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Abstract: Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made
of polyanilines (PANIs) are both the most widely used materials in each category. This is due to
their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of
these materials produces composites which show enhanced properties and also synergy between
the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common
way to produce the composites is to form the gel by radical polymerization (usually by redox
initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It
is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs
penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become
filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM
in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological
applications of the composites have been developed, such as photothermal (PTA)/electromechanical
actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption
of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the
composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of
properties of both polymers is beneficial.

Keywords: polyanilines; polyacrylamides; hydrogels; nanocomposite; semi-interpenetrated network;
photothermal; sensor; actuator; supercapacitor; conductivity

1. Introduction

Cross-linked polyacrylamides (cPAM) are the materials most widely used to pro-
duce synthetic hydrogels [1], due to their simple aqueous synthesis, chemical stability
and reproducible formation of hydrogels. The use of polyacrylamide as gel media for
electrophoresis makes it the most commonly in situ synthesized material [2]. Moreover,
using functionalized acrylamides as monomers, it is possible to produce hydrophilic [3],
or hydrophobic gels [4], thermosensitive (“smart”) materials [5], polyelectrolytes bearing
positive [6] or negative charges [7], etc. The hydrophilic gels swell strongly (>20.000%)
in water [8], and the more hydrophobic polymers also swell in nonaqueous solvents [9].
Similar to other synthetic hydrogels, their large water retention capacity makes them useful
in drug release [10], water absorption [11] and decontamination [12], sensors [13], actua-
tors [14], etc. The gels are produced by radical polymerization (homo or copolymerization)
of the monomer in the presence of a crosslinker (a diacrylamide or hydrophilic diacry-
late) [15]. The polymerization in a concentrated (>0.1 M) solution produces a macroscopic,
highly hydrated solid (hydrogel) in the shape of the container [16]. These hydrogels have
meso and micropores <50 nm). Using cryogelation, macroporous hydrogels can be pro-
duced [17]. If the polymerization occurs inside micrometric-sized water domains of a
water-in-oil emulsion, microspheres are produced [18]. Moreover, polymerization in dilute
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solution is controlled by nucleation and growth processes, producing hydrogel nanopar-
ticles (nanogels) [19]. Growing the hydrogel from monomers grafted on solids produces
thin films [20]. The acrylamides can also be photopolymerized, using photoinitiators [21],
allowing the production of small shapes such as electrospun nanofibers [22] or 3D printed
shapes [23,24]. As can be seen, a variety of gel shapes/sizes can be produced with the
same polymerization chemistry. In addition to the ability to incorporate large quantities
of water inside the hydrogel matrix, an important property is the large deswelling that
occurs when some hydrogels (e.g., cPNIPAM) are heated at temperatures above a threshold
(lower critical solution temperature, LCST). A linear PNIPAM polymer is soluble below the
LCST and insoluble above it. In PNIPAM polymers, the change in solubility is related to
the thermal rotation of the hydrophobic isopropyl group which, at the LCST, overcomes
the strength of the water’s hydrogen bond with the amide group. The effect involves a
hydrophobic/hydrophilic equilibrium, which is also affected by the neighboring groups.
The presence of hydrophilic groups increases the LCST, while the presence of hydrophobic
groups decreases it.

Polyanilines are a family of conducting polymers which are widely used due to their
ease of synthesis [25], chemical stability [26] and pH-dependent conductivity [27]. By
incorporation of functional groups in the ring [28] or the amine nitrogen [29], it is possible
to change the redox and pH properties, albeit always reducing the electronic conductivity.
Although some functionalized anilines that have electron donating groups attached to
the ring can be polymerized (e.g., o-anisidine) [30], those bearing electron withdrawing
groups cannot be homopolymerized. Therefore, such monomers have to be copolymerized
with aniline [31], or the group has to be attached by post-functionalization [32]. Polyani-
line is hydrophilic but insoluble in water. It is only soluble in acids (e.g., formic) or in
strong hydrogen bonding acceptors (e.g., N-methylpyrrolidone). On the other hand, at-
taching charged groups to the ring (e.g., sulfonated polyaniline [33]) makes the polymer
soluble in aqueous solution. Polyanilines show high conductivity (up to 300 S/cm [34]),
show two redox processes and protonation/deprotonation equilibrium. Additionally,
they show optical absorption bands in the UV and visible–NIR parts of the spectrum [35].
The intrinsic electronic conductivity of PANI allows it to be heated using microwaves
(e.g., 2.4 GHz) [36], radiofrequency (e.g., 30 kHz) [37], or AC/DC current [38]. The elec-
tronic and physicochemical properties of polyanilines have been applied in a myriad of
technological devices [39]. The combination of cross-linked polyacrylamides and polyani-
lines produces functional materials with various shapes, electronic and ionic conductivities
that can suffer oxidation/reduction and can be heated by irradiation with light in the
UV–vis–NIR range (200–1500 nm).

Studies of conducting hydrogels produced by combining different cross-linked materi-
als and conducting polymers, specifically polyaniline [40], have been reviewed in a general
way [41,42], or focusing on one application field [43,44]. A range of conducting hydrogels
can be made with different combinations of conducting polymers (PANI, PPy, PEDOT, PTh,
etc.) and different hydrogel matrixes (PAA, polyacrylates, PVA, biopolymers, etc.), so the
whole field is quite large. Moreover, different cPAM or PANIs materials share common
physicochemical properties among them, which allows for meaningful discussion of the
observed effects. On the other hand, a review dealing only with conducting hydrogels
would be not comprehensive but merely descriptive, as seems to be the case with many of
the reviews already published [41–44].

Therefore, the present review deals comprehensively and critically with studies on
the synthesis, characterization and technological applications of conductive hydrogels
which are produced by a combination of cross-linked polyacrylamides (cPAM), including
copolymers with other monomers, and different polyanilines (PANIs). In this way, a
discussion comparing both the physicochemical properties linked to the hydrogel matrix
and those of the dispersed conducting polymer is possible.

The search for publications was performed in Scopus® and Google Scholar® including
only peer-reviewed articles (no conference proceedings or books were included). The
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search terms used were: “hydrogel and polyanilline (as polyanillines, PANI or aniline)”.
This search returned >600 publications. From these, only studies related to polyacrylamides
(including copolymers and substituted acrylamide monomer units) were selected. Any
manuscript published before February 2023 which met the criteria is discussed.

2. Combination of Polyacrylamides and Polyanilines

There are three ways to combine cPAM and PANIs. One is the formation of nanocom-
posites which contain nanoparticles of PANIs (first phase) dispersed in a cPAM matrix
(second phase). Another is the blending PANIs macromolecules with the large cPAM
networks. Since PANIs are formed as linear chains which are mixed with a cross-linked
network, these materials are called semi-interpenetrated networks (s-IPN). Finally, PANIs
chains can be grafted onto cPAM.

2.1. Synthesis
2.1.1. Nanocomposites

In situ polymerization of anilines inside cPAM (ISP) is very simple to implement and
is the most extensively used method to combine PANIs and cPAM [45–48]. The hydrogel
is formed by radical polymerization of an acrylamide (or acrylic acid) in the presence of
a crosslinker (a compound bearing two vinyl groups in the same molecule). The most
common system initiator method is redox initiation with an oxidant (e.g., APS [49]) and
usually an activator (e.g., TEMED [50]). In this way, a nanoporous gel is produced. On the
other hand, superporous hydrogels of cPAM can be made by cryogelation [51]. Moreover,
hydrogels as thin films [52], fibers [53] or particles [54] can be produced and then combined
with PANIs.

Aniline is then absorbed inside the preformed hydrogel, and the swollen gel is brought
into contact with the oxidant (usually APS) in acid solution (Scheme 1).
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Scheme 1. Formation of a nanocomposite by in situ polymerization (ISP) of aniline inside a porous
hydrogel.

While the reaction resembles the polymerization of aniline in solution [55], some conditions
are different. The stoichiometric ratio of APS to aniline is 1.25. One mole of APS absorbs
two moles of electrons from aniline, producing PANI. Moreover, 0.5 moles of electrons are
additionally required to oxidize the PANI to its conductive state (emeraldine). On the other hand,
a ratio of APS/aniline in excess of 1.25 could degrade the PANI chains by overoxidation [56].
Therefore, an excess of aniline is optimum. Since the diffusion of reactants inside the gel is
slow, it is better to add APS to a gel loaded with aniline than vice versa. Another factor is
the acidity of the reaction medium. It is possible to produce PANI in an unbuffered neutral
solution since the polymerization produces protons and the pH becomes acid over time [57].
However, as with production in solution, the most common condition involves using acidic
APS [47,48]. On the other hand, since APS can act as initiator of radical polymerization of
acrylamides and as oxidant for aniline oxidative polymerization, a one-pot reaction of vinylic
monomers, aniline and APS has been used to produce combined materials [58,59]. In this
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case no crosslinker is used, but a gel is obtained. Generating the gel could be achieved by
grafting of PANI onto the polyacrylamide chains to produce a hybrid network and/or strong
interactions through non-covalent bonds between the flexible polyacrylamide chains and rigid
PANI chains. The gel can be produced by a simple radical polymerization or by a complex
biomimetic self-assembly [60], with similar results.

It is usually assumed that in situ polymerization of anilines inside a cPAM network pro-
duces s-IPN [45–48,61], but it is more likely to result in a nanocomposite of PANI NPs dispersed
in the hydrogel [62,63]. Since polyanilines are insoluble in aqueous solution, the growing chains
precipitate during polymerization in solution, forming nano and microparticles which aggregate
into solids. When PANIs grow inside the pores of cPAM, they precipitate, thereby filling the
pores [64]. SEM micrographs of the material surface show conductive (PANI) and isolating
domains (cPAM). Moreover, the physicochemical properties of the polymer gel are not affected
by the presence of PANI, suggesting that two phases are present. Celik and Ekici polymerized
aniline inside a cPAAm cryogel [65]. They showed that not only the micro/mesopores but
also the macropores are filled with PANI. Tasdelen produced a cP(AAm-co-IA) by gamma
radiation-induced polymerization [66]. Then, aniline was absorbed and polymerized by gamma
ray irradiation. Without additional evidence, these authors assumed that an s-IPN was formed.
On the other hand, Sharma et al. produced PANI inside a poly(acrylamide-aniline)-grafted gum
ghatti hydrogel and observed the presence of nanospikes [67]. Xia et al. observed the formation
of nanofibers during rapid ISP of aniline inside a PAA hydrogel [68]. Tang et al. produced a
composite of PANI with a cPAAm matrix by ISP [69]. They observed, by XRD, the formation of
crystalline domains of PANI, which should be formed in solid nanoparticles but not in s-IPN.

A related synthesis method involves interfacial polymerization (ISP-I) [70], which in-
volves either a liquid/solid (gel) interface [71] or a solid/solid interface between acrylamide
and another gel (e.g., PVA). Since it is known that interfacial oxidative polymerization
produces nanofibers [72], nanocomposites made of PANIs nanofibers dispersed in cPAM
can be generated [73]. Miranda et al. electrospun core–shell fibers of PAAm-PAA in which
the core contained aniline and the shell APS [74]. The formation of PANI occurred during
electrospinning. Karbarz et al. polymerized aniline at the pore surface by loading APS in
the hydrogel and filling the pores with a solution of aniline in nitrobenzene [75]. While
cPAM hydrogels with macropores (“superporous” hydrogels) are usually produced by
cryogelation, Mao et al. used a porous agarose hydrogel as sacrificial template to produce
pores [76]. Then, ISP was used to incorporate PANI in the walls of the macropores, making
the material electrically conductive.

− Hydrogel (cPAM) formation around nanoparticles of PANIs

Since formation of the hydrogel by radical polymerization is a well-established pro-
cedure, it seems possible to generate the hydrogel in the presence of PANI nanoparticles
(Scheme 2). Experimentally, two problems have been observed. First, the amount of radical
initiator has to be increased to obtain a self-standing hydrogel. This result suggests that
quinonimine units in the PANI chains quench the growing chains. Moreover, the grow-
ing hydrogel absorbs water, thereby inducing the precipitation/aggregation of the PANI
nanoparticles and generating an inhomogeneous material.

Abel et al. polymerized cPNIPAM around PANI NPs (dispersed by polymeric stabi-
lization) [77].

Absorption of PANIs nanoparticles inside cPAM hydrogels during swelling in nanopar-
ticle dispersions is a simple way to produce nanocomposites [78] (Scheme 3). Typical cPAM
hydrogels only permeate nanoparticles below 25–30 nm in diameter [79]. PANI nanopar-
ticles produced by oxidative polymerization of aniline with polymeric stabilizers have
diameters above 200 nm [80]. Indeed, PANI NPs (200 nm of diameter) only adsorb on the
surface of nanoporous hydrogels [81]. On the other hand, superporous hydrogels made
by cryogelation, easily absorb PANI NPs which become adsorbed on the macroporous
surfaces [81].
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2.1.2. Formation of a Semi-Interpenetrated Network (s-IPN)

− Loading cPAM with PANIs from solution.

If a dry hydrogel network (cPAM) is swollen in a true solution of PANIs macro-
molecules, the linear conductive polymer becomes semi-interpenetrated in the network
(s-IPN), as shown in Scheme 4.
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One if the main features of hydrogels is their ability to swell in water (>10.000%).
During swelling, small molecules and macromolecules can be incorporated from solu-
tion. However, PANI is not soluble in water. A functionalized polyaniline (sulfonated
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polyaniline, SPAN) [82], which is soluble in aqueous alkaline solution [82], was loaded into
cross-linked polyacrylamide gels by swelling [83]. Since a linear soluble macromolecule
was incorporated from the solution, the material is a true semi-interpenetrated network of
SPAN in cPAAm. The swelling degree was affected by the presence of the SPAN chain, and
the effect depended on the protonation state of the SPAN. At low pH, the imino groups of
the polyaniline chain became protonated, and the conducting polymer became an inner
salt. Therefore, no mobile counterions were required and a low internal osmotic pressure
was apparent. On the other hand, at higher pH, the imino groups were deprotonated, and
the sulfonate groups required mobile cations to balance the charge. The internal osmotic
pressure resulted in the swelling degree at pH 12 being ca. 17 times greater than that
observed at pH 1. However, at pH 12, SPAN was lost to the solution. It was found that
cPNIPAM (but not cPAAm) swells strongly in NMP [84]. Since NMP is a good solvent of
the deprotonated form of PANI (emeraldine base), PANI (EB) was interpenetrated into a
cPNIPAM gel by swelling in a PANI solution [64]. Then, NMP was evaporated and the
s-IPN swelled in water. Using an acidic solution, PANI became protonated and conductive.
The SEM micrographs did not show separated domains as observed in the nanocompos-
ite made by in situ polymerization. Moreover, the LCST of PNIPAM was affected by
the interaction of PANI and PNIPAM chains, shifting from 32–33 ◦C for pure PNIPAM to
52–53 ◦C for the true s-IPN of PANI in cPNIPAM. The increase in LCST was likely due to the
effect of hydrophilic moieties (amino and imino groups) on the hydrophobic/hydrophilic
balance of the NIPAM monomer units. One way to make PANI soluble involves using
amphiphilic anions (e.g., camphorsulfonate) as counterions [85,86]. Since PNIPAM (but not
PAAm) can be swollen in CHCl3 [87], protonated (conductive) PANI can be incorporated
into a cPNIPAM hydrogel.

2.1.3. Grafted PANI Chains (gPC)

Another way to intimately mix cPAM and PANIs chains involves grafting PANI
onto cPAM chains. Lu et al. copolymerized aniline with 2-aminophenylacryalamide using
γ-radiation initiation. Then, aniline was polymerized by oxidative polymerization initiating
from the aniline moieties pendant on the PAAm chains [88]. In a similar way, PNIPAM was
radically polymerized in the presence of 4-aminothiophenol which acts as a chain transfer
agent. The PNIPAM chains terminate in aniline moieties, and the oxidative polymerization
of aniline started in the aniline end groups by producing block copolymers (PNIPAM-
b-PANI) [89]. Smirnov et al. polymerized aniline by oxidation in the presence of linear
soluble PAAm [90]. They reported NMR evidence of grafting of PANI chains onto the
–NH2 groups of the acrylamide. Pang et al. synthesized PANI nanoparticles with vinyl
groups at the end of the PANI chains [91]. Oxidative polymerization of aniline grew from
these groups exposed at the PANI NPs surface, rendering a cross-linked hydrogel.

3. Technological Applications

The main goal of producing PANIs/cPAM materials involves using the properties,
either of each of the materials, their combination or some synergic effect, for technological
applications. In fact, most of the publications about these materials include applications
based on the existing or emerging properties. While the properties of cPAM and PANIs
enable the fabrication of various devices, it seems that some applications are more relevant
than others. Photothermal actuators are based on the combination of the electromagnetic ra-
diation (e.g., light) absorption and hydrogel thermosensitivity. Typically, PANI is combined
with PNIPAM. Sensors can be built using hydrogels and PANIs. The simplest method
involves dispersing the conducting polymer inside the porous hydrogel. The hydrogel,
unlike PANIs, is elastic and deforms under compression or tension. Due to various mecha-
nisms, the conductivity of the dispersed PANIs changes. Therefore, stretching, pressure
or even body movements can be detected. The PANIs are conductive and electroactive in
aqueous media. The dispersed PANIs networks inside the hydrogels could be used as elec-
trochemical sensors of solution properties (e.g., pH) and/or as a way to wire redox enzymes
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which are trapped inside the hydrogel matrix. Moreover, both double-layer charging and
oxidation/reduction of the conductive PANIs allows the storage of electrical charge in the
material. In this way, supercapacitor devices can be built. While PANIs/cPAM materials
have been also used for electrochemical solar cells, the amount of work investigating this
use is limited. Since it is known that PANIs conductivity is affected by the interaction with
molecules or ions, allowing easy access of analytes to the conducting network by dispersion
inside the gel enables the detection of the presence (and/or concentration) of analytes
through conductivity changes. Charged hydrogels act as soft arrangements of ionic charges
linked to the mobile polymer chains. When a potential is applied, the charges tend to mi-
grate to the electrode with the opposite charge, deforming the gel (electrophoretic drag). In
this way, “soft” electrical actuators can be easily built. Simple hydrogels are commercially
used for controlled release of medicinal drugs. “Smart” hydrogels change their swelling
upon external stimuli (pH, temperature, or ion strength). The photothermal triggering
could also control the release but with other stimuli (light, microwaves, radiofrequency)
due to the presence of the conducting PANIs.

3.1. Photothermal Actuators

Photothermal actuators require a material which absorbs electromagnetic radiation
(e.g., light) to heat the material and another component which produces an effect
(e.g., mechanical) upon heating.

3.1.1. Light

Polyanilines absorb light in the UV–visible and NIR range and heat up. Some cross-linked
polyacrylamides (e.g., PNIPAM) suffer a transition (LCST) with a volume collapse, inner solution
expulsions and change of hydrophobicity to a less hydrophilic surface. The combination of
PANI and PNIPAM can be applied to produce a photothermal actuator (Scheme 5).
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Scheme 5. Mechanism of a photothermal actuator activated by light.

Zhao et al. produced a nanocomposite consisting of PNIPAM with PANI NPs loaded
by ISP [92]. The hydrogel was produced either at room temperature (RT) or in a frozen
solution by UV light-initiated radical polymerization. Then, aniline polymerizes by oxi-
dation (APS) under RT or cryogelation conditions. Bilayer actuators were formed using a
cross-linked (with GTA) PVA film as the inert layer. Illumination with a laser allows the
observation of photothermally-induced movements. Deng et al. produced superporous
cPNIPAM hydrogels made by cryogelation in frozen DMSO (mp = 19 ◦C) [93]. The gels
were then loaded with PANI by ISP. The macroporosity increases the time required for
swelling/deswelling to 2 min, and the presence of PANI gives the material photothermal
sensitivity. Molina et al. fabricated PNIPAM nanoparticles cross-linked with dendritic



Polymers 2023, 15, 2240 8 of 21

polyglycerol (dPG) [94]. They then incorporated PANI by ISP inside the nanogels. The
composite nanogels decrease in size both by heating the solution or illumination with a
758 nm (NIR) laser beam. The collapse of the cPNIPAM matrix occurs in both cases at
32–34 ◦C. The composite nanogels are not cytotoxic to human cells but show antitumor
effects, both in vitro and in vivo, under illumination (Tmax < 42 ◦C).

3.1.2. Microwaves and Radiofrequency

Moreover, as electronic conductors, hydrogels generate currents (“Eddy”) when ex-
posed to an oscillating electromagnetic field. The currents produce heat by the Joule effect.
Therefore, electromagnetic radiation in both the microwave range (10 GHz to 500 MHz)
and radio range (100 MHz to 10 kHz) produces heating. Upon exposure to electromagnetic
radiation (microwaves, RF), the combined material heats up and the volume collapses,
resulting in the expulsion of the inner solution and a change of the surface from hydrophilic
to hydrophobic (Scheme 6).
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Depa et al. prepared a cPNIPAM hydrogel by radical polymerization (RT and cryo-
gelation) loaded with SiO2 NPs produced from silane precursors in situ [95]. They then
adsorbed aniline onto the pore surface by swelling and deswelling in aniline solution.
Using ISP, the pore surface was decorated with PANI. The amount of PANI seems low
since the conductivity of the material was ca. 0.074 S cm−1. The same hydrogel loaded
with PANI by complete swelling in aniline solution had a conductivity of 0.27 S cm−1. The
nanocomposite is used to build an electrical switch which is triggered by external heat or
by application of microwaves. Rivero et al. produced a cPNIPAM hydrogel by radical poly-
merization and transformed it into a nanocomposite of PANI by ISP [96]. The absorption
of microwaves by PANI NPs heats up the NC and induces the LCST of cPNIPAM. Using
this process, a microwave-driven electric switch is built. Nanocomposites produced by
polymerization of cPNIPAM around PANI NPs [77] show sensitivity both to microwaves
and RF irradiation. However, the NC collapse (cPNIPAM reaches LCST) occurred after
320 s with RF (320 kJ) but only required 30 s (21 kJ) when microwaves were applied. PANI
can be incorporated by ISP into thin films of PNIPAM [52]. The absorption of light by PANI
and heating (photothermal effect) makes it possible to structure the film topography using
direct laser interference patterning (DLIP [97]). Moreover, the topography is different when
PNIPAM is swollen (T < LCST) or collapsed (T > LCST) [20]. Upon irradiation with RF, the
NC heats up above the LCST of cPNIPAM. Therefore, the topography of the film can be
changed remotely by RF irradiation.

3.2. Sensors

The PANIs/cPAM materials can also be used to build different kinds of sensors
(Scheme 7):
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(i) Electrochemical sensors: As can be seen, the conductive matrix can be connected to a
base electrode. The large surface area of the conductive network can function as an
electrode or the PANIs can be used to connect redox enzymes which are immobilized
inside the cPAM matrix.

(ii) Electromechanical sensors: By compression of the combined material, the resistance
decreases. In this way, pressure can be measured by monitoring the resistance.

(iii) Conductivity sensors: The extended PANIs network exposes a large surface to
the hydrogel. Upon absorption of an analyte (volatiles, molecules, ions) into the
gel matrix, the analyte interacts with the PANIs, changing its electronic properties
(e.g., conductivity).
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3.2.1. Electrochemical

Since PANIs show electronic conductivity and redox activity, they can act as elec-
trodes for direct (e.g., pH) or indirect (e.g., enzymatic) electrochemical sensing [98]. The
dispersion of PANIs particles or macromolecules in the hydrogel allows the formation of
tridimensional electrodes which show larger electrochemical areas and more rapid charge
transport compared with PANIs thin films.

Gniadek et al. prepared cPNIPAM hydrogels and absorbed metal (Au, Ag) salts into
the matrix [99]. The pores were then filled with a solution of aniline in nitrobenzene. The
metal salts are reduced to metal nanoparticles and PANI cover the surface of the pores. The
LCST and mechanical properties of cPNIPAM remain unaltered. The conductive matrix,
coupled with the presence of electrocatalytic metal NPs produces a sensor electrode for
ethanol. The collapsed hydrogel (T > LCST) showed a higher electrocatalytic current. Das
and Sarkar produced a cross-linked PVA hydrogel which is an IPN of PAAm on the surface
of an electrode [100]. The aniline was then polymerized in situ by electrochemical oxidation.
The material is used to immobilize the enzyme urease. Using DPV, it is possible to detect
1.5–1000 µM of urea with an LOD of 60 nM and a sensitivity of 878 µA mM−1 cm−2.

3.2.2. Electromechanical

Since a hydrogel matrix is elastic, it can be compressed or stretched to a large degree
(>100%). A PANI-containing material, consisting of nanoparticles in a nanocomposite or as
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macromolecules in an s-IPN, changes its conductivity with compression/stretching, leading to
changes of the piece section (Ohm’s law) or formation/disruption of the percolation pathways.
Therefore, the combined materials can be used as pressure, strain or motion sensors.

Li et al. fabricated a nanocomposite by ISP of PANI into an acid-tolerant cellu-
lose/PAAM hydrogel [101]. The electrical resistance of the PANI/cellulose/PAAm hydro-
gels depends on the compression/stretching. Therefore, such materials can be fabricated
into motion sensors to monitor finger bending/pressing, fist clenching, throat swallow-
ing/phonation in real-time. Chen et al. produced fibers of a ter-copolymer MEO2MA-
OEGMA-NIPAM made by redox-initiated redox polymerization [102]. The linear poly-
mer was transformed into fibers by stretching (1500%) in a Teflon tube. PANI was then
formed inside the hydrogel fiber by ISP. The fibers show a good electrical conductivity
(0.8799 S cm−1). The good mechanical properties (see below) and stretch-dependent con-
ductivity enable application of the material in strain sensors. The electrical conductivity
(measured by AC spectroscopy) of the nanocomposite PANI/PNIPAM [92] shows high
sensitivity to elongation/compression allowing, the detection of body movements. Qin et al.
fabricated a nanocomposite based on a cPAAm hydrogel mixed with bacterial cellulose
and alginate [103]. The PANI nanoparticles were produced by ISP. The tensile strength
was ca. 24 kPa, measured by DMA. The maximum gauge factor observed was ca. 0.8,
while the response time was below 5 s, which demonstrates the possible application of the
material as a strain sensor in different parts of the human body. Wang et al. produced a
PNIPAM network by cross-linking with vinyl capped Pluronic F127 [104]. A PANI hydro-
gel, cross-linked by phytic acid, was interpenetrated in the hydrogel. The strain sensors
showed good sensitivity to pressure (GF = 3.92), with response time of 0.4 s. The response
remained stable for 350 cycles. Da Silva and Oréfice synthesized hydrogels composed
of cP(AA-co-PNIPAM) and loaded them with PANI by ISP [105]. They assumed that an
s-IPN was formed, but the data suggest that an NC was actually present. The material
presented swelling due to temperature (related to the LCST of PNIPAM), pH changes (due
to the protonation/deprotonation of PAA) and electric field effects(due to the presence of
charges in PAA and PANI). Wang et al. prepared a cP(AAm-co-HEMA) network by radical
polymerization and incorporated PANI by ISP [106]. The conductive hydrogels showed
high sensitivity (GF = 11). Strain sensors based on the conductive hydrogels demonstrated
reliable detection of human body movements, including joints, pulse and sound (voice)
vibrations. A sensor array was fabricated to sense strain/pressures in two dimensions. The
GF for different combined materials are summarized in Table 1.

Table 1. Comparison of gauge factors measured by different conductive composites.

Material Gauge Factor (GF) Ref.

cPNIPAM-co-2%AMPS/PANI(NC) 5.64 [96]
cPNIPAM-co-2%AMPS/PANI(s-IPN) 0.95 [64]
PNIPAM c-Pluronic F127/PANI(NC) 3.92 [104]

cP(AAm-co-HEMA) (NC) 11 [106]

3.2.3. Conductivity

The conductivity of PANI is strongly affected by interaction with organic compounds [107].
PANI nanoparticles or macromolecules are more exposed to contaminants in the tridimensional
structure of the hydrogel. Therefore, conductive materials consisting of a combination of PANIs
with cPAM could be used as conductivity sensors.

Demirci et al. synthesized a nanocomposite of rGO by radical polymerization of
acrylamide in presence of a GO dispersion, followed by the in situ reduction to rGO [108].
The NC was loaded with PANI by ISP. The material was then used as a conductivity sensor
to detect water-soluble herbicides and related chemical compounds. The conductivity of
the P(AAm)-rGO/PANI NC decreased markedly (5.3-fold) upon interaction with a 50 ppm
glyphosate solution.
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3.3. Electrical Actuators

Hydrogels with fixed charges in the polymer chains suffer an electrophoretic drag
when exposed to strong electric fields [109]. Since conducting polymers are doped by oxi-
dation, they contain positive charges in the chains. Therefore, a neutral hydrogel combined
with PANI will show mechanical changes when subjected to electric field, which enables the
construction of electric actuators. On the other hand, conductive combined materials with
a “smart” hydrogel matrix could act as switches activated by external stimuli (pH, temper-
ature, ionic strength, etc.) that induce volume changes in the hydrogel [110–112]. Shi et al.
built nanocomposites of PANI or PPy (with phytic acid as a dopant) with a PNIPAM/PAAm
hydrogel matrix formed by ISP [113]. The material showed high conductivity (up to
0.15 S/cm for PANI) compared with similar combined materials. The use of phytic acid
seems to produce a PANI hydrogel [114], which interpenetrates the cPAM hydrogel. The
material has micrometric-sized pores, making the volume change during transition faster
than in the case of nanoporous gels. Moreover, the conductive PANI inside the hydro-
gel increases the conductivity and improves the mechanical properties of the compos-
ite. An electrical switch can be built where heating the material induces the collapse of
PNIPAM, breaking the electrical contact. Xu et al. produced fibers of nanocomposites
by electrospinning [115]. Linear PNIPAM chains containing photo-crosslinkable units
(4-acryloylbenzo-phenone) were elecrospun from solution in DMF (40%). The gel fibers
were then cross-linked in mats using UV light. Finally, the fibers were swollen in ani-
line aqueous solution, and PANI was formed by ISP with APS. The electrical resistance
depends on the PANI content and the swelling degree, which is controlled by the phase
transition of PNIPAM. The relationship between conductivity and swelling is different for
the contraction process (T > LCST) or expansion process (T < LCST). The materials can
be used as electrical switches and also controlled resistors with memory effects. Zhu et al.
loaded αCD into cPNIPAM by polymerization of NIPAM in the presence of αCD [116]. ISP
of aniline was then used to produce a flexible (tensile strength 21.9 kPa) and conductive
(d = 0.0064 S cm−1) nanocomposite. Surprisingly, the conductivity decreased upon volume
collapse (>LCST of PNIPAM). The LCST of the nanocomposite is similar to that of PNIPAM,
suggesting the weak interaction of PANI and PNIPAM chains, as expected when there
is PANI NP dispersion. The thermosensitivity of PNIPAM enables the construction of
a thermally-activated electric switch. Cut pieces of the nanocomposite could be healed
by immersing in an acidic aniline solution, and a new PANI chain seem to form. A cP-
NIPAM hydrogel made by cryogelation in frozen DMSO by the authors in [93] showed
pressure-dependent conductivity, and an electrical switch driven by the LCST of PNIPAM
was demonstrated. A PNIPAM cross-linked by vinyl-capped Pluronic F127 [116] was used
to build an electrical switch driven by the LCST of PNIPAM (“temperature alertor”). On
the other hand, a simple nanocomposite made by ISP of aniline in a cPNIPAM hydro-
gel [96] showed a linear decrease in resistance with applied stress. Kim et al. produced a
PANI/cP(AA-co-PVS) NC by ISP of aniline inside a hydrogel [117]. They assumed an IPN
structure. The material showed clear and reversible changes in volume upon application
of an electric field, suggesting an electrophoretic drag effect. Siddhanta et al. used ISP
to incorporate PANI inside a cPAMPS hydrogel [118]. The hydrogel was prepared by
photopolymerization. Most properties (e.g., swelling) of the composite remained similar
to cPAMPS but electronic conductivity was added. Such behavior is consistent with a
nanocomposite but not with an s-IPN, in which the close interaction between PANI and
PAMPS chains should affect the properties. Application of 5 V/cm to the nanocomposite
induced large water expulsion and volume contraction, and electric fields as low as 3 V/cm
induced some volume contraction.

3.4. Supercapacitors

PANIs could be used as electrode materials for supercapacitors due to their large
theoretical specific capacitance [119]. However, thick PANIs pieces show slow charge
transport (Do < 10−10 cm2/s). The combined PANI/cPAM electrodes expose a large surface
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area to the solution, due to the porosity of the gels, with a short (<200 nm) PANI path
length ensuring fast responses.

Zhang et al. [120] prepared a nanocomposite by in situ oxidative polymerization
of aniline in a prestretched (500%) cPAAm hydrogel. After releasing the strain, the
PANI NPs formed contacts between each other to form a continuous conductive net-
work. Due to the good conductivity of the network, the material showed a high areal
capacitance of 509.9 mF cm−2 (measured at 0.5 mA cm−2). Wang et al. prepared a conduct-
ing nanocomposite by ISP of aniline on a cPAAm gel which contained Ag NPs (stabilized
with lignin) and HPA [121]. As in other cases, the effects of different components were
proposed but remain unclear if all the components are required to obtain the composite
properties. The hydrogel formation was made in a mixture of EG and H2O. The areal
capacitance was 364.0 mFcm−2 (at 0.3 mA cm−2). The use of EG in the inner solution
allowed it to operate as a supercapacitor below water freezing temperatures (down to
−20 ◦C) The PANI/cellulose/PAAm materials produced by Li et al. [101] can be sand-
wiched between carbon cloth electrodes to fabricate supercapacitors and showed large areal
(835 mF/cm2) and capacitance density (4.175 F/cm3). The areal energy of the composite was
74.22 µWh/cm2. The capacitance retention was above 96% after 5000 cycles. The super-
capacitors could bear large bending/compressing deformations and operated normally
from −60 to 80 ◦C. Hao et al. produced a nanocomposite (αCD-PAAm/PANI) to use
as supercapacitor electrode [122]. A mixture of αCD with AAm and BIS was subjected
to radical polymerization to form the hydrogel. Then, PANI was incorporated inside
the hydrogel by ISP. The specific capacitance (Scap) was 315 F g−1 (measured by CV at
10 mV/s). Remarkably, the Scap only decreased to 245 F g−1 at 1 V/s, suggesting a fast
counterion movement due to the open hydrogel structure. The material did not show
significant degradation after 35,000 cycles. While the properties are suitable for commercial
supercapacitors, it is unclear if the addition of the special αCD is the only way to produce
such a material.

The capacitance of different materials is compared in Table 2.

Table 2. Comparative performance of PANI/cPAM-based supercapacitors.

Material
Areal

Capacitance
F cm−2

Specific
Capacitance

(F g−1)
Ref.

Prestretched cPAAm/PANI 0.5099 – [120]
cPAAM/HPA/AgNPs(lignin)/PANI 0.364 – [121]

PANI/cellulose/PAAm/PANI 0.835 – [101]
αCD-PAAm/PANI – 315 [122]

The use of PANI-containing materials, including the combination of PANIs and cPAM
in micro-supercapacitors, has been reviewed [123].

3.5. Bioactive Surfaces

The surfaces of cPAM are hydrophilic (due to the hydrogen bond interactions of
water with the amide group) and neutral (unless a charged comonomer is used). The
incorporation of PANIs decreases the hydrophilicity (due to the effect of the aromatic rings)
and makes it weakly basic (due to the presence of diphenylamine units). Since the surface
properties of the material modulate the biological response (adhesion, cytotoxicity, biofilm
formation, etc.) of microorganisms, it is possible to produce bioactive surface by combining
cPAM and PANIs.

Wu et al. produced a nanocomposite by ISP of aniline in an s-IPN of PAAm inside
sulfonated chitosan [124]. The bactericidal activity of the PANI-containing NC against
Gram-positive bacteria was demonstrated. Moreover, the conductive hydrogel was suc-
cessfully used for in vivo electrical stimulation (ES) to promote infected chronic wound
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healing. The superporous cPNIPAM hydrogels made by cryogelation in frozen DMSO [93]
did not negatively affect the cell adhesion of fibroblasts.

3.6. Drug Release

The controlled release of pharmaceuticals is the largest application of hydrogels [125].
The presence of PANIs inside hydrogels can change their hydrophobic/hydrophilic proper-
ties and/or to introduce positive charges which affect the partition equilibrium. Therefore,
the release of active compounds (e.g., medicinal drugs) could be affected by the incorpora-
tion of PANIs into the cPAM gel matrix.

Tang et al. produced a PANI/cPAAm NC by ISP of aniline inside a cPAAm hydro-
gel [126]. They investigated the release of a model dye (methylrosaniline chloride) from
the NC. A non-Fickian behavior was observed. The rate of release depended inversely on
the amount of PANI inside the hydrogel and directly on the temperature. Molina et al.
produced nanocomposites of PANI and PNMANI loaded into cPNIPAM and cP(NIPAM-
co-AMPS) hydrogels [127]. The partition equilibrium and release of dyes (Methyl Orange,
Ruthenium-tris(2,2′-bipyridyl) ion, Dansyl Chloride) and pharmaceuticals (Tryptophan,
Propranolol Chloride, Riboflavin) were measured. A clear effect of the charges in PANI
and the relative hydrophobicity [128] of PNIPAM were detected. Lira et al. prepared a
PANI/cPAAm composite by electrochemical oxidation of aniline inside a cPAAm hydro-
gel [129]. Raman spectroscopy allowed them to ascertain that the PANI grew from the
electrode outwards, covering the surface of the pores, and not inside the polymer hydrogel
matrix. They studied the release of a charged dye (safranine) and found that the diffusive
release of the dye was strongly affected by the applied potential.

3.7. Mechanical Reinforcement

The most common method of PANI loading into hydrogels is ISP of aniline inside
the hydrogel. The method do not produce a s-IPN but becomes a nanocomposite with
rigid PANI nanoparticles dispersed in an elastic hydrogel matrix. Therefore, the material
becomes more elastic, though with an increase in the mechanical strength [130].

The fibers of the ter-copolymer MEO2MA-OEGMA-NIPAM, which are loaded with
PANI by ISP [102], show a high fracture energy (172.43 kJ m−2) and good tensile strength
(7.21 MPa). Liu et al. fabricated a cP(AAm-co-SMA) hydrogel loaded with carboxyl-
functionalized multi-walled carbon nanotubes and solid PANI (dispersed by ultrasound) by
entrapment during gel formation [131]. These authors claimed that the PANI was an s-IPN,
which is, however, unlikely as PANI is not soluble in an aqueous solution. The P(AAm-co-
SMA)/PANI/MWNTs-COOH composite hydrogel showed higher compressive strength
(0.59 MPa) and larger strain (96.52%) than cP(AAm-co-SMA) unmodified hydrogels. Liu
et al. also produced an NC of PANI and MWNT-COOH with a P(AAm-co-MAA) hydrogel
matrix using the same procedure [132]. The compressive strength was higher (0.8 MPa).
The nanocomposite made of cPAAm gel containing Ag NPs (stabilized with lignin) and
HPA [121] had a tensile strength of 130.7 kPa and a fracture energy of 1862 J m−2, which is
comparable to natural cartilages [133]. The compressive strength of a hydrogel (PNIPAM-
co-2%AMPS) in water was ε = 6.5 kPa [64]. The incorporation of PANI nanoparticles by ISP
of aniline inside the hydrogel increased the strength (ε = 11.3 kPa) [64]. However, the semi-
interpenetration of rigid PANI chains in the same hydrogel, by absorption of PANI from its
solution in NMP, increased the strength further (ε = 17.3 kPa) [64]. The nanoparticles act as
rigid filler, lowering the fluidity of the elastic matrix [134]. However, rigid interpenetrated
PANI chains change the mechanical properties of the polymer itself [135]. The mechanical
strength (compressive or tensile) of different materials is compared in Table 3. As can be
seen, the materials are soft (<1 GPa), except a gel also containing oligoethyleneoxide [102].
The incorporation of PANI always improves the mechanical properties (Table 3).
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Table 3. Effect of PANI on the mechanical properties of different combined materials.

Hydrogel Matrix PANI Incorporation Method Mechanical Strength (kPa) Ref.

MEO2MA-OEGMA-NIPAM ISP * 7210 [102]
cP(AAm-co-SMA)/MWNTs-COOH Entrapment of solid PANI 590 [131]
cP(AAm-co-MAA)/MWNT-COOH ISP * 800 [132]

cPNIPAM-co-2%AMPS None 6.5 [64]
cPNIPAM-co-2%AMPS ISP (NC) 11.3 [64]

cPNIPAM-co-2%AMPS Absorption from solution
(s-IPN) 17.3 [64]

cPAAm/HPA/AgNPs(lignin) ISP * 130.7 [121]
* assumed to be an s-IPN by the authors but likely an NC.

3.8. Electrochemical Solar Cells

Another electrochemical application where high surface area electrodes are relevant is
electrochemical solar cells. The dispersion of PANI NPs in hydrogel-based nanocomposites
is a way to produce large surface area electrodes using a simple process. Miranda et al.
fabricated a material by UV-assisted polymerization of aniline inside a cP(AA-co-AAm)
hydrogel [136]. The material showed electronic conductivity and a large electrochemical
area (of PANI). Therefore, it is successfully used in a dye-sensitized solar cell (DSSC).

4. Conclusions and Future Outlook

The formation of composite materials by combining polyanilines (PANIs) and cross-
linked polyacrylamides (cPAM) creates a synergy between the properties of both com-
ponents. Using simple procedures, such as radical polymerization in the presence of a
crosslinker (a divinyl compound) to produce cPAM and in situ polymerization (ISP) of
anilines to incorporate PANIs, it is possible to produce a variety of composites. In the
published work, it is often assumed that ISP of aniline loaded inside the cPAM produce
s-IPN. However, there is much evidence that the product of ISP is a nanocomposite, with
the hydrogel pores filled by PANI nanoparticles. A special case is the formation of PANI
hydrogels, cross-linked by phytic acid, where two networks (cPANI and cPAM) interpen-
etrate each other. On the other hand, swelling cPAMs in a true solution of polyanilines
(e.g., PANI (emeraldine base) in NMP) allows the formation of semi-interpenetrated net-
works (s-IPN). This approach is available for PANI since it has some solvents, whereas
unmodified PPy or polythiophene are insoluble in most solvents. In these cases, ISP has
to be used. In addition, other methods to produce nanocomposites have been tried, such
as entrapment of PANI nano-objects during polymer gel formation or absorption of PANI
nano-objects into macroporous gels. While a variety of cPAM have been used, >98% of the
published work deals with polyaniline. Such an approach is reasonable since PANI has
higher conductivity than functionalized polyanilines.

Different forms of cPAM hydrogels have been modified by incorporation of PANI,
including nanoporous and macroporous pieces, thin films, fibers and nanoparticles. While
cPAM swell strongly in water, they can also swell in non-aqueous solvents. This property
has been used to produce semi-interpenetrated networks of PANI in cPNIPAM by swelling
the hydrogel in a solution of PANI(EB) in NMP or in a solution of PANI(ES) in CHCl3. More-
over, aniline polymerization inside cPAMs has been performed in ethylene glycol/water
allowing the use of the composite as supercapacitor electrode at sub-freezing (−20 ◦C)
temperatures. In recent years, PANI/cPAM composites have been combined with other
nanomaterials, such as carbon nanotubes and graphene, or biopolymers, such as chitosan.
While the combination of materials could improve the properties, sometimes it is unclear
if all the components really contribute to the observed properties or only that novelty is
sought. In each case, a detailed comparison of the simple composite and the one with
the new component is required to assess its actual contribution. Photothermal actuators
are one of the main applications of PANI/cPAM composites. Most of the excitation is
performed with light (NIR to allow sufficient penetration in body tissue), but microwaves
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and radiofrequency have also been used. In non-biomedical applications, visible laser light
could also be explored. Additionally, other thermosensitive cPAMs which have a UCST
transition (e.g., poly(acrylamide-co-acrylonitrile) [137]) could be used to change the sign of
the actuator movement or build tristate switches. The novel properties of the composites
allow the fabrication of prototypes of different technological devices. The composites could
also be used as electrodes for supercapacitors that show good capacitances (areal, specific,
volumetric) with fast responses due to the large exposed area of PANI inside the hydrogel
matrix. The incorporation of PANIs into the hydrogels has also been shown to affect the
release of substances from the composite.

There are three main drawbacks for the successful commercial application of devices
based on PANI/cPAM composites. One, related to the hydrogel matrix, is their poor
mechanical properties which even lead to disaggregation during swelling. However, the
incorporation of PANI in the form of s-IPN networks or the formation of nanocomposites
with large aspect ratio structures (e.g., nanofibers) improves the mechanical resistance.
Moreover, the matrix could be constructed as a double network (DN), which shows ex-
ceptional mechanical properties [138]. Another drawback is related to the PANI dispersed
component. There is a large loss of conductivity of PANI at neutral pH. Therefore, devices
based on conductivity (even photothermal effects related to radiofrequency) would not
work in biological media. To overcome the problem, PANI could be replaced by polypyr-
role [81], which shows a smaller decrease (2–5-fold) of conductivity at neutral pH. Another
possible approach is the use of self-doped polyanilines (e.g., sulfonated polyaniline [33])
which maintain conductivity in neutral pH [83]. A further impediment to commercial ap-
plications is the response time of the hydrogel, especially the recovery time to the swollen
state. In most macroscopic systems (mm to cm sizes), this could take several hours. The
slowness results from the slow mass transport of water inside a compact gel matrix and
the slow relaxation of the polymer chains inside a compact gel. Deswelling is relatively
fast since it occurs in a soft matrix filled with water, whereas swelling involves movements
and mass transport in a compact gel. The best way to overcome the effect is reducing the
path length for water diffusion. This can be achieved by using thin films [52], macroporous
gels [81,93], or ensembles of gel nanoparticles [94].
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Abbreviations

AA acrylic acid
AAm Acrylamide
AC/DC alternating current/direct current
AMPS Acryamidopropanesulfonic acid
APS ammonium persulfate
BIS N,N’-Methylenebisacrylamide
cPAM cross-linked polyacrylamides
CV cyclic voltammetry
DMA dynamic mechanical analysis
DMSO dimethylsulfoxide
dPG dendritic polyglycerol
DPV differential pulse voltammetry
DSSC dye-sensitized solar cell
EG Ethylene glycol
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GF gauge factor
GO Graphene oxide
HEMA hydroxyethylmethacrylate
HPA hydroxyapatite
IA itaconic acid
IPN interpenetrated network
ISP in situ polymerization
LCST lower critical solution temperature
LOD lowest detection limit
MEO2MA methoxyethoxy) ethyl methacrylate
MWNT-COOH multiwall carbon nanotubes (carboxylated)
NC nanocomposite
NIPAM N-isopropylacrylamide
NIR near infrared
NMP N-methylpyrrolidone
NP nanoparticles
OEGMA oligo(ethylene glycol) methacrylate
PANI Polyaniline
PANI(EB) polyaniline in its deprotonated state (emeraldine base)
PANI(ES) polyaniline in its protonated state (emeraldine salt)
PNMANI poly(N-methylaniline)
PPy polypyrrole
PTA photothermal actuator
PVA polyvinylalcohol
rGO reduced graphene oxide
RT room temperature
SEM scanning electron microscopy
s-IPN semi-interpenetrated network
SPAN sulfonated polyanilline
TEMED N, N, N’, N-tetramethylethylenediamine
UCST upper critical solution temperature
UV ultraviolet
αCD α-cyclodextrin
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