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A B S T R A C T

By varying the magnitude of the effective interaction between spins in relation to the perturbations, we study
the decoherence behavior in a connected proton system. Making use of the Magnus expansion, we introduce
a NMR pulse sequence that generates an average Hamiltonian with Double Quantum terms multiplied by
a scaling factor, 𝛿, with the possibility to take positive and negative values. The performance of the pulse
sequence for different values of the scaling factors was validated in polycrystalline adamantane, by observing
the evolution of the polarization. A time reversal procedure, accessible through the change of sign in the
controlled Hamiltonian, was necessary to observe multiple quantum coherences. The spin counting develops
a characteristic growth in two species of clusters for the scaled time. The influence of the scaling factor on
the reversibility was observed through the behavior of the Loschmidt echoes, which decayed faster as the
scaling factor increases. From the analysis of dynamics and its reversibility, we extracted characteristic times
for the spin diffusion, 𝑇 𝛿

2 and the intrinsic decoherence decay, 𝑇 𝛿
3 for each scaling factor 𝛿, and perturbation

time scale, 𝑇𝛴 . Observing the dependence of reversibility vs. perturbation rates, both normalized with the spin
diffusion rate, we find that in the limit of low perturbations, 𝑇 𝛿

2 ∕𝑇
𝛿
3 deviates from the linear dependence on

𝑇 𝛿
2 ∕𝑇𝛴 that corresponds to strong perturbation. The asymptotic value 𝑇2∕𝑇3 ≈ 0.15 as 𝑇 𝛿

2 ∕𝑇𝛴 vanishes, gives
evidence that the main source of irreversibility is the intrinsic decoherence associated to the chaotic many-body
dynamics of the system.
1. Introduction

In 1950 the revolutionary observation of the spin echo by Erwin
Hahn [1] manifested the time reversal of the precession of each indi-
vidual spin. This required a radio-frequency (r.f.) pulse to switch the
Zeeman Hamiltonian, 𝑍 , into −𝑍 . Thus, the echo decay in time
scale 𝑇2 quantified the amount at which the spins interaction with
each other limits such reversal. About two decades later, a new variant
was able to achieve a goal sought since the times of Boltzmann and
Loschmidt [2,3]: the time reversal of a complex many-body dynamics.
The implemented procedure profits from the fact that in the quantum
realm of multiple spins, dipolar dynamics occurs under an effective
truncated dipolar Hamiltonian, , in the laboratory frame, whose
sign changes into − 1

2, in a rotating frame defined by a persistent
resonant irradiation field. As consequence the original polarization,
whose decay after a time 𝑡 is assigned to multi-spin interactions, could
be recovered in the form of a revival at 2𝑡 that deserved the name
of magic echo (ME) [4–6]. Related time-reversal procedures were later
implemented with great success to measure the coherences between
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E-mail address: karina.chattah@unc.edu.ar (A.K. Chattah).

different multi-spin projections denoted as Multiple Quantum Coher-
ences (MQC) [7–9], which quantify the scrambling of the information
originally localized in a individual spin. Nevertheless, a great mystery
remained unsolved: Why the strength of the ME decays with a time
scale smaller than the estimations resulting from the truncation terms
and errors of the few pulses involved?. This mystery became even
deeper when a time reversal of the spin diffusion dynamics, in the
laboratory frame, of a localized polarization was achieved in the form
of polarization echoes (PE) by Richard Ernst and collaborators [10],
confronted similar limitations. These experiments were able to clarify
the local nature of the information recovered as polarization after the
reversal of the ’’spin diffusion’’ process. This fed a long term quest to
address the issue of spin diffusion and emergent irreversibility [11–16].
At Córdoba, our team coined the term Loschmidt echoes (LE) to refer
to all the time reversal procedures that could result from changing the
sign of the effective Hamiltonian [17,18]. This failure of time reversal
hints at a connection [16,19,20], within the quantum realm, with the
controversy between Boltzmann and Loschmidt. We were inspired by
vailable online 10 March 2023
666-4410/© 2023 The Authors. Published by Elsevier Inc. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.jmro.2023.100104
Received 26 August 2022; Received in revised form 1 March 2023; Accepted 7 Ma
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

rch 2023

https://www.sciencedirect.com/journal/journal-of-magnetic-resonance-open
http://www.sciencedirect.com/journal/journal-of-magnetic-resonance-open
mailto:karina.chattah@unc.edu.ar
https://doi.org/10.1016/j.jmro.2023.100104
https://doi.org/10.1016/j.jmro.2023.100104
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Magnetic Resonance Open 16–17 (2023) 100104C.M. Sánchez et al.

p
s
d
w
c
L
e
E

s
l
L
E
s
d
a
r
m
p

d
e
n
w
o

w
d
𝑥
q

i



T
t
n
A
c
(
c
t
T
f



w
t
a



the stosszahlansatz idea of Boltzmann that the elastic collisions between
articles in a gas would be irreversible ‘‘in practice’’. Also in a quantum
ystem the diffusion constant, and other irreversibility magnitudes,
epends only on the collision time scale, and not much on the precision
ith which those collisions are described [21]. Indeed, the natural

haotic instability of the many-body dynamics is quantified by the
yapunov exponents, i.e. a property of the Hamiltonian not of the
nvironment. Our approach requires the observation of the Loschmidt
cho, the signal recovered after forward and backward dynamics, under

and − + 𝛴, where its decay is produced by the influence of a
mall non-inverted term, the perturbation 𝛴. A semi-classical calcu-
ation shows that in a high energy limit, the exponential dynamical
yapunov instability produces an exponential decay of the Loschmidt
cho for any small, though finite, 𝛴, as expected for a classical chaotic
ystem [17,22,23]. This recovers the quantum–classical limit. While the
iscrete spectrum of a finite number of quantum spins prevents from
pplying this concept, the actual experiments are done in a crystal at
oom temperature. This ensures the thermodynamic limit of infinitely
any-spins far from the ground state and a perturbation dynamics is
rogressively shrunk. This is the requirement for our ‘‘Central Hypothesis
of Irreversibility ’’ (CHI) which states that the memory of the initial
conditions fades away in a time-scale 𝑇3, which is mainly defined by the
ynamics that one is able to revert, i.e. by 𝑇2. That is, even when all the
xperimental errors and other departures from ideality could become
egligible (i.e. 𝑇2∕𝑇𝛴 → 0), the dynamics would remain irreversible
ith a time-scale 𝑇3 which is intrinsically tied to the scrambling time
f the specific Hamiltonian involved [24,25], i.e. to 𝑇2. Thus, a number

of experimental strategies had to be devised to implement the thermo-
dynamic limit [26,27] in which the ratio 𝑇2∕𝑇𝛴 between the time scale
characteristic of the Hamiltonian and the time scale of the perturbation
and errors, could be swept towards the smallest possible values.

In the last decade we decided to start a program to test the Central
Hypothesis of Irreversibility with experiments that could change the
effective dipolar Hamiltonian with a scale factor 𝛿 while keeping the
error terms roughly constant. This program was initiated by tilting the
polarization at different angles around the magic direction, followed
by an off-resonance irradiation [28,29]. Thus, both  and − could
be scaled down symmetrically. This was effective to study the growth
of the MQC but it was not efficient to compare the time scales of
time-reversal procedure, as the precision of the tilting angle was too
critical. This limitation was overcame by a Floquet effective Hamil-
tonian engineered with the Magnus expansion. Through appropriate
pulse sequences we implemented a multi-pulse scaled dipolar interaction
(MPSDI) [30]. In this case, the ratio between scrambling time and
actual irreversibility could be reduced until it reached a universal
limit 𝑇2∕𝑇3 ≈ 1∕7. The same limiting value was latter re-obtained
by using a strategy with completely different sources of errors: non
symmetrical time reversal procedures consisting on a concatenation of
a dynamics under off-resonance irradiation [31] with a MPSDI dynamic
with adapted times. This provided enough variability on the forward a
backward dynamics to confirm the limiting 𝑇2∕𝑇3 ratio for LE of the
magic type.

In the meanwhile, the LE time reversal techniques acquired great
momentum from an unexpected venue, that of Quantum Cosmol-
ogy [32]. This came in the form of Out of Time Order Correlations
(OTOCs), a family of mathematical objects that are particular cases
of a LE [33,34]. The OTOCs were introduced by Susskind, Maldacena
and co-authors as quantifiers of the degree of scrambling of quantum
information as it evolves through the Hilbert space. This many-body
quantum chaos context should occur in the extreme conditions around a
black hole [35–37]. Such extreme quantum chaos regime, that occurs in
the Sachdev–Ye–Kitaev (SYM) model, is required to establish a connec-
tion between a quantum fields theory and the Einstein theory of gravity
within an idealized Maldacena’s conjecture [33]. More generally, the
OTOCs also allow to assess the complexity of a quantum circuits and
2

quantum information [38]. This triggered an immense number of works
in different related fields that led to great theoretical and experimental
progress which is too extensive to be summarized here [34,39–42].
Within the field of NMR, these result a tool to quantify many-body
localization, spin counting or to achieve dynamical decoupling [43–
49]. However, it is central to our discussion to notice that, in the
OTOCs, the time reversibility is given for granted. It is just a tool to assess
the scrambling of the information, i.e. the complexity gained through
forward dynamics [38]. Thus they are in full equivalence to the MQC
in NMR, where time reversal is necessary to monitor the appearance of
multi-spin correlations. However, while in MQC, weak perturbations
degrade the signal, they do not affect the ratio between the various
orders of coherences excited. These works did not attempt to address
the mystery of the signal loss in LE/OTOC experiments. In contrast, our
search seeks to use the LE to address the CHI and the emergence of a
perturbation independent regime for the decoherence.

In the present work, we implement the thermodynamic limit for
a LE dynamics that has not been addressed before, the scaled double
quantum (SDQ) Hamiltonian. With this purpose we engineer the dipolar
interaction through a multi-pulse sequence that we present here for
the first time. Our effective Hamiltonian, can be used to evaluate the
degree of scrambling in the Hilbert space, by estimating the number
of correlated spins through a corresponding MQC/OTOC protocol. Our
results confirm previous findings that a Double Quantum (DQ) Hamil-
tonian yields a ballistic spreading in the real space that corresponds to
an exponential scrambling in the Hilbert space. The analysis of the LE
intensities are once more compatible with the CHI.

2. Engineering a Floquet Hamiltonian through the Magnus expan-
sion

We consider a system composed by 𝑁 ≈ 1023 interacting spins-
1∕2, the 1H in poly-crystalline adamantane [50], in the presence of a
strong magnetic field, 𝐁0 = 𝐵0𝑧̂, at room temperature. In the rotating
frame, the system Hamiltonian is S = 𝑧

Z + 𝑧𝑧
d , where the first

term is the Zeeman Hamiltonian 𝑧
Z = −

∑

𝑖 𝛥𝜔𝑖𝐼𝑧𝑖 , usually neglected
as adamantane presents almost chemically equivalent spins and the
radio-frequency is set on-resonance. The second term corresponds to
the secular part of the dipolar Hamiltonian with respect to the external
magnetic field (ℏ = 1),

𝑧𝑧
d =

∑

𝑖<𝑗
𝑑𝑖𝑗 (3𝐼𝑧𝑖 𝐼

𝑧
𝑗 − 𝐈𝑖 ⋅ 𝐈𝑗 ), (1)

here the dipolar coupling strengths 𝑑𝑖𝑗 decrease with the internuclear
istance as 𝑟−3𝑖𝑗 , and 𝐈𝑖 =

∑

𝑖 𝐼
𝛼
𝑖 are total 𝑖-spin operators and 𝛼 =

, 𝑦, 𝑧. The notation 𝛼𝛼
d defines the secular dipolar Hamiltonian in the

uantization axis 𝛼.
The total Hamiltonian under the presence of a cyclic time dependent

nteraction is

Total(𝑡) = S +cyc(𝑡). (2)

he first terms is the system Hamiltonian previously described, and
he second term accounts for the time-dependent control Hamilto-
ian, given by the on-resonance r.f. field driving in NMR experiments.
n effective Floquet propagator for the time dependent Hamiltonian,
an be obtained through the principles of Average Hamiltonian Theory
AHT) [51]. Particularly, when the time-dependent interaction has a
ycle time 𝑡𝑐 , and for stroboscopic observations at multiples of 𝑡𝑐 , the
oggling (interaction representation) and rotating lab frames coincide.
herefore, the Floquet propagator after 𝑛 cycles, can be written in a
orm of a single exponential by means of the Magnus expansion,

S(𝑛𝑡𝑐 ) = exp

{

−i 𝑛𝑡𝑐
∞
∑

𝑖=0
 𝑖

}

, (3)

here the zeroth (also called effective or average) and first terms of
his series written in the toggling frame, togg

S (𝑡) =  †
cyc(𝑡)S cyc(𝑡),

re: [51–53]

0 = 1 𝑡𝑐
𝑑𝑡′togg(𝑡′),
𝑡𝑐 ∫0 S
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1 = −i
2𝑡𝑐 ∫

𝑡𝑐

0
𝑑𝑡′′ ∫

𝑡′′

0
𝑑𝑡′

[

togg
S (𝑡′′),togg

S (𝑡′)
]

. (4)

Baum, Munowitz, and Pines described, in their pioneer works [8,9],
one of the first applications of the AHT to engineer a new Floquet
dynamics through multi-pulse sequences, defining the double quantum
Hamiltonian,

D𝑄 = 1
3
(𝑦𝑦

d −𝑥𝑥
d ) = − 1

2

∑

𝑖<𝑗
𝑑𝑖𝑗 (𝐼+𝑖 𝐼

+
𝑗 + 𝐼−𝑖 𝐼

−
𝑗 ), (5)

We describe here our pulse sequence that results in the double
quantum Hamiltonian. It consists in radio frequency (r.f.) pulses 𝜋∕2
applied in defined phases (𝑋, 𝑌 and their opposites 𝑋, 𝑌 ), separated by
free evolution times specially designed to obtain the desired dynamic.
The delays are defined by, 𝛥1 = 𝜏

2 and 𝛥2 = 2𝜏, where 𝜏 is an
experimental parameter that determines the cycle duration 𝑡𝑐 . The pulse
sequence, named DQ𝐹 , can be schematized as an ordered series of
delays and pulses, producing the D𝑄 Hamiltonian (at zero order),

𝛥1 −𝑋− 𝛥2 −𝑋− 2𝛥1 −𝑋− 𝛥2 −𝑋− 𝛥1
𝛥1 −𝑋− 𝛥2 −𝑋− 2𝛥1 −𝑋− 𝛥2 −𝑋− 𝛥1

By assuming that the r.f. pulses are instantaneous, the toggling-
frame Hamiltonian is piece-wise constant. During the subsequent evo-
lution periods, the toggling Hamiltonian is considered as the rotated
version of the dipolar one, aligned with the external magnetic field
(i.e. the 𝑧-direction of the rotating frame). The following scheme shows,
in three different lines, the duration of free evolution periods (first line),
and corresponding Hamiltonian terms in that periods: the Zeeman term
(second line), and the dipolar term (third line), both in the toggling
frame,

𝛥1 𝛥2 2𝛥1 𝛥2 2𝛥1 𝛥2 2𝛥1 𝛥2 𝛥1
𝑧

Z 𝑦
Z −𝑧

Z 𝑦
Z 𝑧

Z −𝑦
Z −𝑧

Z −𝑦
Z 𝑧

Z
𝑧𝑧

d 𝑦𝑦
d 𝑧𝑧

d 𝑦𝑦
d 𝑧𝑧

d 𝑦𝑦
d 𝑧𝑧

d 𝑦𝑦
d 𝑧𝑧

d

The cycle time is the addition of all the evolution periods 𝑡𝑐 =
8𝛥1+4𝛥2 = 12𝜏. The zero order Hamiltonian is obtained as the weighted
sum of the toggling-frame Hamiltonians at each time step [53]. This
becomes in, 0𝑡𝑐 = 4𝜏(𝑦𝑦

d −𝑥𝑥
d ). Then, for stroboscopic observation

(multiples of cycle time), the average Hamiltonian has no Zeeman
contribution, resulting in the DQ evolution (Eq. (5)).

Changing the phases of the pulses 𝑋 and 𝑋 by 𝑌 and 𝑌 respectively,
it leads to the pulse sequence DQ𝐵 , that produces the backward DQ
evolution given by −D𝑄. Double quantum dynamics represents a
model evolution that motivated studies to understand MQC [7,54,55],
OTOCs [56], decoherence and localization [57].

2.1. Zero order in the scaled double quantum dynamics

We introduce two variations of pulse sequences described above
that produce the SDQ Hamiltonians of the form ±2𝛿D𝑄, with the
factor 𝛿. The basic unit to create the scaled DQ dynamics consists in
8 pulses (8P). The pulse sequence for the forward evolution, named
DQ𝛿

𝐹 , corresponds to the Hamiltonian with the + sign, while the one
for the backward evolution, called DQ𝛿

𝐵 corresponds to the - sign. The
zero order term in the Magnus expansion (Eq. (4)), for each case is
obtained in the same way than in the preceding section.

The time delays for the free evolution periods in the scaled pulse
sequences are,

𝛥1 =
𝜏
2
(1 + 𝛿) 𝛥2 = 𝜏(1 − 𝛿)

𝛥3 = 2𝜏(1 + 2𝛿) 𝛥4 = 2𝜏(1 − 2𝛿) (6)

where 𝛿 defines the scaling of the Hamiltonian and 𝜏 is related to the
cycle time 𝑡𝑐 .

The basic block of 8 pulses for the scaled DQ forward evolution,
DQ𝛿

𝐹 (8P), is schematized as,

𝛥1 −𝑋− 𝛥3 −𝑋− 𝛥2 −𝑌− 𝛥4 −𝑌− 𝛥1 (7)
3

𝛥1 −𝑌− 𝛥4 −𝑌− 𝛥2 −𝑋− 𝛥3 −𝑋− 𝛥1
Fig. 1. Experimental implementations to measure polarization, Loschmidt echoes and
MQC, under the SDQ Hamiltonian.

For each free evolution time in this sequence the toggling frame
Hamiltonians (Zeeman and dipolar terms) are,

𝛥1 𝛥3 𝛥2 𝛥4 2𝛥1 𝛥4 𝛥2 𝛥3 𝛥1
𝑧

Z 𝑦
Z 𝑧

Z −𝑥
Z −𝑧

Z 𝑥
Z −𝑧

Z −𝑦
Z 𝑧

Z
𝑧𝑧

d 𝑦𝑦
d 𝑧𝑧

d 𝑥𝑥
d 𝑧𝑧

d 𝑥𝑥
d 𝑧𝑧

d 𝑦𝑦
d 𝑧𝑧

d

The cycle time is the addition of all delays appearing in (7), 𝑡𝑐 =
2(2𝛥1 + 𝛥2 + 𝛥3 + 𝛥4) = 12𝜏. By using AHT, the zero order term satisfies
0𝑡𝑐 = 8𝜏𝛿(𝑦𝑦

d − 𝑥𝑥
d ). Then, the DQ𝛿

𝐹 sequence produces a scaled
forward Hamiltonian of the form,

𝛿
D𝑄 = 2𝛿

(𝑦𝑦
d −𝑥𝑥

d )
3

The same calculation can be performed for DQ𝛿
𝐵 , corresponding to

the backward pulse sequence

𝛥1 −𝑌− 𝛥3 −𝑌− 𝛥2 −𝑋− 𝛥4 −𝑋− 𝛥1
𝛥1 −𝑋− 𝛥4 −𝑋− 𝛥2 −𝑌− 𝛥3 −𝑌− 𝛥1

resulting in the scaled backward zero order Hamiltonian

−𝛿
D𝑄 = 2𝛿

(𝑥𝑥
d −𝑦𝑦

d )
3

Both forward and backward pulse sequences DQ𝛿
𝐹 ,𝐵 were designed

to have the same number of pulses and same cycle time as the DQ𝐹 ,𝐵 .
The parameter 𝜏 is a variable time selected to enforce a safe minimum
separation between r.f. pulses. As it can be extracted from Eqs. (6), the
admitted values for 𝛿 correspond to the interval [0, 1∕2). Experimental
implementation requires greater restrictions that limit the accessible
values even more, because of a minimum waiting time between pulses
is required.

Experimentally, the composition of two 8P blocks in an
anti-symmetric 16P sequence showed a better performance (see experi-
mental Appendix). These 16P forward and backward versions have the
advantage of canceling odd terms in the Magnus expansion (Eq. (4)).
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The zero order Hamiltonian remains the same than in the 8P case, and
the cycle time is twice as long, (𝑡𝑐 = 24𝜏), then

±𝛿
D𝑄𝑡𝑐 = ±16𝜏𝛿(𝑦𝑦

d −𝑥𝑥
d )

resulting,

𝛿
D𝑄 = 2𝛿D𝑄 and −𝛿

D𝑄 = −2𝛿D𝑄. (8)

. Spreading of the initial excitation

The Floquet evolution of the thermal initial state 𝐼𝑧 under the
nfluence of ±D𝑄 or ±𝛿

D𝑄, can be obtained as the magnetization
easured in the pulse sequence depicted in Fig. 1(a). We call 𝑃 (𝑡) to

he measurement obtained for the evolution under Double Quantum
amiltonian without scaling and propagator  (𝑡) = exp

(

−iD𝑄𝑡
)

. The
easurement of the signal with scaled evolution is expressed as,
𝛿(𝑡) = Tr[ 𝛿†(𝑡)𝐼𝑧 𝛿(𝑡)𝐼𝑧]∕Tr[𝐼𝑧𝐼𝑧] (9)

here the propagator is  𝛿(𝑡) = exp
(

−i2𝛿D𝑄𝑡
)

. From the thermal
nitial state the system evolves under the average Hamiltonian, ±D𝑄
r ±𝛿

D𝑄, during an experimental time that is multiple of the cycle
ime, 𝑡 = 𝑛𝑡𝑐 . Fig. 2 shows the evolution of the polarization 𝑃 (𝑡) and the
arious 𝑃 𝛿(𝑡), obtained by using the 16 pulse sequences DQ𝐹 and DQ𝛿

𝐹 ,
here the cycle time is 𝑡𝑐 = 24𝜏. Fig. 2(a) displays the polarization as a

unction of the experimental time 𝑡 = 𝑛24𝜏, where 𝜏 was varied in the
ange 5–10 μs and the integer 𝑛 was selected such as 𝑡 ≤ 3 ms.

The signal obtained in the case of DQ (that is, 𝑃 (𝑡), diamonds
n Fig. 2(a)) displays the faster evolution with a marked oscillation
ollowed by an attenuation to zero. 𝑃 𝛿(𝑡) reproduces this behavior but
lowed down by the scale factor 𝛿. In the extreme value 𝛿 = 0, the
olarization 𝑃 𝛿=0(𝑡) shows no oscillation as expected, but the signal
ecay is showing up the errors due to the experimental implementation
nd the importance of the higher order terms in the Magnus expansion.
his information is used to normalize the data, filtering the dynamics
f uncontrolled factors. Fig. 2(b) displays 𝑃 (𝑡)∕𝑃 𝛿=0(𝑡) and 𝑃 𝛿(𝑡)∕𝑃 𝛿=0(𝑡)
s a function of a scaled time 𝑡𝑠 = 2𝛿𝑡.

Given the limitations of the accessible experimental times which are
ultiples of 24𝜏, the fastest 𝑃 (𝑡) curve for the DQ sequence loses the

nformation of the initial decay, presenting the first data at 120 μs,
howed by an arrow in Fig. 2(b). The measurements with SDQ dy-
amics allow to access to those short times information, otherwise
naccessible. The reconstruction of the original DQ curve with the data
btained from scaled dynamics was carried out with the information
f different scale factors in different time ranges. For short times (less
han 120 μs) the 𝛿 = 0.1 curve (red dots) is the one that provides
ore detailed information (closer points), departing from the expected

ehavior as time grows. This separation is due to the accumulation
f experimental errors produced by the repetition of a large number
f cycles (𝑛), necessary to achieve the equivalent time of the original
ynamics, 𝑡𝑠 = 2(0.1)𝑛𝑡𝑐 . At longer times, the curves for 𝛿 = 0.2 or
.35 show better agreement to follow the oscillation of the original DQ
ynamic. This provides the information on the range of validity of the
est scale factors at different evolution times.

The backward sequences DQ𝐵 and DQ𝛿
𝐵 were also implemented. The

esulting curves of 𝑃−𝛿(𝑡) (not shown) overlap with the corresponding
nes in Fig. 2(a), which guarantees the possibility to implement a
eliable temporal reversion of the dynamics and the observation of
oschmidt echoes and MQC.

.1. Obtaining the spreading time 𝑇2

Abragam’s book [58] proposes, without mathematical proof, a func-
ion with good agreement for the fitting of the experimental FID in a
olid system,

2

4

(𝑡) = sinc(𝑤𝑡) × exp[−(ℎ𝑡) ∕2], (10)
Fig. 2. Polarization dynamics under original D𝑄, and scaled 𝛿
D𝑄 for different values

of 𝛿. The noise level of this measurement is lower than the dispersion of the data for
scaled times greater than 0.8 ms, where the signal oscillates around zero.

hich captures both the decay and the damped oscillation arising from
he unitary dynamics. The parameters 𝑤 and ℎ participate in the series

expansion of the function 𝑃 (𝑡), and they are related with the second
nd fourth moments of the distribution. The second moment 𝑀2 =

ℎ2 +𝑤2∕3, is related with the spreading time scale 𝑇2 as 𝑀2 = (1∕𝑇2)2.
Fig. 3 shows the calculated values for 1∕𝑇 𝛿

2 as a function of the
different factors 2𝛿, in the same manner done for the dipolar case in our
previous works [30,31]. These 𝑇 𝛿

2 values will be used in Section 6 to
evaluate the region where the perturbations are less relevant compared
to the intensity of the dynamics.

The linear behavior ensures that the scaling is working properly.
The parameters of the fitting are: intercept = (0.88 ± 0.09) ms−1; slope
= (14.3 ± 0.2) ms−1. Ideally, 𝛿 = 0 should not show dynamics or decay.
Experimentally, we observed a decay due to the different sources of
uncontrolled errors, see Fig. 2(a). Then for 𝛿 = 0, the intercept is not
strictly at the origin, but reflects the limit of our control of the pulse
sequence. Hints of this, can be seen in the big error bar for 𝛿 = 0.05 in
Fig. 3.

The fitting of the linear behavior observed in Fig. 3 for the scaled
Hamiltonian (2𝛿 < 1), when evaluated for 2𝛿 = 1, reproduces the value



Journal of Magnetic Resonance Open 16–17 (2023) 100104C.M. Sánchez et al.

t

T
1

d
p

Fig. 3. Plot of 1∕𝑇 𝛿
2 vs 2𝛿.Values of 𝑇 𝛿

2 were obtained by fitting the Abragam function
to 𝑃 (𝑡) or 𝑃 𝛿 (𝑡).

obtained from the measurement with original, not scaled DQ sequence,
1∕𝑇2 = (15 ± 1) ms−1.

The errors bars associated to the data reflect greater problems in
he extreme values, 𝛿 = 0.05 and 𝛿 > 0.35. In the first case, as the scale

factor is small, the perturbation is more important than the dynamic
that we intend to observe. At the other extreme, the problems come
from the implementation of the sequence, which requires pulses that
are too close together.

4. Time reversal and the Loschmidt echoes

The possibility to implement time reversal procedure, i.e. to have
forward dynamics followed by a backward one, is fundamental for the
measurement of LEs and MQCs, as shown in Fig. 1(b). The figure dis-
plays a forward block of scaled dynamics (𝛿

D𝑄) of duration 𝑡 followed
by another block of the same duration with reversed dynamics rotated
around 𝑧 by a phase shift 𝜙, (−𝛿

D𝑄)𝜙.
The experimental procedure to obtain the Loschmidt echo for a state

that has spread a time 𝑡 corresponds to no rotation, that is a phase
𝜙 = 0. The signal acquired after the read-out pulse is the survival of
the initial state,

𝑀𝛿(𝑡) = Tr[ 𝛿†(𝑡) (−𝛿)†(𝑡)𝐼𝑧 (−𝛿)(𝑡) 𝛿(𝑡)𝐼𝑧]∕Tr[𝐼𝑧𝐼𝑧] (11)

In the ideal case that backward evolution goes to the exact initial
state the Loschmidt echo is identically 1, 𝑀𝛿(𝑡) ≡ 1. Intrinsic irre-
versibility and non controlled factors lead the decay of the LE signal.
Indeed, we have defined in previous works a decoherence characteristic
time 𝑇3, at which the LE decays to one half [30,31,43]. In the present
case, each 𝑇 𝛿

3 , is obtained as, 𝑀𝛿(𝑇 𝛿
3 ) = 1∕2, .

Fig. 4(a) displays the LE measurements under the SDQ Hamiltonian
for different 𝛿 factors as a function of the experimental time. Also it
shows the behavior obtained with the original double quantum pulse
sequence. It is notable how as the many-body interactions grows (𝛿
values increase) the irreversibility is stronger, affecting the decay of
the signal. Fig. 4(b) displays the normalized LE, obtained by dividing
𝑀𝛿(𝑡) by the reference 𝑀𝛿=0(𝑡). This normalization extract from the
data the loss of information produced by errors in the time-reversal
implementation (higher order terms in Magnus expansion, non-ideality
in pulses, etc.), which are similar for every 𝛿 value. The 𝛿 = 0 curve
captures this influence, and not the one due to DQ dynamics. Then,
the decay of 𝑀𝛿=0(𝑡), characterizes a perturbation time 𝑇𝛴 , obtained
from 𝑀𝛿=0(𝑇𝛴 ) = 1∕2. To verify that the remaining decay (that is,
what survives normalization) is associated with the scaled Hamiltonian
5

Fig. 4. Loschmidt echoes decay under D𝑄 and 𝛿
D𝑄 for various different 𝛿 factors.

he noise level is lower than the dispersion of the data for scaled times greater than
.0 ms, where the signal no longer retrieves relevant information.

ynamics, a plot of the normalized echoes as a function of the scaled (or
roper) time of the dynamic 𝑡𝑠 = 2𝛿𝑡, is shown. In this figure it is pos-

sible to observe how all the curves of the different LEs, 𝑀𝛿(𝑡)∕𝑀𝛿=0(𝑡),
collapse into a single one. Despite this collapse in a single behavior,
characteristic of the SDQ, it is noticeable a departure from the curve
obtained with the original DQ sequence, which survives better at short
times (stars in Fig. 4(b)). This difference can be explained by the Mag-
nus expansion terms of higher orders, which behave different between
these sequences. Currently, some new experiments are being carried
out to modify the pulse sequence, assessing further manifestation of the
effect of the higher order terms in the Magnus expansion. Preliminary
results show differences in the form of the LE decay, achieving a better
agreement with the corresponding to the original DQ.

5. Spin counting

The difference in the total spin projection between two coupled
multi-spin states is defined as the coherence number 𝑛. The dynamic
consequence of the application of the Hamiltonian is to extend the net-
work of connections which produces a redistribution of the longitudinal
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magnetization in different coherence orders, which are not directly
observable.

In order to measure the spectrum of coherence orders, we imple-
mented the experimental scheme of Fig. 1(b). The rotation 𝜙 applied
in the second block around the axis of quantization, 𝑧, is used to
encode the coherence orders, as explained in Refs. [7,43,54]. The signal
acquired after the reading pulse, (𝑀𝛿(𝑡))𝜙, is a function of the evolution
time 𝑡 and the phase 𝜙, and can be expressed as the sum of each
oherence order intensity marked by 𝑛𝜙,

(𝑀𝛿(𝑡))𝜙 =
∑

𝑛
𝑒𝑖𝜙𝑛(𝑆𝛿(𝑡))𝑛 (12)

The rotation angle 𝜙 is a multiple of 2𝜋
2𝐿 , which determines the maxi-

um observable coherence order. The full collection of (𝑀𝛿(𝑡))𝜙 for the
2𝐿 different values of 𝜙 provides the necessary information to extract
the coherence intensities, (𝑆𝛿(𝑡))𝑛, through Fourier transformation in
Eq. (12). As the state to be observed becomes increasingly complex, the
value of 𝐿 is adapted experimentally, to decode the higher coherence
orders developed.

Note that the signal corresponding to the measurement with 𝜙 =
0 is the Loschmidt echo, and is equivalent to the addition of all
the coherence order intensities at a given time, i.e., (𝑀𝛿(𝑡))𝜙=0 =
∑

𝑛(𝑆𝛿(𝑡))𝑛.
For each time, the coherence order spectrum gives information on

the number of correlated spins. To extract a representative value, 𝑁 ,
for each state, the Baum model fits a Gaussian to (𝑆𝛿(𝑡))𝑛, leading to
the spin counting [9,59,60].

We have shown the existence of superposition states with the contri-
bution of two clusters of different sizes, in the case of Double Quantum
evolution in adamantane [54]. This clusters are denoted as 𝑁1 and 𝑁2,
the small one and a large one respectively. Therefore the best fitting to
the spectra for each time 𝑡, consists of a sum of two Gaussians,

(𝑆𝛿)𝑛 =
2
∑

𝑖=1

2𝐴𝛿
𝑖

√

𝑁𝛿
𝑖 𝜋

𝑒(−𝑛
2∕𝑁𝛿

𝑖 ) (13)

here the amplitudes 𝐴𝛿
𝑖 correspond to the fraction of each clus-

er, while 𝑁𝛿
𝑖 is the cluster size, representing the complexity of the

orrelated state.
Fig. 5 displays the evolution of both clusters size, 𝑁𝛿

1,2, for different
alues of the scaled factor 𝛿 and for the original, not scaled, DQ
equence. It is noticeable the superposition of each cluster in a single
lobal behavior for all the scale factors, since the data are plotted
gainst scaled time, 𝑡𝑠. For scaled times 𝑡𝑠 > 0.2 ms, the separation
n two clusters is evident. In the figure we have added the points
orresponding to the experiments with the extreme scale factor 0.41,
o highlight the departure of the results from the global curve. This is
ue to the excessively demanding experimental implementation, with
nter-pulse duration less than 1 μs. Therefore, we do not expect that
hese points represent adequate values, since we are not achieving with
he sequence, the dynamics that we want to implement. Nevertheless,
s occurs for the XY [61] and DQ [55] dynamics in 1D, our SDQ
ynamics should be ballistic. This implies that a local excitation spreads
inearly with time with a group velocity satisfying the Lieb–Robinson
ound [62] . In our 3D systems, a whole sphere around the initial point
emains entangled, which this implies 𝜎 correlated spins at the time
nit 𝜏. Thus, we fit the data of the second ‘‘cluster’’ to

2(𝑡𝑠) ≊ 1 + (𝜎 − 1)(𝑡𝑠∕𝜏)3 (14)

ith (𝜎 −1)∕𝜏3 ≈ 3000×ms−3 that contains the detailed information on
he crystal structure and the topology of the coupling network.
6

Fig. 5. Cluster size vs. 𝑡𝑠 for 𝛿
D𝑄 and different values of 𝛿 factors, plotted together

ith the cluster size evolution for the original D𝑄. The separation in two clusters is
bserved for 𝑡𝑠 > 0.2 ms, the small one 𝑁1, and the large 𝑁2, for all the Hamiltonians
nder study. Error bars are included, many of them are smaller than the size of the
arker. The black line represents the ballistic dynamics of Eq. (14).

. Dynamical irreversibility and decoherence

Previous experiments and results in our group have suggested that
hen time reversal is implemented in a complex quantum system the

rreversibility time scale, in principle, is controlled by all the non-
dealities 𝛴 of the procedure. Such 𝛴 could be interpreted as an energy
ncertainty arising from truncation terms in the Magnus expansion,
ystematic pulse errors, or non-accounted terms in the Hamiltonian. In
he experiments where the Hamiltonian can be scaled down, those non-
dealities are captured by the LE decay time 𝑇𝛴 observed when 𝐻 ≡ 0.
n spite of the fact that there are many cases where these non-idealities
ad been identified and substantially reduced, the reversibility time
ould not be extended beyond a time scale 𝑇3, which we dubbed
ntrinsic decoherence. In fact, even having changed the system and/or
he effective Hamiltonian, 𝑇3 always seemed to be roughly proportional
o 𝑇2, the time scale of the reversed and controlled dynamics that
crambles the initial excitation [24,25,30].

In the Ref. [24] it was suggested that a way to quantify the relation
etween these time scales, can be achieved by displaying the exper-
mental values of 𝑇2∕𝑇3 vs 𝑇2∕𝑇𝛴 . Then, for different Hamiltonians,
he intrinsic value obtained as 𝑇2∕𝑇𝛴 → 0, would correspond to the
hermodynamics limit when the imperfections become less important
ompared to the dynamics. In Fig. 6 we show this plot for the SDQ
ynamics, and the original DQ. Then, the decoherence rate 1∕𝑇 𝛿

3 versus
he perturbation rate 1∕𝑇𝛴 , both normalized with the spreading rate
∕𝑇 𝛿

2 , are shown for different 𝛿 values. The times 𝑇 𝛿
3 were extracted

rom the echoes, while 𝑇 𝛿
2 are shown in Fig. 3. A key experimental

bservation, is that the cancellation of the Hamiltonian for 𝛿 = 0
nables to measure 𝑇𝛴 = 𝑇 𝛿=0

3 , that is the signal decay, resulting from
he non-inverted terms in addition to experimental limitations, that is
ot ‘‘amplified’’ by the DQ dynamics.

Indeed, previous works dealing with scaled dipolar dynamics [30,
1], allowed us to verify that in the range where the perturbations are
mportant compared to the controlled dynamics, the values of 𝑇2∕𝑇3
ets close to 𝑇2∕𝑇𝛴 (represented by the diagonal straight line Fig. 6).
n the opposite limit of low errors, we can appreciate the influence
f multi-spin dynamics in the intrinsic 𝑇3. Conceptually, this function
as inspired by assuming that the LE still accounts for two Gaussian
rocesses: a trivial one associated with the perturbation in absence
f dynamics, and the other in which even a small perturbation acts
hrough the dynamics and yields the constant 𝐴. The data manifests
departure from the trivial linear behavior giving a saturation of the
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Fig. 6. Normalized decoherence rate 𝑇 𝛿
2 ∕𝑇

𝛿
3 vs normalized perturbation rate 𝑇 𝛿

2 ∕𝑇𝛴 , for
arious values of 𝛿 and the original DQ. The rate 1∕𝑇 𝛿

2 corresponds to the controlled
ynamics imposed to the system and was used for normalization. The vertical axis
easures the deviation of the controlled dynamics due to the intrinsic complexity of

he system, while the horizontal axis is a measure of the experimental limitations. In
he limit of vanishing perturbation, 𝑇2∕𝑇3 saturates to the value of 0.15. The diagonal
s shown to follow the behavior for slow dynamics. The fitting function 𝑦 =

√

𝐴 + 𝑥2
ith 𝐴 = 0.023 ± 0.003 is plotted in red. (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)

alue of 𝑇2∕𝑇3, indicating the perturbation independent regime. The
experimental data for scaled DQ dynamics show the same tendency of
our previous results, see dots in Fig. 6. Indeed, we have verified, that
the function that superimposes two Gaussian processes, 𝑦 =

√

𝐴 + 𝑥2
as the expected behavior in the two limits of high and low perturba-
ion, showing an excellent agreement with a large set of experimental
ata in a 𝑇2∕𝑇3 vs 𝑇2∕𝑇𝛴 plots [30,31]. Although now the data set for
he DQ scaled dynamics is smaller, we proceeded to fit the preceding
unction to the experimental points, as shown in Fig. 6, obtaining a
ood agreement with the behavior and yielding 𝐴 = 0.023 ± 0.003.
he crossing with the vertical axis determines the asymptotic value
2∕𝑇3 ≈

√

𝐴 = 0.15 ± 0.01.
The points corresponding to 𝛿 > 0.35, shown with empty circles in

Fig. 6, were not considered for the fitting. As explained before, they
were measured in extreme experimental conditions. This fact was also
observed in the big errors associated to 𝑇2 in Fig. 3. It is remarkable
that the point indicated with a star, corresponding to DQ without
scaling, i.e. when the acting Hamiltonian is as perfect as possible,
follows the global behavior. This confirms the emergence of an intrinsic
decoherence in the limit of low disturbances.

The separation of data from the diagonal for fast dynamics (closer
to the origin), gives evidence of a signal loss associated with the
dynamics rather than the perturbations. Then, a decay of the Loschmidt
echo more related to the dynamics imposed on the system, can be
understood as an intrinsic decoherence associated with its complexity.
This is notable in a regime of perturbation independent decay (PID) of
the LE, achievable when the dynamics become fast and therefore the
experimental errors are less significant.

7. Conclusions

We have introduced the time reversal of the SDQ dynamics to
evaluate the influence of the perturbations on the reversibility. Varying
the strength 1∕𝑇2 of the SDQ Hamiltonian while the time scale of the
disturbances, 𝑇𝛴 , remains roughly constant, we were able to swipe
through their relative time scales, 𝑇2∕𝑇𝛴 , with their lowest values
approaching the thermodynamic limit of infinitesimal perturbation.
7

P

Before turning into the qualitative implications of our results, we
want to highlight some technical novelties of the present work: (i) We
designed a completely new sequence, not found in previous literature,
to scale the DQ Hamiltonian, (ii) The experimental section describes
the optimization of the sequence and its implementation. In addition,
we analyzed the measured data for forward and backward evolution,
echoes, and the spin counting through multiple quantum coherences.
The performance of the SDQ sequence was evaluated by comparing
the dynamics generated with different factors 𝛿 with respect to the non
scaled DQ. Regions of very good agreement were found, and conditions
where the experimental implementation no longer works correctly were
identified at the higher values of 𝑇2∕𝑇𝛴 , (iii) The forward dynamics
with DQ for the short time regime has not been previously published.
As we show, the original DQ dynamics is too fast to be observed at
stroboscopic times, multiples of the sequence cycle. By slowing down
the dynamics, the SDQ allowed to study the behavior at short times,
not accessible with the original sequence,

It is noticeable that the number 𝑁 of correlated spins under DQ
evolution grows faster than in dipolar case [31], reaching around 1000
correlated spins for times ≈ 0.8 ms. This is consistent with a ballistic
dynamics were 𝑁 grows roughly as 𝑡3 for all the implementations
(scaled and non scaled DQ). This might be assimilated with a butterfly
effect[42], in analogy with the behavior of classically chaotic systems,
as it implies an exponential growth of the number of correlated (entan-
gled) states in the Hilbert space. The present results contrast with the
diffusive growth of 𝑁 ∝ 𝑡3∕2 we observed for transverse polarization
under dipolar dynamics [30]. There, the secular term of the Hamilto-
nian conspires against the non-secular DQ dynamics by inducing a form
of many-body localization [57]. Under a more detailed scrutiny of the
fitting laws, it became clear that there are two representative sets of
spins that could be identified as two clusters. The first, 𝑁1(𝑡), reaches

finite size while a possible asymptotic values for the second, 𝑁2(𝑡),
ould not be discriminated with certainty from the unbounded cubic
rowth because of experimental errors that dominate the long evolution
imes. In that sense our data do not contradict the findings of Alvarez
nd collaborators [57,63].

In general, we have repetitively attempted to split and isolate the
onsequences of different error sources. Some of these are: Experi-
ental errors including rotations, higher-order terms of the effective
amiltonian, non-idealities of the experimental system, and a number
f further items. It took us about a decade to work out many of
hese details. Just to recall some of the most relevant ones: (a) We
liminated the quadrupolar nuclei, used by the Ernst group to speed
p the experiments in their crystal, by growing pure crystals. Thus, we
bserved the mesoscopic echoes that were previously missed [14,61]
nd inspired the first implementation of a quantum channel [64],
b) We allowed the relaxation processes to become dominant over
he Hamiltonian dynamics by decoupling the dipolar interaction [19]
c) We changed and improved the phase cycling to diminish errors.
his allowed us to predict and detect heteronuclear coherences as
igh frequency oscillations in the polarization [14,16]. Further on,
e showed that multi-nuclear coherence dynamics could undergo a
uantum Dynamical Phase Transition [65] (d) We used different mag-
etic fields and radio-frequencies power as well as different crystal
rientations [20] to shrink the relevance of the truncation terms [19].
e) We changed the topology of the spin–spin interaction by the spin-
etwork in different forms, by diluting the active spin networks, and
ven consider finite spin systems in the form of liquid crystals [43,66].
owever, as long as they are not too bold, they become inextricably
ntangled by the quantum dynamics as they do not commute with
he Hamiltonian. Thus, as our chaotic system is evolving in time, we
oncluded that such an attempt necessarily would miss an emergent
on-perturbative behavior. In summary, whatever we did to improve
hese early experiments and in the new ones, the irreversibility time-
cales could not be extended much further than that observed by Rhim,

ines and Waugh.
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We thus set our present strategy, jointly devised with our missed
collaborator Patricia Rebeca Levstein [24,28], seeking to use different
‘‘artillery’’ at hand to cancel out the many-body dynamics [19]. This
would let the time scale 𝑇𝛴 of the ‘‘errors/perturbations’’ to mani-
fest itself experimentally. Only then, these ‘‘perturbative’’ processes
is allowed to act over the excitation progressively scrambled by a
Hamiltonian dynamics. It is this strategy what finally allows us to ap-
proach experimentally the ‘‘thermodynamic limit’’, in which a quantum
dynamics of the large scale 𝛿 region is much stronger than the pertur-
bation strength. In the other end, the range of small 𝛿 values, gives
us the magnitude of non controlled errors, and provides a crucial time
dependent normalization for the whole set of LE data. While the errors
cannot be reduced, its relative importance is shrank by turning on the
SDQ Hamiltonian strength until it reaches an intrinsic irreversibility limit.
Indeed, this tentative conclusion is not obvious at all as it would involve
a limiting case of quantum mechanics which has not yet been worked
out theoretically. Besides, a numerical test of such thermodynamic limit
is out of the reach of the classical computational capabilities [42,67,68]
or even beyond the present quantum computers [69]. Quite on the op-
posite side, the conservation of information is often assumed, as Hawking
and Susskind did, as a ‘‘minus-first law’’ of Nature [70] that confronts
the information paradox [71,72]. In contrast, while our systems are not
as much chaotic as the ideal SYK model [36], our experiments seem
indicative of a broken time-reversal symmetry [73,74] which would be
missed by a theory that could not account for the non-uniformity of the
subtle thermodynamic limit [26, pp. 78] of 𝑁 → ∞ previous to make
𝛴 → 0 for the normalized Loschmidt echo observable.

In the present work we addressed, to the best of our possibilities,
the condition 𝛴 → 0 of the thermodynamic limit for a local exci-
tation evolving in a crystal (𝑁 ≈ 1023) under the double-quantum
Hamiltonian by making 𝑇2∕𝑇𝛴 ≪ 0. We found, in agreement with
previous works, that once the quantum dynamics scrambling acquires a
dominant role, i.e. as 𝑇2 becomes much shorter than 𝑇𝛴 , the dynamics
amplifies the residual perturbation terms to the degree that it imposes
𝑇3 ≈ 6.7𝑇2, which is just a few times 𝑇2. It is important to notice that
direct decay due to perturbation could be roughly removed from the
different Loschmidt echoes time dependence by normalizing the full
curves with 𝑀𝛿=0(𝑡), the echo in absence of dynamics (Fig. 4 b). Thus,
the observed decay of the different 𝑀𝛿(𝑡)∕𝑀𝛿=0(𝑡) is mainly due to the
Hamiltonian ‘‘amplification’’ of the residual terms in 𝛴. However, the
full emergence of the irreversibility is best captured when presented in
terms of the relative decay times of Fig. 6. In our previous work on the
transverse excitation under the dipolar dynamics, the limiting decay
remained the same for different pulse-sequence implementations, each
of which involved different errors [27,31]. Here, also the same limit
is obtained from the SDQ and the traditional DQ Hamiltonian. Thus,
while one cannot issue an absolute statement, the present results, in
conjunction with all the previous experiments, is definitely supportive
of our CHI. This relays on the emergence [24,75] of a regime of
perturbation independent decay of the coherence also dubbed intrinsic
decoherence [17]. Notice again that we actually observe irreversibility.
The term decoherence addresses the fact that the residual effects of non-
idealities and perturbations can only manifest through the action of the
fast Hamiltonian dynamics of our many-body system.
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Appendix. Experimental procedure

The experiments were performed in a Bruker Avance II spectrometer
operating at 300 MHz Larmor frequency. The sample temperature was
controlled along the experiments at 303 K. Besides, it was not observed
appreciable heating effects produced by the continuous r.f. irradiation.

The pulse duration of 𝜋∕2 was typically of 𝑡𝑝 = 2 μs. The basic
lock of the scaled double quantum sequences DQ𝛿

𝐹 and DQ𝛿
𝐵 as well

s the DQ𝐹 ,𝐵 is composed by 8 pulses (8P) separated by different
apses. Experimentally the anti-symmetric pulse sequences, composed
y 16 pulses with opposite phases in the second train of 8 pulses,
emonstrated better performance than the corresponding basic block.

Considering the finite duration of the pulses 𝑡𝑝 the free evolution
eriods must be calculated as,

1 =
𝜏
2
(1 + 𝛿) − 𝑡𝑝∕2 𝛥2 = 𝜏(1 − 𝛿) − 𝑡𝑝

𝛥3 = 2𝜏(1 + 2𝛿) − 𝑡𝑝 𝛥4 = 2𝜏(1 − 2𝛿) − 𝑡𝑝

he antisymmetric versions of the 16 pulses (16P) sequence, include
ree evolution periods and pulses in definite phases. For forward case
he zero order of the average Hamiltonian is 𝛿

D𝑄 = 2𝛿DQ and the
chematic representation results, DQ𝛿

𝐹 (16P)

𝛥1 −𝑋− 𝛥3 −𝑋− 𝛥2 −𝑌− 𝛥4 −𝑌− 𝛥1
𝛥1 −𝑌− 𝛥4 −𝑌− 𝛥2 −𝑋− 𝛥3 −𝑋− 𝛥1
𝛥1 −𝑋− 𝛥3 −𝑋− 𝛥2 −𝑌− 𝛥4 −𝑌− 𝛥1
𝛥1 −𝑌− 𝛥4 −𝑌− 𝛥2 −𝑋− 𝛥3 −𝑋− 𝛥1

The same can be done to obtain the Hamiltonian for the backward
volution with 16P sequences. The zero order Hamiltonian −𝛿

D𝑄 =
−2𝛿DQ and the pulse sequence, DQ𝛿

𝐵 (16P),

𝛥1 −𝑌− 𝛥3 −𝑌− 𝛥2 −𝑋− 𝛥4 −𝑋− 𝛥1
𝛥1 −𝑋− 𝛥4 −𝑋− 𝛥2 −𝑌− 𝛥3 −𝑌− 𝛥1
𝛥1 −𝑌− 𝛥3 −𝑌− 𝛥2 −𝑋− 𝛥4 −𝑋− 𝛥1
𝛥1 −𝑋− 𝛥4 −𝑋− 𝛥2 −𝑌− 𝛥3 −𝑌− 𝛥1

The cycle time is the same for forward and backward cases of 16P,
𝑡𝑐 = 8𝛥1+4(𝛥2+𝛥3+𝛥4) = 24𝜏, not depending on the pulse duration. The
arameter 𝜏 is related directly to the inter-pulse duration. For each 𝛿,
was varied in the range 5 to 10 μ to reconstruct the main features

f the magnetization evolution. Cycle time took values from 120 to
240 μs, while the experimental evolution time is a multiple of the cycle
time, and was less than 3 ms in every implemented experiment. Due
to experimental limitations, the inter-pulse duration were not smaller
than 1 μs. This produces that for large values of 𝛿 only big values of
𝜏 are allowed experimentally, leading to dispersed points in a rapid
dynamics.

The values of 𝛿 implemented were {0, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.41}. Producing scaling factors 2𝛿 multiplying the DQ
Hamiltonian. The 𝛥4 interpulse duration for 𝛿 = 0.41 are ≈ 1 μs for the
larger used values of 𝜏 so we could not go further, representing our
experimental limit. On the other hand, enlarging the value of 𝜏 causes
a loss of precision in the calculation of the average Hamiltonian.

Having the set up of DQ𝛿
𝐹 , DQ𝛿

𝐵 , sequences, we use these as unit
blocks in experiments to obtain the evolution under a scaled double
quantum Hamiltonian for the polarization, the Loschmidt echoes, and
the multiple quantum coherences. That is schematized in Fig. 1. The
Fig. 1(a) shows the implementation for the measurement of the polar-
ization evolution, 𝑃 𝛿(𝑡), under the forward or backward Hamiltonian.
The Hamiltonian is obtained applying 𝑛 times each DQ𝛿

𝐹 (or DQ𝛿
𝐵)
blocks, resulting in an evolution time 𝑡 = 𝑛𝑡𝑐 . The waiting time
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𝑡𝑤 previous to the final read-out pulse, cancels out unwanted ultra-
fast multi-spin dynamics. The Fig. 1(b) displays the measurement of
(𝑀𝛿(𝑡))𝜙 that involves a time-reversal procedure with same forward and
ackward times 𝑡. According to the values of 𝛿 and the evolution time

𝑡 of the state to observe, the phases 𝜙 were implemented in steps of
2𝜋∕128 or 2𝜋∕256, decoding coherence orders up to 𝑛 = 64 and 𝑛 = 128
respectively.
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