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Core ideas 

GWAS detected genomic regions linked to bacterial leaf streak severity in maize. 

Each region explained 10 to 17% of the observed severity variability. 

The identified alleles are useful to improve maize breeding programs. 

 

ABSTRACT 

Maize (Zea Mays L), one of the most important crops worldwide, is affected by foliar 

diseases that limit global production. Bacterial diseases have increased in Argentina during 

the last years. The aim of this work was to explore a maize panel provided by the 
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International Maize and Wheat Improvement Center (CIMMYT) to identify alleles associated 

with resistance to bacterial leaf streak of maize (BLS), a disease caused by Xanthomonas 

vasicola pv vasculorum, in central Argentina. A diverse panel of 200 maize lines was 

evaluated for resistance to bacterial diseases in four environments of central Argentina in 

2020 and 2021.  The predictor of the genetic merit that does not include environmental 

effects and 46,990 SNPs obtained by genotyping-by-sequencing were used in the genome-

wide association study (GWAS). The ten lines with the lowest severity across environments 

belonged to different environmental adaptation programs defined by CIMMYT. The GWAS 

allowed us to identify eleven genomic regions associated with BLS, located in chromosomes 

1, 2, 5, 7, 8 and 9. Five of those regions, located in bins 1.04, 2.01, 5.03, 8.06 and 9.03 were 

associated with plant defense candidate genes such as, strictosidine synthase-like 11, protein-

serine/threonine phosphatase and a putative LRR receptor-like serine/threonine-protein 

kinase gene. Our study provides potential resistance alleles to BLS that can be incorporated 

to improve maize breeding programs. 

 

1. INTRODUCTION 

Maize (Zea Mays L) is one of the most important staple food and animal feed crops 

worldwide (Mideros et al., 2014). Argentina is the fourth largest producer, with an annual 

production of 58.3 million tons (FAOSTAT, 2022). The crop is affected by several pathogens 

that cause different diseases and reduce production worldwide (Yang et al., 2017). Foliar 

diseases are a significant limiting factor in maize production globally (Pratt and Gordon, 

2006). Since 2010, bacterial leaf streak of maize (BLS), caused by Xanthomonas vasicola pv. 

vasculorum, has expanded its geographic range in the central region of Argentina. Symptoms 

are initially expressed as water-soaked lesions on the leaves that expand along the veins, 

producing irregular long necrotic streaks and dark yellow to brown lesions (Plazas et al., 
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2018). The most economical and environmentally acceptable means of reducing losses due to 

maize diseases is the use of genotypes with genetic resistance (Carson et al., 2004). Thus, 

studies are increasingly addressing the genetic basis of maize reaction to viral, fungal, and 

bacterial diseases. However, the genetics of maize response to bacterial infection has received 

less attention than that of fungal and viral diseases (Rossi et al., 2019).  

Genome-wide association studies (GWAS) have proved to be a powerful tool to identify 

specific allele variants that confer resistance to diseases (Zila et al., 2014). This approach 

takes full advantage of the natural variation within a germplasm collection to identify the 

genetic loci underlying traits at a relatively high resolution (Chen et al., 2015; Yu and 

Buckler, 2006). GWAS are based on the analysis of the statistical association between 

genotypic marker alleles determined in a group of genotypes and the phenotype under study. 

Maize is an ideal crop for GWAS because it has abundant genetic diversity and rapid linkage 

disequilibrium (LD) decay (Chen et al., 2015). There are some particular concerns related to 

population structure, which can cause allele frequencies to differ significantly between 

subpopulations, creating unexpected LD between unlinked loci across the genome (Guo et 

al., 2014). When population structure is not accounted for, spurious associations may be 

detected between disease resistance and alleles at other loci that are all differentially 

distributed among subpopulations. Moreover, GWAS require dense genotyping with genetic 

marker loci covering all of the chromosomes (Rafalski, 2010) to increase the odds to identify 

linked alleles as well as to quantify the underlying genetic population structure. 

The maize lines provided by the International Maize and Wheat Improvement Center 

(CIMMYT) maize lines are one of the most widely distributed genetic resources of publicly 

generated elite lines, which are freely available to both public and private sector breeders 

(Chen et al., 2016). These lines have been molecularly characterized with SNPs obtained 

using a Genotyping-by-Sequencing approach. A highly diverse panel of these lines was 
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evaluated in central Argentina to identify alleles that may be useful to enhance maize 

breeding for resistance to endemic viral and fungal diseases (Rossi, Ruiz et al., 2020). In this 

work, the CIMMYT panel, whose material is exotic to Argentina, was explored with the aim 

to identify alleles associated with resistance to bacterial disease caused by Xanthomonas 

vasicola pv. vasculorum in central Argentina.  

 

2. MATERIALS AND METHODS 

2.1. Plant material and field trial 

A diverse panel of 200 maize lines from CIMMYT was evaluated for resistance to BLS in 

four environments (Río Cuarto 2020, Río Cuarto 2021, Sampacho 2021, and La Cautiva 

2021) of central Argentina in 2020 and 2021. These inbred lines represent the three major 

environmental adaptations from the CIMMYT germplasm collection (Wu et al., 2016). The 

trials were conducted under natural infection. In each environment, the susceptible maize line 

L420 was planted in each block as susceptible control. In Río Cuarto 2020 plots were 2.5 m 

long, with a row spacing of 0.52 m, while in the remaining environments plots were 5 m long 

with a row spacing of 0.52 m. A partially replicated (p-rep) design was used (Cullis et al., 

2006), with 25% of the genotypes with three replications and the remaining genotypes with 

one replication. All plots were hand-weeded as needed. 

2.2. Phenotypic data 

All plants in each plot were evaluated and scored for BLS by the presence of irregular 

long necrotic streaks, and dark yellow to brown lesions at flowering stage. Each plant was 

classified by the degree of disease severity, according to the ordinal scale proposed by 

Schuelter et al. (2003): 1 = no symptoms; 2 = scattered lesions; 3 = up to 50% of the lower 

leaves presenting lesions, with severe injuries in 25% of the lower leaves; 4 = up to 75% of 

the leaves presenting lesions, with severe injuries in 50% of the lower leaves; 5 = 100% of 
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the leaves with lesions, with severe injuries in 75% of the lower leaves. The incidence was 

estimated as the proportion of diseased plants in each plot. The severity (SEV) per plot was 

estimated as the mean rating of all plants in the plot.  

2.3. Genomic data 

The genotypic characterization used for this study was performed using SNP markers (Wu 

et al., 2016) available from http://data.cimmyt.org/dvn. Of a total of 362,008 SNPs, minor 

SNP states, SNPs with minor allele frequency less than 0.15 and with high missing data rate 

(>35%) were removed. Only 46,990 SNPs which were distributed in the 10 chromosomes 

were kept.    

2.4. Statistical analysis 

2.4.1. Phenotypic data analysis 

Analysis of variance for SEV was performed by integrating data across environments in a 

mixed linear model with the R/sommer package (Covarrubias-Pazaran, 2016). The model 

included environment, genotype, block within environment, and the genotype-by-

environment interaction effects. Environment effect was regarded as fixed, and the remaining 

factors were fit as random effects. 

 
ijk i j kj ij ijky G E b GE e       

where 𝑦𝑖𝑗𝑘 is the vector of phenotypic data, μ is the overall mean, Gi is the random effect 

of genotype 𝑖, 𝐸𝑗 is the fixed effect of the environment 𝑗, 𝑏𝑘𝑗 is the nested effect of the block 𝑘 

within environment 𝑗, 𝐺𝐸𝑖𝑗 is the random effect of the interaction between genotype 𝑖 and 

environment 𝑗, 𝑒𝑖𝑗𝑘 is the random effect of error, assuming that 

   2 20, ,  0,ijk G ijk GEG N GE N  , and  20,ijk ee N  .  

The variance components (REML estimates) were used to calculate mean-basis 

heritability, as proposed by Hallauer and Miranda (1988).   

In each environment:  
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where 
2

g  is the genotypic variance, 
2

ge  is the variance of interaction between genotype 

and environment, 2

e  is the error variance, e is the number of environments, and p is a 

weighted mean of the number of replications per genotype in each environment and across 

environments. The weighting used was that proposed by Holland et al. (2010). The mixed 

model was also used to estimate the best linear unbiased predictor (BLUP) of genotype 

effects, i.e., a predictor of the genetic merit that does not include environmental effects. The 

BLUPs of genotypic effects on SEV were used in the GWAS as response variables.  

2.4.2. Genome-wide association study 

Association tests for each SNP were performed using the software TASSEL 5.2.59 

(Bradbury et al., 2007). For GWAS, alternative models were assessed: 1) a general linear 

model (GLM) (Naïve model; 2) a mixed linear model (MLM) including the kinship matrix 

(Parisseaux and Bernardo, 2004) to model genetic relationship between any two lines in the 

studied population (K model); 3) a GLM including five principal components of genomic 

data as a strategy to model the underlying genetic structure in the population (PCA model) 

(Zhao et al., 2007); 4) a GLM using the Q matrix obtained from the software STRUCTURE 

(Pritchard et al., 2000) to account for the genetic population structure (Q model); 5) a MLM 

including both the genetic structure suggested by PCA and the kinship matrix (PCA + K 

model) (Yu et al., 2006); and 6) a MLM including both the genetic structure denoted by 

STRUCTURE and the kinship matrix (Q + K model). All fittings were compared, and the 
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most suitable model was selected by quantile-quantile plots, which compare the observed -

log10 (P-value) with the expected -log10 (P-value) under the null-hypothesis of no 

associations between marker and the studied trait. The SNP markers were determined to be 

significantly associated with SEV at a threshold of -log10 (P-value) > 3.5 (P-value < 

0.0003165) estimated using the number of independent tests in the marker data as proposed 

by Li and Ji (2005). Manhattan and quantile–quantile plots were created by qqman package 

(Turner, 2018) in R software using the GWAS results. A multiple linear regression analysis 

was performed with the associated markers to estimate the proportion of total phenotypic 

variance explained by the identified SNPs.   

 

3. RESULTS 

In the four environments evaluated, water-soaked lesions producing irregular long necrotic 

streaks and dark yellow to brown lesions were observed in maize lines (Fig.1). These 

symptoms were compatible with those caused by Xanthomonas vasicola pv. vasculorum. 

Control susceptible maize line showed 100% of incidence and the highest degree of disease 

severity per plot in all environments. Incidence of BLS, measured as the percentage of plants 

showing symptoms of BLS within each plot, ranged from 83% to 96% in all environments, 

with a mean incidence of 91% across environments. The average plot SEV was normally 

distributed (Fig.1 and Table 1). The Río Cuarto 2020 environment had the lowest average 

plot SEV (2.52), whereas La Cautiva 2021 environment had the highest average plot SEV 

(3.46). Heritability was moderate to high within environments and across environments, with 

a range of 0.43 to 0.73 (Table 1).  

The 5% of lines with the lowest SEV across environments belong to the Subtropical, 

Lowland, Asia lowland, Africa lowland or Africa MA/ST environmental adaptation (Table 2 

and Supplemental table 1). While, the 5% of lines with the highest SEV belong to the 
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Lowland, Subtropical, Africa MA/ST and South América environmental adaptation 

(Supplemental table 1).   

As shown in the quantile-quantile plot, six linear models were tested, and the most suitable 

for our data was the one using kinship relationship (K matrix) and principal components 

analysis (PCA) as covariate to account for the underlying population genetic structure. A total 

of 15 significantly associated SNPs for BLS were detected using the PCA+K model (Figure 

2). 

The significant SNPs within a 20-kb region were considered to represent a locus, and the 

SNP with the lowest P-value in a locus was defined as the SNP with the closest linkage to the 

causal gene. According to this, 11 associations were detected (Table 3). The significant SNPs 

were located in chromosome 1 (two SNPs located in bins 1.04 and 1.11), chromosome 2 (two 

SNPs located in bins 2.01 and 2.04), chromosome 5 (three SNPs located in bins 5.03), 

chromosome 7 (one SNP located in bin 7.01), chromosome 8 (two SNPs located in bins 8.03 

and 8.06), and chromosome 9 (one SNP located in bin 9.03. The significantly associated 

SNPs individually explained 10 to 17% of the total phenotypic variance (Table 3). A multiple 

linear regression analysis with the significantly associated markers and the adjusted means 

explained 50% of the phenotypic variation of SEV.  

 DISCUSSION 

The most cost-effective and environmentally acceptable means of reducing losses due to 

maize diseases is the use of genotypes with genetic resistance (Carson et al., 2004). 

CIMMYT maize lines showed great phenotypic and genotypic variability for resistance to 

diseases caused by bacterial agents in Argentina. The heritability values obtained in this work 

ranged between 0.43 and 0.73. When compared with heritability values obtained by Qiu, 

Kaiser et al. (2020), who studied BLS in three nested association mapping populations and 

their parental lines, our heritability values were similar in La Cautiva 2021 and higher in the 
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remaining environments and across environments The values for the estimated mean-basis 

heritability reveal predominance of additive control in responses from the maize inbred lines 

to BLS and favor the power of quantitative trait loci (QTL) detection, as suggested by Yu et 

al. (2008). 

In this work, we identified 11 SNPs significantly linked to BLS resistance. Genomic 

regions for BLS resistance were located in bins 1.04, 1.11, 2.01, 2.04, 5.03, 7.01, 8.03, 8.06, 

and 9.03. By linkage mapping, Qiu, Kaiser et al. (2020) found five significant QTL for BLS 

located in bins 1.05, 2.03, 3.08, 4.07 and 5.05. Even though we evaluated the same disease, 

our findings did not match those of these authors. This might be due to the fact that their 

resistant donor parents are not included in our diverse panel. Also, as stated by Qiu, Kaiser et 

al. (2020), the lack of common QTL is due to the low marker coverage in one of their 

populations that may have impeded QTL identification, and that populations were evaluated 

in different environments using different bacterial strains of the same disease. 

Of the identified SNPs, seven genomic regions were reported by different authors for 

resistance to bacterial diseases (Brown et al., 2001; Gomes de Paula Lana et al., 2017; 

Cooper et al., 2018; Rossi, Kuki et al., 2020, Qiu, Cooper et al., 2020). Our results agree with 

previous works; indeed, Brown et al. (2001) identified a genomic region in bin 5.03 

associated with resistance to Stewart´s wilt; Cooper et al. (2018) identified a genomic region 

associated with resistance to Goss’s wilt in bin 7.01; Gomes de Paula Lana et al. (2017) 

identified a genomic region associated with resistance to maize white spot in bin 8.03; and 

Rossi, Kuki et al. (2020) identified a genomic region associated with maize white spot 

resistance in bin 8.06; and Qiu, Cooper et al. (2020) identified a genomic region associated 

with  resistance to Goss’s wilt in bin 9.03. 

Here, we identified genes that may be involved in plant disease. In bin 1.04, we found a 

genomic region adjacent to Strictosidine synthase-like 11. Strictosidine is a precursor in 
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many pathways in different plants that leads to the production of about 2000 alkaloid 

compounds (Hicks et al., 2011). In Catharanthus roseus, Luijendijk et al. (1996) showed that 

the deglucosilation of strictosidine forms an antimicrobial compound that reduces bacterial 

growth. In bin 2.01, we found a gene with protein-serine/threonine phosphatase predicted 

function. Serine-Threonine Phosphatases are a wide family of enzymes with important roles 

in signal transduction pathways, the regulation of cell cycle and metabolism, stress responses 

and defense (Máthé et al., 2019). Additionally, in bin 5.03, a putative LRR receptor-like 

serine/threonine-protein kinase gene, was identified. Many functions have been attributed to 

these receptors, from plant growth and development to symbiosis and immunity (Dievart et 

al., 2020). Moreover, in bin 8.06, we identified a putative cytochrome P450 superfamily 

protein. This superfamily protein plays an important role in plant defense, since it is involved 

in phytoalexin biosynthesis, hormone metabolism and the biosynthesis of some other 

secondary metabolites (Xu et al., 2015). Furthermore, in bin 9.03 we identified a putative E3 

ubiquitin ligase. In Arabidopsis, E3 ubiquitin ligase is a positive regulator of 3-Hydroxy-3-

methylglutaryl coenzyme A reductase activity. This enzyme controls the metabolic flux in the 

early steps of the mevalonic acid (MVA) pathway (Doblas et al., 2013). In plants, the MVA 

pathway is involved in isoprenoid biosynthesis that play a vital role in plant defense 

responses and participate in fundamental physiological and developmental processes 

(Hemmerlin et al., 2012). The reported genomic regions with unknown function are 

promising for further analysis. 

The 11 genomic regions identified in this study may contain alleles that can be 

incorporated into maize breeding programs. Further research is required to validate these 

genomic regions. The stacking of favorable alleles using marker-assisted backcross breeding 

should be a useful approach to incorporate resistance in susceptible germplasm. 

SUPPLEMENTAL MATERIAL 
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Table S 1. CIMMYT maize lines (CML) adaptation program, grain colour, grain texture 

and average plot severity (SEV) of bacterial disease assessed in maize plants across 

environments of central Argentina.   
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Figure 1. Symptoms observed in maize leaves (a) and frequency distribution of average 

plot severity (b) of bacterial disease assessed in maize plants across environments of central 

Argentina. 

 

Figure 2. Quantile-quantile plot (a) and Manhattan plot (b) of GWAS results for severity 

of bacterial leaf streak disease in maize lines assessed in central Argentina. The black line in 

the quantile-quantile plot indicates the expected p-value distribution under the null hypothesis 

of no causative markers. The horizontal line in the Manhattan plot depicts the significance 

threshold (P = 0.000316). The x-axis indicates the SNP position along the 10 chromosomes. 
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TABLES 

Table 1. Mean and heritability (H
2
) of maize inbred lines evaluated for severity bacterial 

leaf streak of maize in four environments and across environments of central Argentina. 

Environment mean ± S.E. H
2
 

Río Cuarto 2020 2.52 ± 0.06 0.65 

Río Cuarto 2021 2.93 ± 0.06 0.73 

Sampacho 2021 3.10 ± 0.05 0.59 

La Cautiva 2021 3.46 ± 0.06 0.43 

Across environments 2.97 ± 0.05  0.53 

 

 Table 2. Selected lines with lower severity of bacterial leaf streak of maize across 

environments of central Argentina. 

Genotype Environmental adaptation Grain colour Grain texture SEV
1
 

CML_94 Subtropical White Semident 1.00 

CML_96 Subtropical White Dent 1.25 

CML_65 Lowland White Semident 1.55 

CML_433 Asia Lowland Yellow Flint 1.56 

CML_228 Africa Lowland Yellow Flint 1.56 

CML_249 Lowland White Dent 1.57 

CML_224 Africa Lowland Yellow Flint 1.60 

CML_389 Africa MA/ST White Flint 1.62 

CML_388 Africa MA/ST White Flint 1.66 

CML_484 Subtropical White Semident 1.70 
1
SEV: severity of bacterial disease assessed in maize plants across environments of central Argentina. 

 

 

 

 

 

Table 3. SNP markers associated with severity of maize bacterial disease in central 

Argentina. 
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Regi

on 
Marker 

Bi

n 

Alle

le 

Additive 

effect 
P-value R

2
 Gene model Predicted function 

1 S1_58459485 
1.

04 
C/G 2x10

-5
 2.49x10

-04
 0.14 Zm00001d029115 Strictosidine synthase-like 11 

2 
S1_28958080

5 

1.

11 
G/A 0.18 1.29x10

-04
 0.17 Zm00001d034330 Uncharacterized protein 

3 S2_3990225 
2.

01 
T/C -0.09 4.32 x10

-05
 0.15 Zm00001d001988 

Protein-serine/threonine 

phosphatase 

4 S2_45194157 
2.

04 
G/A 0.06 5.30x10

-05
 0.12 Zm00001d003464 

DUF4057 domain-containing 

protein 

5 S5_29622018 
5.

03 
A/T 0.26 1.37x10

-04
 0.15 Zm00001d014032 

Protein light-dependent short 

hypocotyls 3 

6 S5_76381650 
5.

03 
A/G -0.24 9.23x10

-05
 0.10 Zm00001d015120 RuvB-like helicase 

7 S5_77995036 
5.

03 
A/G 0.21 4.66x10

-06
 0.10 Zm00001d015163 

Putative LRR receptor-like 

serine/threonine-protein kinase RKF3 

8 S7_5093203 
7.

01 
C/T 0.26 2.55x10

-04
 0.10 Zm00001d018785 Serrate RNA effector molecule 

9 
S8_10466012

8 

8.

03 
T/C 0.16 1.34x10

-04
 0.13 Zm00001d010225 

DEAD-box ATP-dependent RNA 

helicase 17 

10 
S8_15508187

9 

8.

06 
T/C 0.20 2.58 x10

-04
 0.10 Zm00001d011586 

Putative cytochrome P450 

superfamily protein 

11 S9_99365447 
9.

03 
C/G 0.03 7.41 x10

-05
 0.10 Zm00001d046624 Putative E3 ubiquitin ligase SUD1 


