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Using a set of field equations in the null surface formulation we obtain the linearized coupling
between the gravitational and matter fields. We first derive a formula for the metric of the space time
and then we use this formula to study the scattering of incoming gravitational waves when matter is
present, obtaining explicit formulae relating the radiation modes at past and future null infinity for a
general asymptotically flat spacetime. An example application is made at the end of this work when
the matter field is a massless real scalar field. The relevance of this result for a perturbation procedure
is discussed.
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I. INTRODUCTION

The general theory of relativity is a geometric theory, the
main field is the metric tensor from which the curvature and
other geometrical structures are constructed.
The null surface formulation (NSF) is an equivalent

formulation of general relativity written in terms of two
scalar functions, one giving the conformal structure of the
spacetime and the other one providing the conformal factor
of the metric tensor. Thus, the main variables of the NSF are
these two scalar functions, and the curvature related
quantities, such as the metric tensor, are derived concepts.
Introducing a bundle of null directions for the points of

the spacetime with local coordinates ðxa; ζ; ζ̄Þ, the two
scalars functions are the conformal factor of the theory,
Ωðxa; ζ; ζ̄Þ, and a family of characteristic null surfaces of
the metric, Zðxa; ζ; ζ̄Þ which satisfies a set of two differ-
ential equations, the so-called metricity conditions.
Mathematically speaking, the ten Einstein equations

with components depending of the spacetime points xa

are exchanged by one equation for the scalars Ωðxa; ζ; ζ̄Þ
and Zðxa; ζ; ζ̄Þ along with the two metricity conditions [1].
The new system of differential equations depends on six
variables instead of the four spacetime points xa. This
differential system equation continues being nonlinear and
thus numerical and perturbative approaches must be
employed in order to find solutions.
Recently, there have been some further developments of

geometrical structures via the NSF, namely, a definition of
center of mass and intrinsic angular momentum [2], a study

of global variables in black hole coalescence [3,4], and the
field equations for the classical gravitonwere developed [5].
The classical graviton is a Ricci flat spacetime that
represents the self-interaction of incoming gravitational
waves. In addition, a perturbation procedure to obtain the
solution was given and at each level of this perturbation
scheme the constructed solution was finite. This approach
could be of importance when dealing with quantization of
pure gravity and hints of this quantization were given
before the perturbation scheme was implemented [6,7].
It is also important to extend this approach to the

interaction of classical gravitons with other fields but a
word of cautionmust be given. The formalism is not adapted
to study asymptotically flat spacetimes with singularities
since an ab initio assumption is broken: namely, that it is
possible to find regular null cone cuts at future or past null
infinity. Thus, the scenario we envisage is of a stress energy
tensor constructed from suitable fields that preserve the
regularity of the null cone cuts, as for example the interaction
of gravitons with photons.
In this work we use the NSF to study the interaction

between matter and the gravitational field in the asymptotic
limit and an explicit relationship between the incoming and
outgoing gravitational fields is derived. We thus generalize
the concept of classical gravitons previously given. The
gravitational radiation field at future and past null bounda-
ries possess the same mathematical structure as in the
vacuum case [5] but now there is an interaction term inside
the spacetime. The results are equivalent to the classical
scattering of fields at the first nontrivial level, usually called
tree level, where the first order interaction term between the
interacting fields is used to compute the incoming and
outgoing fields.
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The paper is organized as follows. In Sec. II we give an
outline of the NSF and particularly, we explain the
linearized version of the formulation which is simpler
mathematically and allows us to study the interaction of the
fields analytically. Then, we derive the NSF equation
including matter. In Sec. III, we derive the relation between
the metric and the NSF variables and we also analyse the
ingoing and outgoing characteristic null surfaces to linear
order. In the case of no matter, we relate the modes in the
decomposition of gravitational radiation. We then perform
a similar calculation incorporating the matter field tensor
and, in particular, we study the scattering of gravitons with
scalar waves, showing that we obtain an expected result at
the tree level approximation. Finally, we finish the work
with a summary and conclusions in Sec. IV.

II. THE LINEARIZED NULL
SURFACE FORMULATION

The null surface formulation recasts general relativity as
a theory of null surfaces interacting with matter via the field
equations. In NSF the Lorentzian metric of the spacetime
gab is constructed from a conformally invariant part hab and
a conformal factor Ω. The conformal metric is obtained
from knowledge of special null surfaces obtained from a
real function Z given on the sphere of null directions
bundle. Given Z ¼ Zðxa; ζ; ζ̄Þ, with xa points of the
spacetime and ðζ; ζ̄Þ stereographic coordinates on the
sphere of null directions, Z ¼ const is a null surface on
the spacetime. From knowledge of Z one then constructs a
conformal metric hab½Z�. In addition, one gives a second
real function Ω ¼ Ωðxa; ζ; ζ̄Þ, a conformal factor, which
plays a dual role: it is used to obtain a conformal metric that
only depends on the spacetime points and it yields an
Einstein metric via the field equations. From knowledge of
these two functions one obtains

gabðxaÞ ¼ Ω2hab½Z�:

Since the equation Z ¼ const defines a null hypersurface,
Z must satisfy

gab∂aZ∂bZ ¼ 0: ð1Þ

It is clear from (1) that the conformal structure does not
depend onΩ. It also follows from this equation that the null
vector Za ¼ gab∂bZ, satisfies the homogeneous geodesic
equation, thus defining an affine length s.
Directly from (1), and taking ð and ð̄ derivatives [1], one

obtains the components of the conformal metric. The
nontrivial coefficients of hab are functions of a single
scalar Λ defined as Λ ¼ ð2Z. Once the conformal metric
coefficients have been obtained one finds a condition on Λ,
namely

ð3ðgab∂aZ∂bZÞ ¼ 0 ⇒ gabð3∂aðZ∂bΛþ ∂aZ∂bðΛÞ ¼ 0:

This condition can be rewritten as

∂ðΛ
∂s

þ 3ðZb
∂bΛ ¼ 0: ð2Þ

Only for functions Λ that satisfy condition (2) it is
possible to obtain a conformal metric. In what follows we
assume condition (2) is satisfied.
One can also show that directly from

ð2ð̄2ðgab∂aZ∂bZÞ ¼ 0;

one obtains a relationship between Ω and Λ, namely,

∂ð̄2Λ
∂s

¼ ðð̄ðΩ2Þ þ gab∂aΛ∂bΛ̄; ð3Þ

which can be formally integrated giving [5]

ð̄2Λ ¼ ð2σ̄ðZ; ζ; ζ̄Þ þ ð̄2σðZ; ζ; ζ̄Þ þ
Z

∞

Z
_σ _̄σ du

−
Z

∞

s
ððð̄ðΩ2Þ þ gab∂aΛ∂bΛ̄Þds0; ð4Þ

where σðu; ζ; ζ̄Þ, the Bondi shear, is directly related to the
gravitational radiation reaching null infinity and _σ is the
derivative with respect to the Bondi time u. It is worth
mentioning that conditions (2) and (3) have been used to
obtain the free data at null infinity [5], otherwise one should
have more general free function when (3) is integrated
along a null geodesic from the point xa to null infinity. An
explicit calculation for the linearized approximation given
in [8] serves to illuminate this point.
In the NSF approach the functionΛ from Eq. (4) plays an

important role since the conformal metric is completely
given in terms of this function and its vanishing yields a flat
conformal metric. Thus, one can implement a perturbation
procedure directly from knowledge of Λ and write down
the lowest nontrivial formulation from a linearized
approximation.
The conformal factor is fixed via the field equations.

Directly from the conformal relationship between the two
metrics one finds [9]

2
∂
2Ω
∂s2

¼ ZaZbðRab½h� − Rab½g�ÞΩ: ð5Þ

The scalar Rab½h�ZaZb is a quadratic function of Λ and it
thus vanishes at a linearized approximation, whereas Rab½g�
can be replaced by the trace free part of the energy-
momentum tensor Tab. The three scalar equations (2), (3),
and (5) are completely equivalent to the full Einstein
equations for a metric gab. The linearized version of
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Eqs. (4) and (5) is obtained by first giving the zeroth-order
solution that yields a flat metric, namely,

Z0 ¼ xala; Ω0 ¼ 1; ð6Þ

with la a null vector defined as la ¼ 1ffiffi
2

p ð1; riÞ and ri the

unit vector on the sphere of null directions, and xa a point in
the flat spacetime.
One then writes down a linearized departure from the

zeroth order solution as

Z ¼ xala þ Z1; Ω ¼ 1þ Ω1; ð7Þ

and its corresponding equations of motion

∂ðð̄2ð2Z1Þ
∂s

¼ 2ðð̄ðΩ1Þ; ð8Þ

2
∂
2Ω1

∂s2
¼ −TabZaZb; ð9Þ

which can be integrated following the null geodesic either
to future or past null infinity to obtain the advanced or
retarded solutions. Note that Ω1 only depends on the stress
energy tensor and vanishes in absence of matter fields.
Assuming we are solving Eqs. (8) and (9) for an asymp-
totically flat spacetime, we can integrate Eq. (8) and obtain

ð̄2ð2Z1 ¼ ð̄2σðZ1; ζ; ζ̄Þ þ ð2σ̄ðZ1; ζ; ζ̄Þ − 2

Z
∞

0

ðð̄ðΩ1Þds

þOðΛ2Þ: ð10Þ

The function Z1, on the other hand, depends both on the
matter fields as well as σ. Note also that the rhs of Eq. (10)
contains nonlinear expressions of Z1 since the Bondi shear
is an arbitrary function at null infinity. Thus one must
linearize the above equation using a perturbation pro-
cedure. Equation (10) is a nonhomogeneous fourth order
elliptic equation on the sphere and its solution can be found
by convoluting the inhomogeneity with the corresponding
Green function [10]. Note that the above Eq. (10) given in
this work differs from a previous derivation in [11]. The
calculation showed in the latter reference is more involved,
as one can see from comparing the terms containing the
conformal factor as well as the extra integral along the
Bondi time that is not present in our derivation. The main
reason for the difference between these equations is that the
one given on the previous work has been derived combin-
ing the two metricity conditions. We have used our
derivation for simplicity. It is worth pointing out this
difference since we heavily use Eq. (10) in the results
presented in this work.
Higher order terms on a perturbation scheme can be

implemented in Eq. (4) by making a perturbation series in
the null foliation

Z ¼ Z0 þ Z1 þ Z2 þ � � � ; ð11Þ

where Z0 corresponds to a null foliation in Minkowski
space as in Eq. (6), and Z1 satisfies Eqs. (9) and (10). This
perturbation procedure is carried on giving the n − 1 and
n − 2 orders that were previously obtained to solve for Zn.
At any order of the perturbation a conformal structure is
derived and the new solution is a field on this spacetime.
We will show later in Secs. III and III F this scheme to be

useful when studying gravitational radiation and its inter-
action with the energy-momentum tensor. The linearized
NSF allows to express Ωðxa; ζ; ζ̄Þ as an explicit functional
of the energy momentum tensor leaving the theory with just
one main scalar, Z, which can be obtained by iterating to
higher orders.

III. SCATTERING IN THE LINEARIZED NSF

In this section, we derive the relation between the
incoming and outgoing radiation at the null boundary of
a general asymptotic spacetime, solution to Eq. (10). With
this end, we need to find a point in the spacetime where
both kind of radiations are well defined, relate this point to
null infinity through geodesic paths and, finally, apply the
uniqueness of the metric to the corresponding expansion
order. Thus, we will use the subscripts þ and − to denote
quantities associated to future and past null infinity
respectively. In this sense, σþ will stand for outgoing
radiation at future null infinity and σ− for ingoing radiation
coming from past null infinity.
The reader should remind that the linearized Eq. (10) still

remains nonlinear in the variable Z, as the dependence of
the shear σðZ; ζ; ζ̄Þ on Z is not known. To tackle this
problem, we use the perturbative approach from Eq. (11) at
the end of this section.

A. Tensorial spin-s harmonics

When working with gravitational radiation (or any
problem involving spin-s fields) it is common the use of
spin-s spherical harmonics Ys

lm to expand the angular
dependence of functions that are defined at null infinity.
In this work we will use instead an equivalent complete
base of orthogonal functions known as tensorial spin-s
harmonics.
Given a Newman-Penrose null tetrad ðla; na; ma; m̄aÞ for

a flat metric, we can construct a three-dimensional ortho-
normal base ðci; mi; m̄iÞ for any tangent space of a point p
in S2. This three-dimensional base can be constructed as
follows: First, we construct the timelike and spacelike
vectors ta ¼ la þ na and ca ¼ la − na. Then, we take the
projections of our four-dimensional base normal to the
vector ta. The three obtained independent projections will
be called ðci;mi; m̄iÞ. These Euclidean vectors are the main
ingredient in the construction of the tensor spin-s harmon-
ics. Moreover, the three dimensional Euclidean base can be
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used to set up a general l-dimensional tensor base by doing
the exterior product of the vectors ci; mi; m̄i. This concept
is what the tensor spin-s harmonics embrace. We mention
in this subsection only a few properties of the construction
but the reader may find more in the following Refs. [12,13].
The tensorial spin-l harmonics, denoted Yl

lIl
with Il a set

of l indices, are defined as the l-times product of the
spacelike vectormi. Then, the complex covariant derivative
on the manifold defined in S2, known as ð, along with its
conjugate ð̄ behave as “ladder operators”with respect to the
spin index (the number in the superscript). These ladder
operators allow to obtain the whole set of representations of
the tensors Ys

lIl
. A relevant property from these tensors is

Ȳs
lIl

¼ Y−s
lIl
:

B. Antipodal transformations on the sphere

To link incoming and outgoing radiation at null infinity,
we need to introduce the notion of antipodal points on the
sphere. The antipodal points are those diametrically oppo-
site to each other in the sphere. Then, we define the
antipodal transformation to be the one that carries a point of
the sphere to its antipodal point. In the usual spherical chart
ðθ;ϕÞ, the antipodal transformation reads

ðθ;ϕÞ → ðπ − θ; π þ ϕÞ;

or in stereographic coordinates

ðζ; ζ̄Þ → ð−1=ζ̄;−1=ζÞ:

We denote the antipodal transformation with the symbol
,̂ i.e., ζ̂ ¼ −1=ζ̄. Given a tensorial spin-s harmonic
Ys
lIl
ðζ; ζ̄Þ, we have

Ys
lIl
ðζ̂; ˆ̄ζÞ ¼ ð−1ÞlY−s

lIl
ðζ; ζ̄Þ: ð12Þ

In particular, if we write la− ¼ 1ffiffi
2

p ð−1; riÞ with ri the

corresponding spatial vector, the antipodal transformation is

l̂a−¼
1ffiffiffi
2

p ð−1; r̂iÞ¼ 1ffiffiffi
2

p ð−1;−riÞ¼−
1ffiffiffi
2

p ð1;riÞ¼−laþ ð13Þ

Equation (13) is the antipodal transformation applied to a
null vector la− defined at past null infinity. Hence, this
vector has its antipodal point at minus the position of a
vector defined at future null infinity.
The antipodal transformation on the derivative operator

ð, which will appear later in the calculations, can be proven
to be

ð̂ ¼ −ð̄:

C. Relation between null cuts at I + and I −
As discussed in Sec. II, the condition of the null cone

cuts to be null on a general asymptotic spacetime

gab∂aZ∂bZ ¼ 0

can be written for each perturbation order from Eq. (11).
Thus, the n-order null condition reads

X∞
n

Xn
rþs¼0

gabn−r−s∂aZr∂bZs ¼ 0; ð14Þ

with

gab0 ¼ ηab

and

gab1 ¼ 2Ω1η
ab þ hab1 ;

which is the first order correction to the flat metric.
The zero order null condition is just the vector la to be

null ηablalb ¼ 0. The first nontrivial null condition appears
at order n ¼ 1,

hablalb þ 2ηabla∂bZ ¼ 0; ð15Þ

where we have dropped the subindex 1 in hab1 and Z1 for
simplicity. Up to first order, we can use the Minkowski
metric to raise or lower indices, thus, ηabla ¼ lb and

habðxa; ζÞlalb ¼ −2la∂aZðxa; ζÞ: ð16Þ

Equation (16) relates the first order correction hab with
the first order correction of the null foliation Z. Note that Z
plays the role of a potential for hab. As we will see below
the solution to the linearized equation for Z shows its
explicit dependence on the gravitational radiation σ and the
stress energy tensor Tab, and it is completely equivalent to a
standard formulation using an advanced or retarded Green
function.
Equation (14) can be continued to higher orders to obtain

nonlinear terms. We will only keep the first nontrivial terms
in this equation, since the purpose of this work is to obtain
the tree diagrams arising in a scattering formulation of
gravitational radiation interacting with matter fields.

D. Solution in absence of matter

In case of no matter fields, i.e., Tab ¼ 0, we haveΩ1 ¼ 0
in Eq. (10). Considering this simplification, we want to find
the first order correction to the null flat foliation Z0. Hence,
we need to solve Eq. (10) to first order
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ð̄2ð2Zðxa; ζ; ζ̄Þ ¼ ð̄2σðZ0; ζ; ζ̄Þ þ ð2σ̄ðZ0; ζ; ζ̄Þ: ð17Þ

The solution can be found by convoluting the inhomo-
geneity of the equation with the Green function on the
sphere [10],

G000 ðζ; ζ̄; ζ0; ζ̄0Þ ¼
1

4π
lþal0þa lnðlþal0þa Þ: ð18Þ

The solution reads

Zþðxa; ζ; ζ̄Þ ¼
I
S2
G000 ðð̄02σþðxalþ0

a ; ζ0; ζ̄0Þ

þ ð02σ̄þðxalþ0
a ; ζ0; ζ̄0ÞÞdS0; ð19Þ

where we have used that Zþ
0 ¼ u ¼ xalþa . The superscript

in Zþ is used to denote that the future null directed foliation
has been used to construct the future null cone cut xalþa .
Similarly, σþ denotes the outgoing radiation at future null
infinity.
Another solution to Eq. (17) can be found in terms of

ingoing radiation

Z−ðxa; ζ; ζ̄Þ ¼
I
S2
G000 ðð̄02σ−ð−xal−0

a ; ζ0; ζ̄0Þ

þ ð02σ̄−ð−xal−0
a ; ζ0; ζ̄0ÞÞdS0; ð20Þ

where we have used the null cone cut Z−
0 ¼ −xal−

a , given
by the intersection of the past null cone from xa with past
null infinity. Note also that at past null infinity the cut is
described by v ¼ Z−

0 , with v the usual advanced time
coordinate.
Given a point in the spacetime xa and the metric gabðxaÞ

at that point, we can write the metric in terms of the ingoing
(σ−) or outgoing radiation (σþ) using the scalar field Z. On
the other hand, from the uniqueness of the metric tensor
gabðxcÞ both descriptions of the metric must coincide, i.e.,
gab− ðxcÞ ¼ gabþ ðxcÞ. Thus, one should have

hþ1abðxcÞlþalþb ¼ h−1abðxcÞl̂−al̂−b: ð21Þ

In absence of a stress energy tensor the first order
deviation hab1 only depends on xa. Using Eq. (16) we find
a relation between first order outgoing and ingoing null
surfaces

lþa
∂aZþ ¼ l̂þa

∂a
cZ−; ð22Þ

which can also be written as

lþa
∂aðZþ þ cZ−Þ ¼ 0: ð23Þ

Equation (23) can be thought of as an equation for two
different functions of the same variables. Taking into

account that l−a ¼ −l̂þa, G000 ðζ; ζ0Þ ¼ G000 ðζ̂; ζ̂0Þ and per-
forming a change of variables ζ → ζ̂, one rewrites

Z−ðxa; ζ̂; ˆ̄ζÞ in Eq. (23) as

Z−ðxa; ζ̂; ˆ̄ζÞ ¼
I
S2
ðð02G000σ

−ðxalþ0
a ; ζ̂0; ˆ̄ζ0Þ

þ ð̄02G000 σ̄
−ðxalþ0

a ; ζ̂0; ˆ̄ζ0ÞÞdS0; ð24Þ

where the function σ−ðxalþ
a ; ζ̂0;

ˆ̄ζ0Þ is now thought as a
function given on future null infinity. A detailed analysis
taking into account the parity of this function when
expanding in spherical harmonics is given below. From
this point of view, the action of lþa

∂a on ðZþ þ cZ−Þ is to
add a common factor lþalþ0

a to the whole equation. For

example, its action on Z−ðxa; ζ̂; ˆ̄ζÞ yields
I
S2
lþalþ0

a ðð02G000 _σ
−ðu0; ζ̂0; ˆ̄ζ0Þ þ ð̄02G000 _̄σ

−ðu0; ζ̂0; ˆ̄ζ0ÞÞdS0;

with u0 ¼ xalþ0
a , and now the radiation scalars are derived

with respect to this variable. Moreover, using the properties
of the spin weighted spherical harmonics, the antipodal
transformation of each eigenfunctions is related to its
complex conjugate. Thus, we expect a relationship between
the Bondi shear at past null infinity and its complex
conjugate at future null infinity. An identical result can
be obtained by simply demanding that

Zþ
1 þ cZ−

1 ¼ 0: ð25Þ

In this case an analogous formula is obtained for σ−ðu; ζ̂; ˆ̄ζÞ
instead of _σ−ðu; ζ̂; ˆ̄ζÞ. The potential gauge supertranslation
freedom has been fixed by demanding that in absence of
radiation the null cone cut is given by u ¼ xalþ

a . Note that
the physical variables are gauge independent since the
metric depends on _σ.

E. Modes relation

To study the relation between the different modes of
gravitational radiation, we expand the dependence on the
stereographic coordinates from all the physical scalar
quantities. That is to say, given a quantity ηðu; ζ; ζ̄Þ with
spin weight s, we have

ηðu; ζ; ζ̄Þ ¼
X
l

ηðuÞIlYs
l;Il
ðζ; ζ̄Þ;

where s ¼ 2 if η ¼ σ0.
Also, the Green function (18) for the Laplacian on S2 can

be expanded as
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G000 ¼
X∞
l¼2

4π

2lþ 1
Y0
l;IL

ðζ; ζ̄ÞY 00
l;IL

ðζ0; ζ̄0Þ:

Replacing the above formula in Eq. (19) and using
Stokes theorem we get the l; IL contribution to Z, i.e.,

Zþ
l;Il

¼
I

ðY−2
l;Il
σþðu; ζ; ζ̄Þ þ Y2

l;Il
σ̄þðu; ζ; ζ̄ÞÞd2S; ð26Þ

where the factor 4π
2lþ1

has been absorbed in the definition of
Zþ
l;Il
. A similar calculation can be carried out to obtain the

right hand side in Eq. (22) but we must also apply the
antipodal transformations from Sec. III B, then

Ẑ−
l;Il ¼ð−1Þl

I
ðY−2

l;Il
σ−ðv;ζ; ζ̄ÞþY2

l;Il
σ̄−ðv;ζ; ζ̄ÞÞd2S: ð27Þ

To obtain the relation between the different modes from
outgoing radiation σþl;IL and incoming radiation σ−l;Il , one
does the harmonic decomposition of both functions and
makes a change of variables as in v0 ¼ u. The details of the
derivation are shown in the Appendix. The coefficients of
the ingoing and outgoing radiation are given by the
following relations

σþl;IlðwÞ þ ð−1Þlσ̄−l;IlðwÞ ¼ 0; ð28Þ
using a positive frequency w and integrating on S2 or

σþðu; ζ; ζ̄Þ þ σ̄−ðu; ζ̂; ˆ̄ζÞ ¼ 0; ð29Þ
as a function of the Bondi time u and the stereographic
coordinates on the sphere ðζ; ζ̄Þ. The same result could
have been obtained by grouping terms under the same value
of ð02G000 and complex conjugate (c.c.) in Eq. (25). The
alternative derivation given above gives the same result and
it can be extended to the case with a nontrivial energy
momentum tensor.

F. Scattering in presence of matter

When a matter field is present in the spacetime, there is
an additional term affecting the form of the foliation Z in
Eq. (10). The presence of the matter term yields an
additional complication since the calculations are techni-
cally more involved. Nevertheless, it is possible to derive an
explicit formula for each mode.
The future directed solution of the NSF equation can be

written as

Zþ
l;Il

¼
I �

Y−2
l;Il
σþðu; ζ; ζ̄Þ þ c:c:

− 2Y0
l;Il

Z
∞

0

dsð̄ðΩ1ðycðsÞ; ζ; ζ̄Þ
�
d2S; ð30Þ

with ycðsÞ ¼ xc þ slþc. A geometrical formula can be
written by defining Nþ

x as the future null cone coming

out from the point xc, andCþ
x as the intersection ofNþ

x with
future null infinity. With these definitions, we have

Zþ
l;Il

¼
I
Cþ
x

d2SðY−2
l;Il
σþðu; ζ; ζ̄Þ þ c:c:Þ

− 2

Z
Nþ

x

Y0
l;Il
ð̄ðΩ1ðxc; s; ζ; ζ̄Þdsd2S: ð31Þ

The corresponding formulas for Z−
l;Il

are

Z−
l;Il

¼
I �

Y−2
l;Il
σ−ðv; ζ; ζ̄Þ þ c:c:

− 2Y0
l;Il

Z
∞

0

dsð̄ðΩ1ðyc; ζ; ζ̄Þ
�
d2S ð32Þ

and

Z−
l;Il

¼
I
C−
x

d2SðY−2
l;Il
σþðv; ζ; ζ̄Þ þ c:c:Þ

− 2

Z
N−

x

Y0
l;Il
ð̄ðΩ1ðxc; s; ζ; ζ̄Þdsd2S: ð33Þ

G. The conformal factor in the linearized NSF

The relation between the Ricci tensor field Rab for a
general asymptotic spacetime and its conformal version
R̃ab is given by [9]

Rab ¼ R̃ab þ 2Ω−1∇̃a∇̃bΩ

þ g̃abg̃cdðΩ−1∇̃c∇̃dΩ − 3Ω−2∇̃cΩ∇̃dΩÞ: ð34Þ

As we defined in Sec. II, Ω is the conformal factor of the
metric and one of the main scalars from NSF. For the
linearized version of NSF, we can expand Ω ¼ 1þ Ω1 and
g01 ¼ 1þ 2Ω1ðxa; ζ; ζ̄Þ. Recalling R̃ab ¼ OðΛ2Þ, and con-
tracting with the null tensor lalb, we get

Rablalb ¼ 2lalb∂a∂bΩ1; ð35Þ

where we have replaced the covariant by the partial
derivative, valid at this level of approximation. We then
use the Fourier version of Eq. (35)

Ω1ðka; ζ; ζ̄Þ ¼
lalbRabðkcÞ
2ðkclcÞ2

; ð36Þ

¼ TabðkÞlalb
2ðkclcÞ2

; ð37Þ

where ka is the four-vector from the transformation and the
last equality follows from the fact that la is the first vector in
the Newman-Penrose null base. Replacing Eq. (37) in
Eq. (10), we obtain
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ð̄ðΩ1ðxc; ζ; ζ̄Þ ¼
Z

d4kθðkoÞ½TabðkcÞe−ixckc þ T̄abðkcÞeixckc �ð̄ð
�

lalb

ðkclcÞ2
�
;

where θðkoÞ is the step function.
Hence, each advanced mode solution to the NSF equation in presence of matter reads

Zþ
l;Il

¼
I �

Y−2
l;Il
σþðxclþ

c ; ζ; ζ̄Þ þ iY0
l;Il

Z
d3kð̄ð

�
TabðkcÞlþalþb

ðkclþ
c Þ2

�
e−ix

ckc

kclþ
c

þ c:c:

�
d2S: ð38Þ

The positive frequency component of this equation is given by

ZþðwÞl;Il ¼ σðwÞl;Il þ i
Z

∞

0

dko
I

d2k̂Tabðko; wk̂iÞ
I

Y0
l;Il
ð̄ð
�

lalb

ðkclcÞ2
�

1

kclc
; ð39Þ

with ka ¼ ðko; wk̂iÞ.
Likewise, the retarded solution for Z yields

Z−
l;Il

¼ ð−1Þl
I �

Y−2
l;Il
σ−ð−xcl−

c ; ζ; ζ̄Þ − iY0
l;Il

Z
d3kð̄ð

�
T̄abðkcÞlþal−b

ðkcl−
c Þ2

�
e−ix

ckc

kcl−
c

þ c:c:

�
d2S ð40Þ

and

Z−ðwÞl;Jl ¼ ð−1Þl
�
σ−ðwÞl;Jl − i

Z
∞

0

dko
I

d2k̂T̄abðko; wk̂iÞ
I

Y0
l;Jl

ð̄ð
�
l−al−b

ðkcl−c Þ2
�

1

kcl−c

�
: ð41Þ

Finally (see the Appendix), from Zþðxa; ζ; ζ̄Þ þ Z−ðxa; ζ̂; ˆ̄ζÞ ¼ 0, we get

σþl;IlðwÞ þ ð−1Þlσ̄−l;IlðwÞ ¼ i
I

d2SY0
l;Il

Z
∞

0

dko
I

d2k̂Tab

�ð̄ðð lalb

ðkclcÞ2Þ
þ

kclþc
þ ð−1Þl

ð̄ðð lalb

ðkclcÞ2Þ
−

kcl−c

�
: ð42Þ

The last term on the integral is a nonvanishing form
factor that yields the nontrivial part of σþl;JlðwÞ. It does not
depend on the stress energy tensor but it could give a
vanishing contribution for some special cases, as for
example, Tab ¼ fðkÞkakb þ gðkÞηab.

It is also useful to write down an equation relating
σþðu; ζ; ζ̄Þ with σ−ðu; ζ; ζ̄Þ and the stress energy tensor
TabðxÞ. To do this, we invert the frequency decomposition
of Eq. (A22) and multiply by the corresponding Y2

l;Jðζ; ζ̄Þ
obtaining

σþðu; ζ; ζ̄Þ þ σ̄−ðu; ζ̂; ˆ̄ζÞ ¼ i
Z

d4keiwuTabðkÞ
I

d2S0
�ð2G000 ð̄0ð0

�
l0al0b
ðkcl0cÞ2

�þ

kcl0þc
þ
ð2G0̂00 ð̄

0ð0
�

l0al0b
ðkcl0cÞ2

�
−

kcl0−c

�
; ð43Þ

where G0̂00 ¼ G000 ðζ̂; ˆ̄ζ; ζ0; ζ̄0Þ, Tab is written in spherical

coordinates as TabðkÞ ¼ Tabðko; w; k̂Þ and w ¼
ffiffiffiffiffiffi
k⃗:k⃗

p
.

Note that a generic TabðxÞ does not satisfy the homo-
geneous wave equation, and thus, ka is not a null vector. As

we can see in Eq. (43), the coordinates ðζ; ζ̄Þ and ðζ̂; ¯̂ζÞ are
associated with the advanced and retarded solution, re-
spectively.

H. The scattering with a massless scalar field

In this section we will apply the formula Eq. (43) to
analyze the particular case when the matter field present is
due to a scalar field. This implies the Lagrangian density
from the field is

L ¼ −
1

2
gab∂aϕ∂bϕ
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and the energy-momentum tensor is

Tab ¼ gab
�
−
1

2
∂cϕ∂

cϕ

�
þ ∂

aϕ∂bϕ: ð44Þ

Contracting Eq. (44) with the null vectors la, we obtain that
the only term surviving the contraction is

TabðxÞlalb ¼ ðla∂aϕðxÞÞ2:

On the other hand, the scalar fields, which are solutions to
the wave equation, can be written in terms of the Fourier
transform

ϕðyaÞ ¼
Z

d4kðe−ikbybaðkÞ þ eik
byb āðkÞÞδðkakaÞ ð45Þ

since the real scalar ϕðyaÞ satisfies the wave equation. The
energy-momentum tensor component that is needed for this
calculation can be computed in momentum space as

TabðkcÞlalb ¼
Z

d4xeik
bxbðla∂aϕðxcÞÞ2

then

TabðkaÞlalb ¼
Z

d4k0aðk0Þaðk − k0Þðlak0aÞlbðk0b − kbÞ

× δðk0ak0aÞδððk − k0Þbðk − k0ÞbÞ:

Note that both k0a and ðk − k0Þb are null vectors whereas kb
is not since TabðxÞlalb does not satisfy the homogeneous
wave equation, as one can see from a direct calculation.
The amplitude aðkÞ in Eq. (45) is directly related to the

free data of the scalar field given at the boundary of the
space time. One can thus directly compute the scattering
between gravitational and scalar waves in terms of the
different modes of the corresponding radiation fields at null
infinity. To do that we first give the relationship between the
Fourier transform aðk0Þ and the free data of the scalar field.
Assuming one has incoming scalar waves, one can write

the solution of the wave equation as

ϕðyaÞ ¼
I

d2S _Aðv; ζ; ζ̄Þ; ð46Þ

with v ¼ −yal−a and Aðv; ζ; ζ̄Þ the free data given at past
null infinity. Furthermore, using a Fourier transform to
obtain a frequency decomposition one has

Aðv;ζ;ζ̄Þ¼
Z

∞

0

dwðAðw;ζ;ζ̄Þe−iwvþĀðw;ζ;ζ̄ÞeiwvÞ: ð47Þ

Thus,

ϕðyaÞ ¼ i
Z

∞

0

wdw

×
I

d2SðAðw; ζ; ζ̄Þe−iwv − Āðw; ζ; ζ̄ÞeiwvÞ; ð48Þ

which can be regarded as spherical coordinates in momen-
tum space. One then has

ϕðyaÞ ¼ i
Z

d3k
2w

2iðĀðw; ζ; ζ̄Þe−ikaxa − Aðw; ζ; ζ̄ÞeikaxaÞ;

ð49Þ

where we have used v ¼ −l−axa to obtain the above
formula. Equation (45) can be written as

ϕðyaÞ ¼
Z

d3k
2w

ðaðkÞe−ikaxa þ āðkÞeikaxaÞ; ð50Þ

by a straight calculation using δðk2Þ¼δððko−wÞðko−wÞÞ.
It then follows that

aðw; ζ; ζ̄Þ ¼ 2iĀðw; ζ; ζ̄Þ

or

aðwÞlJ ¼ 2iĀðwÞlJ:

One can also show that using the positive frequency
decomposition for ϕ, together with δðk2Þ ¼ 1

2wk
δððko − wÞÞ

one obtains

TabðkaÞlalb ¼
Z

d3k1
4w1w2

aðk⃗1Þaðk⃗ − k⃗1Þðlaka1Þlbðkb1 − kbÞ

× δðko − ðw1 þ w2ÞÞ; ð51Þ

with w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗ − k⃗1Þ:ðk⃗ − k⃗1Þ

q
.

We can use the formula derived in the previous section to
describe the scattering of incoming gravitational and scalar
waves. For that, we give free radiation data for both fields
and use formula Eq. (43) to obtain the outgoing gravita-
tional waves at future null infinity represented by the
radiation field σþðu; ζ; ζ̄Þ. In particular, we would like to
compute the gravitational tail of the outgoing wave when
both the incoming waves have compact support at past null
infinity.
Selecting appropriate times vi and vf so that there are no

incoming waves for v < vi or vf < v, then we would like
to obtain the gravitational radiation at future null infinity at
sufficient large value of u so that the “free” outgoing
gravitational and scalar waves have died out. A Bondi time
uf can be obtained such that a null plane that starts at

ðvf; ζ̂ ˆ̄ζÞ, ends up at ðuf; ζ; ζ̄Þ. This plane is given by
yalþ

a ¼ uf ¼ const, but it can also be written as
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uf ¼ −yal̂−
a ¼ vf. Thus, for times u > uf, there are no

“free” outgoing waves, and directly from Eq. (43) one gets

σþðu; ζ; ζ̄Þ ¼ i
Z

d3k1d3k2e−iwua−ðk⃗1Þa−ðk⃗2Þ

×
I

d2S0
ð2G000

ðk1 þ k2Þcl0c
ð̄0ð0

�
k1ak2bl0al0b

ððk1 þ k2Þcl0cÞ2
�
;

ð52Þ

with w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗1 þ k⃗2Þ:ðk⃗1 þ k⃗2Þ

q
and we have used

l−a ¼ −l̂a, G000 ¼ Ĝ000 together with the coordinate trans-
formation ζ → ζ̂ to get the final form of Eq. (52). Note
that σ−ðu; ζ; ζ̄Þ is absent in the above equation since it
has compact support and vanishes for u ¼ xalþa > uf.
Likewise, ϕðxÞ vanishes on the future null cone of xa

and gives no contribution to the stress energy tensor on the
integral on that cone. The corresponding ðl; IlÞ mode for
the positive frequency decomposition is given by

σþl;IlðwÞ ¼ i
I

d2k̂
Z

d3k1d3k2Sl;Ilðk; k1; k1Þa−ðk⃗1Þa−ðk⃗2Þ;

ð53Þ

with

Sl;Ilðk; k1; k2Þ ¼ δðw − ðw1 þ w2ÞÞ
Y0
l;Il
ðk̂Þ

ðk1 þ k2Þclc
× ð̄ð

�
ka1k

b
2lalb

ððk1 þ k2ÞclcÞ2
�

ð54Þ

and ka ¼ wlaðk̂Þ, ka1 ¼ w1laðk̂1Þ, ka2 ¼ w2laðk̂2Þ. Using a
particle physics interpretation of the plane waves, the delta
function can be interpreted as the conservation of energy of
incoming and outgoing particles. Energy conservation, as
opposed to full 4-momenta conservation, is a characteristic
feature of the interaction with an external field, as one can
also see in Sec. 8.7 of [14].
It is worth making some remarks regarding these results.

Equation (52) exhibits the tail of the gravitational wave due
to the interaction with the scalar field since it is evaluated
for times u > uf. The equation for the modes relation (53)
is also interesting since it shows that one can obtain
different harmonic components for the outgoing gravita-
tional wave that may not be present in the incoming wave.
Equation (53) is also interesting in a quantum field theory
approach since it gives the probability scattering amplitude
that an incoming graviton with a given value of quantum
numbers end up with a different set of outgoing quantum
numbers. In this case the scalar field is considered an
external classical field.

1. Minimal coupling between the gravitational
and a matter field

Here we review the standard Lagrangian formulation for
minimal coupling between matter and gravity since the two
methods yield analogous results at a linearized level.
However, as we will see below, there is a big difference
between our formulation and the Green function approach
based on the flat conformal structure. One can be extended
in perturbation procedure, the other one cannot.
The Lagrangian for minimum coupling is given by

L ¼ LG þ κMLM ð55Þ

with

LG ¼ ffiffiffiffiffiffi
−g

p
R;

κM a suitable coupling constant, and LM the Lagrangian
of the associated matter field. Writing down the Euler-
Lagrange equations and then linearizing the obtained
equations yields the first order set of equations from which
a perturbation procedure can be implemented.
As a particular example we consider here a real massless

scalar field ϕ,

LM ¼ 1

2

ffiffiffiffiffiffi
−g

p
gab∂aϕ∂bϕ: ð56Þ

It is straightforward to show that the trace free linearized
perturbation of a flat metric obeys the wave equation with
or without sources, i.e.,

□hab ¼ Tab ¼ ∂aϕ∂bϕ −
1

2
gab∂cϕ∂cϕ; ð57Þ

with the massless field satisfying.

□ϕ ¼ 0: ð58Þ

Using the Green functions for the D’Alambertian operator
in flat space one obtains

gþab ¼
I
Cþ
x

d2Sð _σþðu; ζ; ζ̄Þm̄am̄b þ c:c:Þ

þ
Z
N−

x

d4x0Gþðx; x0ÞTabðx0Þ; ð59Þ

g−ab ¼
I
C−
x

d2Sð _σ−ðv; ζ; ζ̄Þm̄am̄b þ c:c:Þ

þ
Z
N−

x

d4x0G−ðx; x0ÞTabðx0Þ; ð60Þ

with Gþðx; x0Þ (G−ðx; x0Þ), the advanced (retarded) Green
function of the wave operator. We thus obtain a similar
derivation to the one presented in the previous sections.
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A natural question is then why should one follow the
somewhat involved approach to obtain a standard result?
The main reason is that there is no suitable perturbation
calculation to obtain the higher order terms using the Green
function of the flat D’Alambertian operator. If one tries to
do so, one discovers that the null geodesics of the flat
spacetime become either timelike or spacelike curves of the
nontrivial metric. Thus, they either end up at spacelike or at
timelike infinity, i.e., never at null infinity and thus one
cannot find a perturbation procedure that converges to the
solution one is looking for. Our formulation, on the other
hand, is amenable to a perturbation approach that is well
defined at every step of the perturbation scheme. All
the variables involved that were defined and used in the
previous sections can be redefined at every step of the
perturbation series since they have geometrical meanings,
i.e., null cone cuts, affine parameters, Bondi coordinates,
etc. For example, in the field equation for Z

ð̄2ð2Z ¼ ð2σ̄ðZ; ζ; ζ̄Þ þ ð̄2σðZ; ζ; ζ̄Þ

þ
Z

∞

Z
_σ _̄σ du −

Z
∞

s
ððð̄ðΩ2Þ þ gab∂aΛ∂bΛ̄Þds0;

all the variables involved can be obtained in a perturbation
series leaving the geometrical meaning of the equation
unchanged.
In addition, our formulation has a clear distinction

between the true gravitational field, i.e., the conformal
structure, and the matter field. As one can see from the field
equations, the function ð2Z defines the conformal structure
of the spacetime and only vanishes for a flat spacetime
whereas the conformal factor Ω depends on the stress
energy tensor.

IV. SUMMARY AND CONCLUSIONS

In this work we use the NSF approach to study the
coupling of matter and gravity for the incoming/outgoing
gravitational radiation given on the null boundaries of an
asymptotically flat spacetime.
We first derive a new field equation for the main variable

since the original formulas contained some errors [11]. This
equation is a nonlinear fourth order elliptic equation on the
sphere with the matter term taking part in the inhomoge-
neity. Using an ab initio assumption that the matter field
preserves the regularity of the null cone cuts we solve this
equation by a perturbation scheme in Eq. (11).
We then consider the dispersion relation between incom-

ing and outgoing gravitational waves when matter is
present at the lowest nontrivial level. This is done in
Sec. III by first obtaining a relation between the incoming
Z− and outgoing Zþ null foliations up to first order in the
iterative process. This relation directly follows from the
uniqueness of the first order metric.

Formal solutions to the elliptic equation on S2 are given
for null and non-null matter fields. The former case yields,
by means of Eq. (25), a relation for every mode in the
decomposition of the gravitational shear σ. Although this
relation gives the trivial scattering in every mode of the
gravitational radiation in the absence of matter, it is
important to obtain since it gives a nontrivial relation
between the incoming and outgoing radiation fields.
When matter is present, a similar relation can be derived

for every mode. Despite being more difficult than in the
nonmatter case, this expression still gives a practical
formula to work with. Indeed, the calculation of the last
term in Eq. (10) can be directly implemented in numerical
integration and get the desired mode of scattering. When
the energy-momentum tensor Tab depends on the free data
given on null infinity the calculations are greatly simplified.
As an example, we consider a real, massless scalar field and
write the mode relations for that particular case.
The above results could be thought of as the tree level

approximation that one gets in field theory but using a
different approach. A correlation with a more standard
linear approximation using advanced or retarded Green
functions of the flat wave equation is also given to
emphasize the close relationship between the two
approaches. In most scattering situations the tree level
approximation yields the dominant terms of a perturbation
series.
However, there are several reasons why our formulation

has several advantages over the standard approach. First,
the perturbation approach based on null surfaces correctly
incorporates the null free data for gravity given on past an
future null infinities together with the conformal structure
of the spacetime. The n-order term is a field given on a
spacetime with null surfaces computed to the n − 1 order.
The Green function approach, on the other hand, always
keeps the flat metric to define the null cone structure at each
level of the approximation. Thus, these null lines of
Minkowski space fail to reach either future or past null
infinity and therefore never really reach the null free data
and the perturbation procedure never converges to a
solution of the problem. A second point is that the same
free data in our formulation is used for any order of the
perturbation procedure, i.e., the phase space is constructed
once and for all in our approach. This is extremely
important at a classical or quantum level since one can
introduce either a canonical form with Poisson brackets or
quantum commutation relations for fields given on the null
boundaries that will not be modified as one proceeds with a
perturbation calculation [15]. There is however an
assumption that was used in this work that will have to
be modified when higher order perturbations are consid-
ered. In our calculations we were assuming that the
conformal completion of Minkowski spacetime is the
Einstein universe, where spacelike infinity io is a single
point and the conformal metric is regular everywhere.
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This assumption must be modified in the next orders of
perturbation calculations since they should include a non-
vanishing ADM mass. This in turn forces us to reexamine
the notion of both the definition of io and the regularity
structure near spacelike infinity. A new mathematical
treatment of io has to be given to go along with higher
order perturbation terms in order to map the kinematic
structures of past and future null infinities. Although some
progress has been made in this area [16,17] there is still
much work to be done to get a full understanding of the
conformal completion of spacelike infinity for non trivial
spacetimes [18,19].
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APPENDIX: DERIVATION
OF σ MODES RELATION

We first derive the relationship for the “free” part of Z
that satisfies the wave equation, since it corresponds to
undisturbed gravitational waves that propagate from minus
to plus null infinity. Zþ

l;Il
is given by

Zþ
l;Il

¼
I

ðY−2
l;Il
ðζ; ζ̄Þσþðu;ζ; ζ̄ÞþY2

l;Il
ðζ; ζ̄Þσ̄þðu;ζ; ζ̄ÞÞd2S;

ðA1Þ

and we assume the free data σþðu; ζ; ζ̄Þ admits a positive
frequency decomposition

σþðu; ζ; ζ̄Þ ¼
Z

∞

0

w2 dwσþðw; ζ; ζ̄Þe−iwu:

We then rewrite the free data part of Z as

Zþ
l;Il

¼
Z

∞

0

w2 dw
I

d2S½Y−2
l;Il
ðζ; ζ̄Þσþðw; ζ; ζ̄Þe−iwxala

þ Y2
l;Il
ðζ; ζ̄Þσ̄þðw; ζ; ζ̄Þeiwxala �; ðA2Þ

which can be rewritten as

Zþ
l;Il

¼
Z

d3k½Y−2
l;Il
ðk̂ÞσþðkÞe−ixaka þ Y2

l;Il
ðk̂Þσ̄þðkÞeixaka �;

ðA3Þ

using a spherical decomposition of the 3-dim momentum
space. In the above equation the coordinates ðζ; ζ̄Þ on the
sphere have been rewritten as ðk̂Þ, and ka ¼ wlaðk̂Þ. Note
that kaka ¼ 0, and we have a field that satisfies the wave
equation. Using the eigenfunctions eix

aka we obtain the
Fourier transform of the above equation as

Z
d3xeix

aka ∂
↔

tZ
þ
l;Il

¼ Y−2
l;Il
ðk̂Þσþðw; k̂Þ: ðA4Þ

The operator ∂

↔

t is commonly used in Quantum field
theory and given two scalars a and b, it is defined as

a∂
↔

tb ¼ að∂tbÞ − ð∂taÞb. Finally, integrating on the sphere
Eq. (A4) yields

I
d2k̂

Z
d3xeix

aka ∂
↔

tZ
þ
l;Il

¼ σþðwÞl;Il : ðA5Þ

cZ−
l;Il , on the other hand, is given by

cZ−
l;Il ¼ ð−1Þl

I
ðY−2

l;Il
ðζ; ζ̄Þσ−ðv; ζ; ζ̄Þ

þ Y2
l;Il
ðζ; ζ̄Þσ̄−ðv; ζ; ζ̄ÞÞd2S; ðA6Þ

thus, to compare both expressions, one must first rewrite
Eq. (A6) as a function of u ¼ xalþa instead of v ¼ −xal−a .
From l−a ¼ − ˆlþa we obtain v ¼ û. Performing a change of
variables ζ → ζ̂ in Eq. (A6) we obtain

cZ−
l;Il ¼

I
ðY−2

l;Il
ðζ; ζ̄Þσ̄−ðu; ζ̂; ˆ̄ζÞ

þ Y2
l;Il
ðζ; ζ̄Þσ−ðu; ζ̂; ˆ̄ζÞÞd2S; ðA7Þ

where we have used Y2
l;Il
ðζ̂; ˆ̄ζÞ ¼ ð−1ÞlY−2

l;Il
ðζ; ζ̄Þ. Note that

σ̄−ðu; ζ̂; ˆ̄ζÞ is a spin-weighted 2 function and plays the same
role as σþðu; ζ; ζ̄Þ in Zþ

l;Il
. Thus,

cZ−
l;Il ¼

Z
∞

0

w2dw
I

d2S½Y−2
l;Il
ðζ; ζ̄Þσ̄−ðw; ζ̂; ˆ̄ζÞe−iwxala

þ Y2
l;Il
ðζ; ζ̄Þσ−ðw; ζ̂; ˆ̄ζÞeiwxala �: ðA8Þ

Finally,

I
d2k̂

Z
d3xeix

aka ∂
↔

t
cZ−

l;Il ¼ ð−1Þlσ̄−ðwÞl;Il ; ðA9Þ

and from Eq. (25) we get

σþðwÞl;Il þ ð−1Þlσ̄−ðwÞl;Il ¼ 0: ðA10Þ

We now address the mode decomposition of the full term
either at future or past null infinity including the integration
on the future or past null cones from the point xa starting
with the advanced solution, i.e.,
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Zþ
l;Il

¼
I

ðY−2
l;Il
σþðu; ζ; ζ̄Þ þ c:c:Þ

þ Y0
l;Il

Z
∞

0

dsð̄ðg01ðyc; ζ; ζ̄ÞÞd2S; ðA11Þ

where the last term is integrated on the future null cone
from xa and c.c. stands for the complex conjugate term. It is
useful to have a spherical harmonic decomposition before
the integral on the null cone is performed. For this we
expand TabðyaÞ in a Fourier decomposition,

TabðycÞ ¼
Z

d4kTabðkcÞe−ikaya

¼
Z

d4kT̄abðkcÞeikaya ; ðA12Þ

where we have used the real condition on the last equation.
We now write

ð̄ðg01ðyþc; ζ; ζ̄Þ ¼ TabðyþcÞð̄ð
�
lþalþb

ðkclþc Þ2
�

where yþc ¼ xc þ slþc. Inserting (A12) into (A11) yieldsZ
∞

0

ds
I

d2SY0
l;Il
ð̄ðg01ðyþc; ζ; ζ̄Þ

¼ i
Z

d4ke−ik
axaTabðkcÞ

I
Y0
l;Il
ð̄ð
�
lþalþb

ðkclþc Þ2
�
d2S
kclc

:

To compute the value of σþl;IlðwÞ at future null infinity, and
calling Zfree to part of Z without the matter field term, it is
convenient to have a 4-dim Fourier decomposition of
ZfreeðxaÞl;Il as

ZfreeðxaÞlJl ¼
Z

d4kδðkakaÞθðkoÞ½Y−2
l;Il
ðk̂Þσðwk; k̂Þe−ixaka

þ Y2
l;Il
ðk̂Þσ̄ðwk; k̂Þeixaka �: ðA13Þ

Taking the Fourier transform of the above equation givesZ
d4xeikxZfreeðxaÞlJl ¼

δðko−wkÞ
2wk

Y−2
l;Il
ðk̂Þσðwk; k̂Þ: ðA14Þ

Using spherical coordinates on momentum space, integrat-
ing on the frequency and on the sphere in momentum space
givesZ

∞

o
dko

I
d2k̂

δðko −wkÞ
2wk

Y−2
l;Il
ðk̂Þσðwk; k̂Þ ¼

1

2wk
σðwkÞl;Jl :

ðA15Þ

Finally, starting with (A11) and following the same steps as
before yields

Zþ
l;Il
ðwÞ ¼ σþl;IlðwÞ þ i

Z
∞

0

dko
I

d2k̂Tþ
abðko; wk̂iÞ

×
I

Y0
l;Il
ð̄ð
�

lalb

ðkclcÞ2
�

1

kclc
; ðA16Þ

with ka ¼ ðko; wk̂iÞ.
To obtain the contribution of the retarded solution we

first write

Z−ðxa;ζ; ζ̄Þ¼
I
S2
ðð̄02G−

00ðζ; ζ̄;ζ0; ζ̄0Þσ−ðv;ζ0; ζ̄0Þþc:c:ÞdS0;

ðA17Þ

with v ¼ −xal−a ¼ −xal̂þa . In order to compare with

Z−ðxa; ζ; ζ̄Þ we perform a change of variables ζ0; ζ̄0 →
ζ̂0; ˆ̄ζ0 giving

Z−
freeðxa; ζ̂; ˆ̄ζÞ

¼
I
S2
ðð̄02G−

00ðζ̂; ˆ̄ζ; ζ̂0; ˆ̄ζ0Þσ−ð−u; ζ̂0; ˆ̄ζ0Þþ c:c:ÞdS0: ðA18Þ

Thus, the positive frequency decomposition of

Z−ðxa; ζ̂; ˆ̄ζÞ is given by

Z−
freeðxa; ζ̂; ˆ̄ζÞ ¼

Z
∞

0

dw
I
S2
dS0ðð̄02G−

00ðζ̂; ˆ̄ζ; ζ̂0; ˆ̄ζ0Þ

× σ−ðw; ζ̂0; ˆ̄ζ0Þeiwxal0a þ c:c:Þ; ðA19Þ

and

Z−
freeðxaÞl;Il ¼ ð−1Þl

Z
∞

0

dw
I

d2S0

× ½Y 02
l;Il
ðζ0; ζ̄0Þσ̄−ðw; ζ0; ζ̄0Þe−iwxal0a

þ Y 0−2
lJl
ðζ0; ζ̄0Þσ−ðw; ζ0; ζ̄0Þeiwxal0a �; ðA20Þ

where we have used cY2
l;Il ¼ ð−1ÞlY−2

l;Il
and dY2

l;Il
Y−2
l0;I0l

¼
Y2
l;Il
Y−2
l0;I0l

. Thus, directly from

Zþ
freeðxa; ζ; ζ̄Þ þ Z−

freeðxa; ζ̂; ˆ̄ζÞ ¼ 0;

we get

σþl;IlðwÞ þ ð−1Þlσ̄−l;IlðwÞ ¼ 0:

To obtain the past null cone contribution to (A16) we
have to replace yþc ¼ xc þ slþc by y−c ¼ xc þ sl−c,
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Z
∞

0

ds
I

d2SY0
l;Ið̄ðg01ðyc−; ζ; ζ̄Þ

¼ i
Z

d4ke−ik
axaTabðkcÞ

I
Y0
l;Jl

ð̄ð
�
l−al−b

ðkcl−c Þ2
�

d2S
kcl−c

:

Thus,

ð−1ÞlZ−
l;Il
ðwÞ ¼ σ̄−l;IlðwÞ − i

Z
∞

0

dko
I

d2k̂TabðkcÞ

×
I

Y0
l;Il
ð̄ð
�

lalb

ðkclcÞ2
�− 1

kcl−c
; ðA21Þ

where the relative minus sign arises from the odd number of
lc terms in the stress energy tensor term.

Finally, from Zþðxa; ζ; ζ̄Þ þ Z−ðxa; ζ̂; ˆ̄ζÞ ¼ 0, we get

σþðwÞl;Il þð−1Þlσ̄−ðwÞl;Il þ i
I

d2SY0
l;Il

Z
∞

0

dko
I

d2k̂Tab

×

0
@ð̄ð

�
lalb

ðkclcÞ2
�þ

kclþc
þð−1Þl

ð̄ð
�

lalb

ðkclcÞ2
�
−

kcl−c

1
A¼ 0: ðA22Þ
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