ (0,π/4], themaximum
is found at ϕ = ϕIop = π/8 and φ = φI

op (b= 0), whereas for ϕ ∈ (π/4,π/2] it is attained at
ϕ = ϕIIop = 3π/8 and φ = φII

op (b= 1).
Finally, the sign of Γ0 for different ranges of ϕ and the conditions that must be fulfilled by

r and φ are those indicated in table 1.

3. Optimization of the entanglement rate via single-qubit operations

3.1. Optimization of Γ via a rotation

Consider the initial state |ψ0⟩= |ψ0(ϕ,φ)⟩, given by equation (4). In general, the correspond-
ing Γ0 will not be maximal, not even will it be positive, so one would have to wait until t̃= t̃max

to have a maximally entangled state. However, the time required to reach such state can be
shortened by applying a rotation that transforms the state |ψ0⟩ into

9
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Figure 4. Ratio t̃ ′max/̃tmax between the time it takes
∣∣ψop

0

〉
and |ψ0⟩ to evolve towards a

maximally entangled state. The transformation |ψ0⟩ → Rop |ψ0⟩ reduces the time needed
to reach τ = 1, and the higher reduction occurs in the quadrants in which Γ0 < 0.

∣∣ψop
0

〉
= Rop|ψ0 (ϕ,φ)⟩= |ψ0 (ϕ,φop)⟩
= sinϕ|000⟩+ eiφop cosϕ|111⟩, (42)

with φop either φI
op or φ

II
op , depending on whether ϕ is in (0,π/4), or in (π/4,π/2). Since Rop

can be decomposed as

Rop = I⊗ I⊗Uop, (43)

with Uop represented by the unitary matrix

Uop (φop −φ) =

(
1 0
0 ei(φop−φ)

)
, (44)

the mapping |ψ0⟩ → Rop |ψ0⟩ is a local unitary transformation that leaves the entanglement of
the state unaffected. Further, by design, it enhances the entanglement rate, thus leaving us with
a state (42) that has the maximal Γ0 given the value of the initial parameter ϕ.

The time the new initial state
∣∣ψop

0

〉
takes to become a maximally entangled state is now

t̃ ′max =

{
t̃max|b=0 =

1
2 −

2ϕ
π < 1

2 if ϕ ∈
(
0, π4

)
,

t̃max|b=1 =
2ϕ
π − 1

2 <
1
2 if ϕ ∈

(
π
4 ,

π
2

)
.

(45)

In order to compare t̃ ′max with the time it would take |ψ0⟩ to attain the maximal 3-tangle (̃tmax

given by equation (24)), we focus on the ratio t̃ ′max/̃tmax, which gives the factor by which the
time is reduced when the rotation Rop is performed. Figure 4 shows the plot of t̃ ′max/̃tmax as a
function of ϕ and b. As expected, the time reduction increases (̃t ′max/̃tmax attains lower values)
in the quadrants where Γ0 is negative (cf figure 3).

Figure 5 depicts the improvement in the time needed to reach the maximum 3-tangle when
shifting the relative phase to its optimal value, by showing the dynamics of the 3-tangle.The
green curve corresponds to the evolution of τ for the state |ψ0⟩, whereas the pink one depicts
the evolution of τ for

∣∣ψop
0

〉
. In the left panel the corresponding initial state has Γ0 > 0, and

the optimization is slightly significative, yet in the right panel the initial state has Γ0 < 0 and
the time required to achieve maximal entanglement its reduced more drastically.

10
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Figure 5. Evolution of the 3-tangle for an initial state |ψ0⟩ (green curve) and for the
rotated state

∣∣ψop
0

〉
(pink curve) consideringΓ0 > 0 (left panel), andΓ0 < 0 (right panel).

In both cases we fix r= 2. The reduction in the time needed to attain τ = 1 is manifest.

The fact that
∣∣ψop

0

〉
has the optimal phase, guarantees that it is the state that attains τ = 1

faster than any other state with the same initial 3-tangle.

3.2. Optimization of Γ involving a qubit flip

Given that the states considered have two parameters, ϕ and φ, a fair and interesting question
is whether an optimization of the entanglement rate can also be made by operating on the
population’s parameter, ϕ. In general, a change in this parameter would modify the coefficients
of the states |000⟩ and |111⟩, which in turn would induce a change in the amount of 3-tangle.
Consequently, the entanglement rate cannot in general be maximized by changing the value
of ϕ in a local fashion. However, from equation (16) we see that for fixed τ there are two
(positive) possible values of p, namely

p± =
1±

√
1− τ

2
, (46)

where the relation p+ + p− = 1 can be readily seen.
Let us consider the initial states |ψ±(0)⟩=√

p± |000⟩+ eiφ
√
1− p± |111⟩. Applying a

(local) spin flip operation Uf = σx⊗σx⊗σx gives

Uf|ψ± (0)⟩= Uf

(√
p± |000⟩+ eiφ

√
1− p± |111⟩

)
=
√
p± |111⟩+ eiφ

√
1− p± |000⟩

=
√

1− p∓ |111⟩+ eiφ
√
p∓ |000⟩

∼ √
p∓ |000⟩+ e−iφ

√
1− p∓ |111⟩, (47)

where in the last line ∼ indicates equivalence of the states up to a global phase. That the flip
does not affect the amount of τ follows straightforward from the fact thatUf is a local operation.
Further, it amounts to exchange

11
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p↔ (1− p) , and φ ↔−φ, (48)

which from equation (16) clearly leaves the 3-tangle unaffected.
The transformation p↔ (1− p), together with the identification

√
p= sinϕ, is equivalent

to perform a reflection along the direction π/4, so the exchange in the populations corresponds
to

ϕ↔ (π/2)−ϕ, (49)

and the effect of the spin-flip on a generic initial state |ψ0⟩= |ψ0(ϕ,φ)⟩ thus reads∣∣ψf
0

〉
= Uf|ψ0 (ϕ,φ)⟩=

∣∣ψ0
(
π
2 −ϕ,−φ

)〉
. (50)

The transformation (49) maps the interval [0,π/4] into [π/4,π/2], and exchanges Γ0 ↔
−Γ0, as can be directly verified substituting equation (49) into (41). The second transformation
in (48) may, however, also affect Γ0 via its dependence on B(φ) = 1− 2b(φ). Now, the signs
of B(φ) and B(−φ) coincide if and only if their product is positive, which occurs (following
equation (10) and ruling out the case φ= 0), whenever

cot2φ > r2. (51)

Thus, when the condition (51) is met, the exchange φ↔−φ does not alter the sign of Γ0, and
the net effect of the flip operation is

sgnΓ0 ↔−sgnΓ0. (52)

In this way, and provided equation (51) holds, a single spin flip transforms an initial state
with Γ0 < 0 into one with positive entanglement rate, thus reducing the time needed to attain
a state with maximal τ . If φ= 0 the flip transformation would correspond to the mapping
|ψ±(0)⟩ ↔ |ψ∓(0)⟩, and would suffice to guarantee that Γ0 becomes −Γ0.

Notice, however, that this procedure does not involve a maximization of the entanglement
rate, so in general the improvement in the speed towards τ = 1 will be less than the (maximal)
improvement induced by the previous protocol. A comparison of the two strategies can be
seen in figure 6. There, an initial state |ψ0⟩ whose parameters comply with (51) is considered,
and the evolution of τ is shown for the cases in which: the initial state evolves solely under
the action of the Hamiltonian (green solid curve); the flip operation (50) is performed on the
state (pink dashed curve); the rotation (43) that optimizes the relative phase is applied (blue
dotted curve). The left panel corresponds to an initial state with Γ0 < 0, whereas the right one
to a state with Γ0 > 0. As expected, the optimization procedure by means of the rotation (42)
always results in a shorter time to reach τ = 1. Further, it can be seen that the spin-flip reduces
the time to attain the maximal entanglement provided Γ0 < 0.

We have seen that even if (51) holds, the flip operation will not always be useful, specifically
when Γ0 > 0. Moreover, if |ψ0(ϕ,φ)⟩ is such that the condition (51) is not met, the flip oper-
ation will not invert the sign of the (possibly negative) initial entanglement rate. However, Uf

can still reduce the time needed to reach τ = 1 provided Γ0(Uf|ψ0⟩)> Γ0(|ψ0⟩), i.e. provided

Γ0 (ϕ,φ)< Γ0

(π
2
−ϕ,−φ

)
. (53)

Resorting to equation (41), this leads to the condition

cosφ sin4ϕ < 0, (54)

which implies that the flip operation is useful also (despite (51) is not met), in the following
cases

12
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Figure 6. Evolution of the 3-tangle for the initial states |ψ0⟩ (green solid line),
∣∣ψf

0

〉
(pink dashed line), and

∣∣ψop
0

〉
(blue dotted line), considering Γ0 < 0 (left panel) and

Γ0 > 0 (right panel). In all cases we fix r= 2, and the parameters are such that the con-
dition (51) is satisfied.

φ ∈
(
π

2
,
3π
2

)
, ϕ ∈

(
0,
π

4

)
⇒ Γ0 > 0;

φ ∈
(
3π
2
,
π

2

)
, ϕ ∈

(π
4
,
π

2

)
⇒ Γ0 < 0.

(55)

The flip operation can be improved by performing an additional rotation that shifts the phase
−φ in the last line of (47) to some appropriate value. Clearly, the best possible choice is to
perform a rotation (43) that brings the relative phase to its optimal value. Such flip-plus-rotation
procedure is equivalent to the single-rotation operation that maximizes the entanglement rate,
thus giving two paths to optimize Γ0, depicted in figure 7.

Let us first consider the initial state |ψ0⟩, represented by the point A and determined by
pA = 0.8 and φA = 1.2. A phase optimization via Rop leads to the optimal state

∣∣ψop
0

〉
, rep-

resented by the point B, whose parameters are pB = 0.8 and φB = 4.248. This gives the first
path, A→ B, that maximizes Γ0. A second way to optimize the entanglement rate involves
performing the flip operation on the state |ψ0⟩, which leads to the intermediate state

∣∣ψf
0

〉
—

corresponding to pC = 0.2, φC =−1.2 and to the point C—, and then optimizing the phase
by rotating

∣∣ψf
0

〉
, which leads to the final state represent by the point D, and determined by

pD = 0.2 and φD = 1.107. This gives the second path A→ C→ D. By construction, both final
states, corresponding to B and D, have the same amount of τ , and the same entanglement rate,
Γ(ϕB,φB) = Γ(ϕD,φD), as can be appreciated in figure 7. The fact thatΓ(ϕB,φB) = Γ(ϕD,φD)
can be easily proven in general for an arbitrary initial state |ψ0(ϕ,φ)⟩ by using equation (49)
and the relation between the two possible optimal values of φ (equations (38) and (40)). A
simple calculation leads to Γ0(ϕ,φ

I,II
op ) = Γ0(π/2−ϕ,φII,I

op ), states that correspond to B and D
in the previous example.

The results shows that for each initial state |ψ0⟩, there are two different (yet equally
entangled) optimal states (Rop|ψ0⟩ and Rop[Uf|ψ0⟩]), with improved, maximal, entanglement
rate. The analysis also suggests that it is more convenient to optimize the entanglement rate
directly shifting the phase to its optimal value, instead of flipping the qubits and thereafter
adjusting the phase, which requires more time invested in the process.
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Figure 7. Two possible paths in the space (φ,p), namely A→ B and A→ C→ D, to
maximize the initial entanglement rateΓ0 (color scale). The point A represents the initial
state |ψ0⟩, B represents the rotated state Rop|ψ0⟩, C corresponds to Uf|ψ0⟩, and D to
Rop(Uf|ψ0⟩). Both final states, B and D, have the same τ and entanglement rate. The
Hamiltonian parameter was fixed to r= 2.

Despite its cons, the flip operation has the advantage of involving a fixed, universal trans-
formation Uf = σx⊗σx⊗σx that serves for improving the entanglement rate of a wide class
of initial states, namely those that comply with (51) (with Γ0 < 0) or with (55), without the
need of implementing a calibrated rotation.

4. Preventing the entanglement from decaying via single-qubit operations

We now present different protocols aimed at maintaining the 3-tangle above some predeter-
mined threshold value τ∗ for all times. They are based on the application of the local opera-
tions described above, as a means to counteract the loss of 3-tangle induced by the Hamiltonian
evolution.

Firstly, in order to determine the length of the time steps between local operations, it is
helpful to write the 3-tangle in the form

τ (̃t) = 1−A2 cos2 (πt̃+χ) . (56)

Comparison of this expression with equation (17) gives A2 = 1− τmin, and tanχ = (1−
2b) tan2ϕ. Therefore, the times t̃∗ at which τ attains the threshold value τ∗ are the solutions
of the equation

|cos(πt̃∗ +χ) |=
√

1− τ∗

1− τmin
. (57)

As depicted in figure 8, this equation has two solutions within the first period, denoted as t̃1
and t̃2 > t̃1. Assuming that Γ0 > 0, at t̃1 the entanglement rate is positive, so for t̃ ∈ [̃t1, t̃2] we
have τ (̃t)⩾ τ∗. At t̃2 the entanglement rate is negative and immediately afterwards the 3-tangle
will drop below the threshold value. Therefore, the maximal amount of time that we can let
the state to evolve after t̃1 in order to prevent τ from dropping below τ∗ is δ̃t= t̃2 − t̃1. At this
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Figure 8. Solutions t̃1 and t̃2 to equation (57) such that for t̃ ∈ [̃t1, t̃2] the 3-tangle does
not drop below a threshold value τ∗.

point, a local operation must be applied to reverse the loss of entanglement, as we will discuss
in the next subsections.

4.1. Keeping τ above a threshold value via σz

As seen in section 3.1, for any initial state |ψ0⟩ shifting the relative phase to its optimal value
φop will maximize its (initial) entanglement rate. The rotation (43) that produces this shift is
thus the first operation applied in the protocol.

After the transformation |ψ0⟩ →
∣∣ψop

0

〉
we have a state with φ = φop and increasing entan-

glement, as in figure 8. As
∣∣ψop

0

〉
evolves, its relative phase will keep constant (recall the discus-

sion below equation (40)), while its 3-tangle tends to its maximum value, reached at t̃= t̃max.
At that point, the population angle of the state becomes ϕ(̃tmax) = π/4, as corresponds to a
maximally entangled state. Afterwards, ϕ(̃t) will lie in the interval in which the original rel-
ative phase φop is not longer the optimal one for the evolving state, which thus starts losing
entanglement. We can then wait until (at most) t̃= t̃1 + δ̃t to apply a second rotation that fixes
the relative phase to its new corresponding optimal value, which is either φI

op or φ
II
op, depend-

ing on whether the original phase was φII
op or φ

I
op, respectively. The second step in the protocol

thus exchanges φI
op ↔ φII

op. As follows from equations (38) and (40), φII
op = φI

op +π, whence
the required rotation is one of the form (43), with Uop given by

Uop = Uop
[
±
(
φII
op −φI

op

)]
= Uop (±π) = σz. (58)

Once this rotation is performed, the Hamiltonian evolution is resumed from a new initial
state which, by construction, has again a positive entanglement rate and τ ⩾ τ∗. The 3-tangle
increases again, reaches its maximal value and decreases afterwards. At a subsequent time
t̃= t̃1 + 2δ̃t the situation is similar to that at t̃= t̃1 + δ̃t, and an appropriate rotation is again
required to prevent τ from dropping below the threshold value. Clearly such rotation performs
again the exchange φI

op ↔ φII
op, and is implemented via the inverse of (58), that is, by the Pauli

operator σz again.
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Figure 9. Evolution of the 3-tangle under the protocol (59), preventing τ (̃t) to drop
below the threshold τ∗.

This protocol can be synthesized in the following sequence of operations applied to a single
qubit:

|ψ0⟩
t=0−−→ Uop (φop −φ)

t=t1+δ̃t−−−−→ σz
t=t1+2δ̃t−−−−−→ σz

t=t1+3δ̃t−−−−−→ σz . . . , (59)

where it must be understood that between these operations the evolution is dictated by the
Hamiltonian (3). The resulting evolution of the 3-tangle is depicted in figure 9. Apart from the
first step in the protocol, which requires a calibrated phase shift of φop −φ that accelerates
the arrival at a maximally entangled state, the rest of the transformations involved are state-
independent Pauli operators. In this way, by passing a single qubit through a fixed gate at time
steps of length ⩽δ̃t the 3-tangle can be maintained above the desired value τ∗.

4.2. Reaching a maximally entangled stationary state via a rotation

As discussed above equation (25), the state |ψs⟩ characterized by ϕs = π/4 and φs =
arctan(−1/r), is a stationary state with maximal 3-tangle. Approximating an arbitrary ini-
tial state |ψ0⟩ into |ψs⟩ will thus prevent any decay in τ , and can be optimally done by means
of a pair of suitable phase shifts, as follows.

Given an initial state |ψ0(ϕ,φ)⟩ we apply the rotation (42), obtaining the state
∣∣ψop

0

〉
=

|ψ0(ϕ,φopt)⟩ that optimally evolves towards a state with maximum entanglement, as illustrated
at the first stage of the evolution in figure 10. When the maximum entanglement is reached,
at t̃= t̃ ′max (meaning that ϕ has reached the value ϕ = π/4), we perform a new rotation that
shifts the actual phase of |ψop(̃t ′max)⟩ to the value φs, i.e. we apply the operator

Rs = I⊗ I⊗Us, (60)

with Us represented by the unitary matrix

Us (φs −φop) =

(
1 0
0 ei(φs−φop)

)
, (61)
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Figure 10. Evolution of the 3-tangle starting from the optimal state |ψ0(ϕ,φop)⟩ with
ϕ = 0.36,φop = 1.107, and r= 2. At t̃= t̃ ′max +∆t̃ the rotation Rs is applied and the
resulting state is let to evolve freely under the action of theHamiltonian. As∆t̃ increases,
the minimum 3-tangle of the evolving state decreases, so by an adequate control of ∆t̃
the 3-tangle can be made to oscillate between 1 and a certain τ̄ greater than the threshold
value τ∗ (represented in the example by the gray dashed line).

and obtain the renewed state Rs|ψop(̃t ′max)⟩= |ψ0(ϕs,φs)⟩= |ψs⟩. From that point on, the 3-
tangle will remain in its highest value τ = 1, as depicted in the solid red line in figure 10. If,
however, there is some delay in the implementation of Rs, so that it is applied at t̃= t̃ ′max +∆t̃,
the 3-tangle will oscillate between τ (̃t ′max +∆t̃) and τmax = 1, as can be observed in the dashed
green, dotted blue, and dot-dashed orange curves, corresponding to different (respectively
increasing) values of∆t̃. This oscillating behavior can be understood as follows.

As discussed when equation (25) was introduced, the phase φs corresponds to b= 1/2, that
is, to Γ0 = 0 (see equation (41)). This means that a state with φ = φs either possess maximal
(τ = 1) or minimal (τ = τmin) 3-tangle. The former case occurs provided ϕ = π/4, whereas
for any other ϕ the condition of vanishing Γ0 implies that the state’s 3-tangle is a minimum.
Therefore, the state

Rs|ψop (̃t ′max +∆t̃)⟩= |ψ0 (ϕ,φs)⟩ (62)

with ϕ = ϕ(̃t ′max +∆t̃) and 0<∆t̃< 1, has a 3-tangle that fixes the minimal τ in the sub-
sequent Hamiltonian evolution of |ψ0(ϕ,φs)⟩, so that

τ (|ψ0 (ϕ,φs)⟩) = τmin

(
e−iHt/ℏ|ψ0 (ϕ,φs)⟩

)
≡ τ̄ . (63)

In this way, when Us(φs −φopt) is applied at a time ∆t̃ after the maximal 3-tangle has been
reached, the entanglement exhibits the oscillatory behavior depicted in figure 10. If∆t̃ is small
enough such that τ̄ ⩾ τ∗, this protocol maintains the 3-tangle above the threshold value τ∗, as
shown in all curves of figure 10.

Figure 11 compares the evolution of τ when different protocols are implemented on the
same initial state |ψ0⟩. Firstly, a change to the optimal relative phase is made at t= 0. The
resulting state

∣∣ψop
0

〉
evolves under the action of the Hamiltonian until t̃= t̃1 + δ̃t, when three

different operations are implemented: the state’s relative phase is adjusted to its optimal value
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Figure 11. Evolution of the 3-tangle starting from the optimal state
∣∣ψop

0

〉
that evolves

with maximal entanglement rate. At t̃2 = t̃1 + δ̃t three situations are considered: the
operator σz is successively applied, following the protocol (59) (solid green curve); the
rotationRs is periodically applied at intervals of length δ̃t (red dashed curve); the rotation
Rs is performed only once (blue dotted curve).

at time intervals δ̃t= t̃2 − t̃1, following the protocol (59) (solid green curve); a rotation Rs is
successively applied at time intervals δ̃t, and the state rapidly approximates to |ψs⟩ (red-dashed
curve); a single rotation Rs is performed and afterwards the system is let to evolve solely
under the action of the Hamiltonian (blue-dotted curve). Notice that whereas the blue dotted
curve evolves freely (without the need of further additional operations besides the Hamiltonian
evolution), the green solid line reaches higher values of τ more frequently, thus the system
spends more time in highly-entangled states.

5. Summary and final remarks

We have considered the dynamical generation of three-way entanglement through the interac-
tion among three qubits in a GHZ state, and proposed schemes to attain states with a high and
sustained degree of entanglement in the shortest possible time.

States with maximal entanglement loss are those with maximal entanglement rate. A
detailed examination of the latter revealed the optimal relative phase (between the states |000⟩
and |111⟩) that maximize the entanglement production at any stage of the evolution, for a fixed
yet arbitrary amount of 3-tangle (fixed ϕ) and a given Hamiltonian (fixed r). This led to the
optimization of Γ via a one-qubit rotation Rop, an operation that locally transforms the actual
state of the system into the (identically entangled) state that reaches the maximum amount of
entanglement in the shortest possible time.

We further analyzed the effect of the flip operation Uf, and identified the conditions under
which Uf improves the initial entanglement rate of a state, namely conditions (51) (provided
Γ0 < 0) and (55). In these cases, Uf is useful in reducing the time needed to reach a highly
entangled state by means of a local and universal operation. We also showed that the flip oper-
ation can be improved by performing the additional (state-dependent) rotation that shifts the
actual relative phase to its optimal value. This two-steps procedure is equivalent to the single
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optimal rotation operation, thus giving two different paths to optimize Γ. The convenience of
either one of these paths will depend on the specific setup and experimental capabilities.

Finally, we proposed different protocols aimed at maintaining the 3-tangle above some
predetermined threshold value τ∗ for all times. The first one is composed of a sequence of one-
qubit operations: the rotation Rop that shifts the relative phase to its optimal phase, followed by
the successive application of the σz operator (over either one of the qubits). By adjusting the
time δ̃t between consecutive applications of σz, it is possible to maintain the 3-tangle above the
threshold value. If the sequence is applied with enough frequency, the tripartite entanglement
will remain sufficiently near to its maximum value τ = 1, a feature that exhibits a resemblance
to the quantum Zeno effect. Our second protocol avoids the need of repeated operations to
prevent the 3-tangle from dropping below τ∗, and rests on the identification of |ψs⟩ as a steady
state with maximal entanglement. The first step involves again the implementation of Rop,
thus guaranteeing that the maximal entanglement is achieved in the fastest way. Once the
state reaches the maximum entanglement, a second rotation Rs is performed to set the relative
phase to φs, and the subsequent evolving 3-tangle (result of the Hamiltonian evolution alone)
oscillates above a certain value that can be adjusted by changing the time at which Rs was
implemented.

Our analysis contributes to the design of protocols aimed at speeding-up the production
of three-way entanglement by means of a non-local Hamiltonian assisted by local—in most
cases one-qubit—operations, and paves the way for future analysis regarding the optimization
of multipartite entanglement rate in more general composite systems.
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