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Abstract

Brownian motion is modelled by a harmonic oscillator (Brownian particle) interacting with
a continuous set of uncoupled harmonic oscillators. The interaction is linear in the coordinates
and the momenta. The model has an analytical solution that is used to study the time evolution
of the reduced density operator. It is derived in a closed form, in the one-particle sector of
the model. The irreversible behavior of the Brownian particle is described by a reduced density
matrix. c© 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

In previous works [1–4] we have studied the time evolution of a quantum oscillator
coupled to a dense, but discrete (�nite) bath of harmonic oscillators. For such a sys-
tem, an irreversible behavior has appeared as a consequence of averaging in time the
evolution of the characteristic quantum-oscillator variables (macroscopic quantities),
since time evolution splits in very di�erent scales: One related to small 
uctuations,
which are erased by averaging, another one related to recurrence phenomena, which
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are su�ciently far from laboratory observational times, and the last one connected with
observable phenomena, which involves irreversibility.
In Ref. [1] it has been shown as to how to pass to the continuous bath. A reso-

nance, which can be isolated and leads to an evolution for a macroscopic period of
time (the same period as in the discrete case), has arisen because the energy of the
quantum oscillator is embedded in the continuum. One particularity of this continuous
limit is that two of the three time scales have become irrelevant since they have zero
measure with respect to the remaining time scale. However, this last scale is not ex-
clusively governed by the resonance (associated with an exponential decay) but also
by contributions coming from the semibounded feature of the energy spectrum.
Leaving these contributions aside, the main behavior of the quantum oscillator is an

exponential decay towards the equilibrium with the bath, and can be described only
with the contribution due to the resonance. The present work is the conclusion of
the previous papers [5–8], where a novel method was used to work directly in the
continuum, including the exponential decay law in quantum mechanics. In this paper
we continue with the development of the formalism which we have called “Minimal
irreversible quantum mechanics”, where time asymmetry can be represented through the
choice of a subspace of “admissible” or “regular” solutions of the evolution equation.
The main idea goes as follows. Usually rigorous quantum mechanics must be for-

mulated in a Gel’fand triplet [9]

S⊂H⊂S× ; (1.1)

• S is the space of “regular states” or test-functions space, corresponding to Schwarz-
class wave functions, that are considered as the “physical” states.

• H is the space of “states”, or Hilbert space, introduced to extend the notion of
probability to a larger space and to use the well-known spectral theory of Hilbert
spaces. These states correspond to square-integrable wave functions.

• S× is the space of “generalized states”, or rigged Hilbert space, namely the space
of linear (or antilinear) functionals over S, which are essentially used to �nd the
spectral expansion of the regular states (e.g. Fourier expansions).
Let K be the Wigner or time-inversion operator. As usual the evolution Hamiltonian

H is time symmetric, i.e.,

KHK† = H : (1.2)

In the wave function representation, the action of K coincides with the complex
conjugation and so it is de�ned over S by

K’(x) = ’∗(x) : (1.3)

Thus,

K :S → S : (1.4)

Therefore, S is also time symmetric.
But the real universe and macroscopic objects have clearly time-asymmetric evo-

lutions. Therefore, the task of this paper and the preceding ones is to explain how
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this time asymmetry appears while the quantum mechanical laws of the universe (em-
bodied in H) are time symmetric. The usual and successful explanation is based
on coarse-graining: Macroscopic objects have a huge number of dynamical variables
and we can measure and control only a small number of them, the so-called rele-
vant variables. If we neglect the rest of the variables, the irrelevant ones, we obtain
time-asymmetric evolution equations. Nevertheless in paper [5] (according to the line of
thought pioneered in Refs. [10–12]) we have followed a di�erent way. We have de-
veloped a sort of minimal irreversible quantum description, which reproduces time
asymmetry from the basic microscopic level directly, where the key point is the pres-
ence of resonances (and additional hypotheses we have extracted from Ref. [3]).
Obviously, we want to obtain the standard results making minimal changes to the

well-established and usual quantum mechanics. If we change Eqs. (1.2) or (1.3), one
is almost sure to �nd experimental problems. So the minimal modi�cation is to change
Eq. (1.4) de�ning a new test-functions space �+⊂S such that

K : �+ → �− 6= �+ : (1.5)

In this way, K is not well de�ned over the space of regular states �+ and a time-
asymmetric evolution arises.
This can be done if we postulate, as we have done in Ref. [5], 1 that all the “regular”

or “admissible” states belong to a space H+ ∼ �(H 2
+) and also to S: Then �+ ∼

�(H 2
+∩S) [the time inverted states belong to a space H− ∼ �(H 2

−) and �− ∼ �(H 2
−∩

S); respectively], where � is the Heaviside step function that gives the restriction to
the positive real energy axis and H 2

± are the Hardy class function spaces [10]. 2

An “irreversible” quantum theory based on a Gel’fand triplet

�± ⊂H± ⊂�×
± ; (1.6)

is feasible and it yields physical results, as the dominant experimental decay of unsta-
ble states, if the test-function space �+ is so chosen. This will be valid for systems
where the existence of resonances dominates the evolution for the relevant period of
observational time. We have shown that, what is done in the quoted papers [10–12] is
essentially a minimal modi�cation of the ordinary reversible quantum theory. In fact,
from now on we will consider that:
• �+ is the space of “regular states” or test-functions space that are considered as the
“admissible” states.

• H+ is the space of “states”, or Hilbert space. These states are again particular
square-integrable wave functions. But in paper [5] and in this work we consider that
only �+ contains the “admissible” states.

• �×
+ is the space of “generalized states”, or rigged Hilbert space, namely the space
of linear (or antilinear) functionals over �+; which are essentially used to �nd the
spectral expansion of the “regular states” in Section 3.

1 This postulate has been motivated in cosmological–global considerations in Refs. [13,14].
2 As spaces H− and H+ are isomorphic, they are normally called H [15].
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The spaces with subscripts “−” contain the time-inverted states of the corresponding
spaces with subscripts “+”.
Friedrichs model [16,17] was studied using this approach. In this work, we show that

this idea can be used to take a slightly di�erent point of view in studying dissipation
phenomena of quantum Brownian motion. This more complex model will force us to
generalize the de�nition of space �+ although the roles played by the characters in
the triplets �± ⊂H± ⊂�×

± will remain the same.
Brownian motion has been extensively studied in the literature (we will only quote

those papers particularly relevant to our line of work). E.g., in Ref. [18] it was shown
that for a system composed of a �nite number of linear interacting oscillators a dis-
sipative behavior can be found in the limit of a dense system (continuous spectrum).
But, in this work we are directly concerned with dense systems with continuous spec-
trum. The presence of this continuous spectrum allows us to study the decay processes
using analytical properties familiar in scattering theory [6,19,20]. The model is a very
well-known and widely used system, consisting of a harmonic oscillator coupled to an
in�nite and continuous bath. In this paper, as in Refs. [2,18,21], the bath is composed
of an in�nite collection of harmonic oscillators and the interaction is modelled to be
linear and characterized by the spectral weight, but is otherwise arbitrary. We show
that the oscillator reaches a �nal equilibrium state via a damped evolution which is
mostly exponential. We also show that some deviations from this exponential decay
law (for very short and very long times) appear, which are intimately related to the
presence of a lower bound of the energy.
In Section 2 the whole system (single oscillator plus the bath) is described and the

Hamiltonian is introduced.
In Section 3 we diagonalize (in normal modes) the Hamiltonian. In the process of

diagonalization some problems emerge, such as the loss of the discrete part of the
energy spectrum [16,17,22]. We can bypass these problems, if we use our de�nition
of “regular” states. Then we can perform an analytical continuation of the spectral de-
composition of the Hamiltonian, promoting the energy to complex values. To reach a
successful interpretation of the results, we require to generalize the de�nition given in
paper [5] to the model we are now studying. The mathematical bases of this generaliza-
tion are shown in Appendix B. 3 This appendix also contains a rigorous mathematical
understanding of the problem.
In Section 4 mixed states and their evolution law are considered.
In Section 5 we deal with a very particular initial condition: An oscillator in a

zero-temperature bath. We �nd the reduced density operator and show that the equi-
librium state is reached. We accurately describe the time evolution of the system and
estimate the Zeno [23] and Khal�n [24] e�ects for very short and long times, respec-
tively. These are the deviations from an exact exponential decay law. Finally, we show

3 The reader who is not familiar with rigged Hilbert spaces and functional analysis can see Refs. [10] and
[9].
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that our solution satis�es a Lindblad master equation when discarding these deviations
from the exponential behavior.
Finally, in Section 6 some questions concerning irreversibility, already considered in

papers [25] and [5], are discussed.
We state our conclusions in Section 7.
Three mathematical appendices complete this work.

2. Particle-bath model

The system is a Brownian particle represented by a harmonic oscillator with nat-
ural frequency 
: It is well known that for a �nite bath it is not possible to prove
convergence in an equilibrium state in the limit t → ∞ because of the existence of
recurrences [18,26–28]. However, for large systems these recurrence times become
extremely huge and we can eliminate them by passing to the limit of an in�nite con-
tinuous bath. Therefore, in this paper, we consider the oscillator in contact with a bath,
already modelled by a continuous set of harmonic oscillators with natural frequencies
!: The coupling between the system and the bath is assumed to be linear with strength
g(!). The Hamiltonian for the composite system, in terms of creation and annihilation
operators, is

H = 
a†a+
∫ ∞

0
d!!b†!b! + �

∫ ∞

0
d!g(!)(a†b! + b†!a) : (2.1)

The �rst term corresponds to the system, the second to the bath, and the third to the
interaction between them. In order that the Hamiltonian would be positive de�nite we
require [25,29] that g(0) = 0 and


¿�2
∫ ∞

0
d!

g2(!)
!

: (2.2)

This is an important condition which selects the kind of spectral densities that ap-
propriately leads to an irreversible evolution. For example, the ohmic case which is
frequently used in the literature must be disregarded, unless a cuto� is used. (Operators
b! and b†! are rigorously de�ned in Appendix A).
The Fock basis is the tensor product of the Fock basis of the isolated harmonic

oscillator and that of the bath, namely

|n; !1 : : : !m〉= |n〉 ⊗ |!1 : : : !m〉 ; (2.3)

where |!1 : : : !m〉 represents a state with m quanta in the bath, each one with frequency
!j (j = 1; : : : ; m).
The total number of quanta is conserved allowing us to solve the problem by sec-

tors (block diagonalization). The one-particle sector is referred to as Friedrichs’ model
[16,17] and contains the relevant information that we need to compute physical quan-
tities (see Section 5).
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3. Normal modes of the Hamiltonian and analytic continuation

The linearity in the coupling term of H allows us to easily �nd a new set of
uncoupled harmonic oscillators (normal modes), such that

I =
∫ ∞

0
d! b̃

†
!b̃! ; (3.1)

H =
∫ ∞

0
d!!b̃

†
!b̃! ; (3.2)

where

b̃! = �!a+
∫ ∞

0
d!′ �!(!′)b!′ : (3.3)

From a straightforward calculation [6,11,25], using the Heisenberg equations of motion,
we obtain the coe�cients of the unitary change of variables which diagonalize the
Hamiltonian, precisely

�!(!′) = �(!− !′) +
��!g(!′)

(!− !′ + i�)
(3.4)

and

�! =
�g(!)

�(!+ i�)
; (3.5)

where

�(z) = z − 
 − �2
∫ ∞

0
d!

g2(!)
z − !

: (3.6)

This function, which is the inverse of the reduced resolvent of H in the one-particle
sector, is not entire because it has a cut along the positive real axis corresponding to
the continuous spectrum of the Hamiltonian. If �(z) 6= 0 for all z ∈ C, except for a
possible real and negative !0 such that �(!0) = 0; an isolated solution appears, which
is non-analytic in �. We do not consider this case henceforth, since we are interested
in analytic solutions satisfying condition (2.2).
If �(z)=0 has no real solution it is not possible to �nd an operator ã; so that ã → a

for � → 0: In this case, we have lost the particle number operator corresponding to the
discrete part of the spectrum of H and we do not have the correct form of H when
� → 0 [30]. This problem can be solved promoting the energy (or frequency) ! to be
a complex variable z. We de�ne �(z) ≡ [�(z)]−1. It can be proved that �(z) has the
same analytic structure as the one of the coe�cient S(z) of the scattering matrix [10].
�(z) is a meromorphic function on a double Riemann sheet with a cut along [0;+∞).
�±(!)= [�±(!)]−1 ≡ �(!± i�) are de�ned on the upper and lower half-planes of the
�rst Riemann sheet RI (physical sheet), and have meromorphic continuations to the
lower and upper half-planes, respectively, in the second sheet RII (unphysical sheet).
For simplicity, we consider g(z) such that the analytic extension of �+(z) into the
second sheet has a simple pole z0 = !0 − (i=2)
 [
¿ 0 and �+(z0) = 0] in the lower
half-plane. Also, �−(z) has a simple pole z∗0 on the upper plane in RII:
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We can now study the meaning of z0. From the role played by z0 in the evolution
equation we know that (Im z0)−1 = 
−1 is the mean lifetime of the unstable state
|1; v〉 = a†|0; v〉 and (Re z0) is the shift of the bare frequency 
 [see [5] and also
Eq. (4.5)]. But, z0 is the root of �+(z) and from Eq. (3.6) we can estimate, up to the
second order in �; that

z0 = 
 + �2P
∫ ∞

0
d!

g2(!)

 − !

− i��2g2(
) ; (3.7)

where P denotes the Cauchy principal part of the integral. 4 The mean life of the
unstable state and the shift frequency are given by


= 2��2g2(
) (3.8)

and

�
 = �2P
∫ ∞

0
d!

g2(!)

 − !

: (3.9)

which are well-known expressions in the theory of unstable systems [31], usually de-
rived from the Fermi golden rule.
Regarding the coupling function of the form g(!) ∼ !n we �nd that the ohmic case

(n = 1) without cuto� does not satisfy the positivity condition (2.2). If we call 
1=2
the coe�cient for the subohmic case (0¡n¡ 1) and 
2 the coe�cient for supraohmic
case (n¿ 1), it is easy to prove that


2.
1.
1=2 : (3.10)

Now, we will �nd a generalized partition of the identity I and a generalized spectral
decomposition of H that recovers the discrete part of the spectrum [11,25,32]. In order
to do this let � be the curve of Fig. 1. It lies on RI for �−(z) and on RII for �+(z).
We de�ne the analytic function of z ∈ C

��(z) = z − 
 − �2
∫
�
dz′

g2(z′)
z − z′

; (3.11)

which generalizes Eq. (3.6).
To �nd the partition of the identity and a expansion of H we will use some adequate

analyticity properties. 5 Thus, we de�ne a space �+⊂H+ of states |’〉 such that the
function 〈0; !1; : : : ; !n|’〉=’0(!1; : : : ; !n) would have an analytic continuation, for each
variable !i (16i6n) to a region that includes the singularity z0: This space �+ would
be our space of “regular”, “admissible” or “physical” states. Precisely, generalizing what
we have done in paper [5], we will chose �+ such that its states would satisfy Eq. (B.3)

4 The principal part comes from the well-known identity between distributions

1
x + i�

= P
1
x
− i��(x); x ∈ R:

5 Properties of this kind were already introduced in previous works [5,10,12,25].
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Fig. 1. Deformation of the contour of integration taking into account the presence of the complex pole z0.

of Appendix B. Analogously, the space �− of the “unphysical” time-inverted states
would satisfy Eq. (B.4) of that appendix. With this choice the analytic continuation
that we perform has a rigorous meaning, since operators act in a space �+ which is
endowed with adequate analytic properties. The proof of this fact is a mathematical
problem, which is considered in Appendices B and C, where we generalize previous
results. Then if |’〉 ∈ �+ and | 〉 ∈ �−, from Eqs. (3.1) and (3.2) using Appendix B
and following the similar demonstration of paper [5], it can be proved that

〈 |’〉=
〈
 
∣∣∣∣(ã (−)?ã (−) +

∫
�
dz b̃

(−)?
z b̃

(−)
z

)∣∣∣∣’〉 ; (3.12)

〈 |H |’〉=
〈
 
∣∣∣∣(z0ã

(−)?ã (−) +
∫
�
dz zb̃

(−)?
z b̃

(−)
z

)∣∣∣∣’〉 : (3.13)

The residue at z0 contributes to the �rst terms of the r.h.s. of these generalized
partition of the identity and spectral decomposition of H; as in paper [11], and, in a
weak sense, the two previous equations can be written as

I = ã (−)?ã (−) +
∫
�
dz b̃

(−)?
z b̃

(−)
z (3.14)

H = z0ã
(−)?ã (−) +

∫
�
dz zb̃

(−)?
z b̃

(−)
z ; (3.15)

The creation and annihilation operators in all these equations reads

ã (−) =
1√

�′+(z0)

[
a+ �

∫ ∞

0
dz

g(z)
[z0 − z]+

bz

]
;

ã (−)? =
1√

�′+(z0)

[
a† + �

∫ ∞

0
dz

g(z)
[z0 − z]+

b†z

]
(3.16)
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and

b̃
(−)
! = b! +

�g(!)
�+(!)

[
a+ �

∫ ∞

0
d!′ g(!′)

!− !′ + i�
b!′

]
;

b̃
(−)?
! = b†! +

�g(!)
�−(!)

[
a† + �

∫ ∞

0
d!′ g(!′)

!− !′ − i�b
†
!′

]
: (3.17)

The distribution 1=[z0 − z]+ means∫ ∞

0

f(!)
[z0 − !]+

d!=
∫
�

f(z)
z0 − z

dz =
∫ ∞

0

f(!)
z0 − !

d!+ 2�if(z0) ; (3.18)

for every well-behaved analytical function f(z): Note that b̃
(−)?
! does not change if

we replace
∫
� by

∫∞
0 because, in this case, no pole is crossed, since �−(z) has no

poles (in SI). Nevertheless, b̃
(−)
! does change because the pole is crossed when we

modify the integration contour. We have shown this fact explicitly by putting �+(!)
in place of �+(!); where

1
�+(!)

=
1

�+(!)
+ 2�i�(z − z0)

�′+(z0)
; (3.19)

�(z− z0) being the extension of the Dirac delta de�ned �a la Gel’fand and Shilov [33].
As a consequence of these facts ã (−)? 6= ã (−)† and b̃

(−)?
! 6= b̃

(−)†
! . The star operation

corresponds to the analytic generalization of the complex conjugation, which, acting
on an analytic function f(z), is de�ned by 6

f?(z) = [f(z∗)]∗ : (3.20)

From Eqs. (3.16) and (3.17) we see that we have four annihilation operators due to
the presence of complex eigenvalues of H with the corresponding doubling of solutions,
since we have a pair of complex conjugate values. They are generalized eigenvalues
of the two analytic continuations of H into the lower (−) [upper (+)]-complex plane.
These operators are

ã (−); ã(+); b̃
(−)
! ; b̃

(+)
! :

The vacuum is the state annihilated by any annihilation operator. The Bogolubov trans-
formation of Eqs. (3.16) and (3.17) does not mix creation and annihilation operators;
therefore, the vacuum just de�ned is actually the same state de�ned as the vacuum of
the noninteracting system+bath. So from Eq. (2.3) the vacuum is the state |0〉⊗ |v〉 ≡
|0; v〉, where |v〉 is the vacuum of the bath.
The corresponding creation operators are

ã (−)?; ã (+)?; b̃
(−)?
! ; b̃

(+)?
! :

Starting from the common vacuum, by applying successively operators ã (−)?

and b̃
(−)?
! , the Fock basis {|˜〉} is built, and with ã (+)? and b̃

(+)?
! we build up the Fock

6 It corresponds to the symbol # of paper [5]. Here we follow the notation ? of paper [25] in which we
have also studied this model.



478 D.G. Arb�o et al. / Physica A 277 (2000) 469–495

basis {|−〉}. In the case of ã (−)? and ã (+)? the corresponding vectors in the Fock bases
of the one-particle sector are generalized eigenvectors of H with purely complex eigen-
values. They represent unstable states, i.e., ã (−)?|0̃; v〉= |1̃; v〉 is a one-particle general-
ized eigenvector of H corresponding to a complex eigenvalue z0 and ã (+)?|0; v〉= |1; v〉
is a one-particle generalized eigenvector of H corresponding to a complex eigenvalue
z∗0 : In this way, we are able to develop a second quantized version of the theory of
unstable states [25].

Now, we have two di�erent number operators, Ñ
(−)
=
∫∞
0 d! b̃

(−)?
! b̃

(−)
! and Ñ

(+)
=∫∞

0 d! b̃
(+)?
! b̃

(+)
! ; which are not Hermitian. So two di�erent Fock bases can be built

satisfying

Ñ
(−)| ]n; !1 : : : !m〉=m| ]n; !1 : : : !m〉 ;

Ñ
(+)|n; !1 : : : !m〉=m|n; !1 : : : !m〉 : (3.21)

The spectral decomposition of the Hamiltonian reads

H (−) =
∞∑
n=0

∞∑
m=0

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m(z0n+ !1 + · · ·+ !m)

×| ]n; !1 : : : !m〉〈n; !1 : : : !m| ; (3.22)

which acts on the right of the Fock space generated by basis {|˜〉}. But the “same”
Hamiltonian can also be written in the following way (using the other analytical con-
tinuation, in which case it is evident that the next equation is only weak, and it has a
precise meaning operating between |’〉 ∈ �− and | 〉 ∈ �+):

H (+) =
∞∑
n=0

∞∑
m=0

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m(z∗0n+ !1 + · · ·+ !m)

×|n; !1 : : : !m〉〈 ]n; !1 : : : !m| ; (3.23)

which acts on the right of the Fock space generated by basis {|−〉}. In the same way,
the identity reads

I (−) =
∞∑
n=0

∞∑
m=0

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m| ]n; !1 : : : !m〉〈n; !1 : : : !m| ;

I (+) =
∞∑
n=0

∞∑
m=0

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m|n; !1 : : : !m〉〈 ]n; !1 : : : !m| : (3.24)

As the eigenvalues of Eqs. (3.22) and (3.23) are complex, in order to deal with
unstable states we must �nd an adequate mathematical structure beyond the Hilbert
space. In fact, these states are generalized states. Thus, in Appendix B we see that
kets |˜ 〉 and |−〉 are well de�ned in a rigged Hilbert space formalism, i.e., they must
be thought of as antilinear functionals acting on test spaces �± and, as elements of a
vector space, they belong to the duals of �±; symbolized by �×

±: They de�ne a double
Gel’fand triplet structure �± ⊂H± ⊂�×

± [10,15,25].
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What about energy conservation? The trouble emerges because the eigenvalues of
the Hamiltonian are now complex; thus, some states decay in time (e.g. vectors of �×

+

which vanish for long times, see Section 5). Since some states vanish we may ask our-
selves as to how the conservation of energy can be possible. The answer is that, in any
case energy is conserved. In order to demonstrate this fact we will calculate the mean
value of the Hamiltonian in a state |’(t)〉=∑

nm

∫∞
0 : : :

∫∞
0 d!1 : : : d!mcn(!1 : : : !m)|n;

]!1 : : : !m〉; precisely
E = 〈’(t)|H (−)|’(t)〉

=
∑
nn′

∑
mm′

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m d!′

1 : : : d!
′
m′c∗n (!1 : : : !m)cn′(!′

1 : : : !
′
m′)

×e−i(z0n′+!′
1+···+!′

m′ )tei(z
∗
0 n+!1+···+!m)t(z0n+ !1 + · · ·+ !m)

×〈 ]n; !1 : : : !m| ]n′; !′
1 : : : !

′
m′〉 : (3.25)

Taking into account the orthogonality relations (B.7) and (B.9) shown in Appendix
B, and that z0 = !0 − i
=2, 
¿ 0, Eq. (3.25) reduces to

E =
∑
m

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m|c0(!1 : : : !m)|2(!1 + · · ·+ !m) ; (3.26)

which is time independent. Thus energy is conserved. Conservation of the norm and
the number of particles can also be demonstrated in an analogous way by replacing H
with I .
Finally, we can observe that Eqs. (B.7) and (B.9) show that the generalized eigen-

vectors have null norm and energy (with the exception of those with n=0) [5,7,25,34].
In the literature they are called Gamow vectors, they are generalized states, and rep-
resent just idealized not physical mathematical states (see Appendix B), as is the case
of the plane waves.

4. Mixed states: Its evolution

A general pure state belonging to �+ (see Appendix B) can be written as

|	〉=
∑
n

∑
m

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m cn(!1; : : : ; !m) ]|n; !1 : : : !m〉 ; (4.1)

where ]|n; !1 : : : !n〉 ∈ �×
+ , and the most general density

7 matrix can be written as

�=
∑
nn′

∑
mm′

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m d!′

1 : : : d!
′
m′ cnn′(!1; : : : ; !m; !′

1; : : : ; !
′
m′)

× ]|n; !1 : : : !m〉 ]〈n; !′
1; : : : ; !

′
m′ | : (4.2)

7 More accurately, we would say, that it is the most general possible decaying density matrix, as we will
see.
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If this � is the initial state �= �(0), the evolution law of �(t) reads

�(t) = e−iH
(−)t�(0)eiH

(+)t : (4.3)

As H is only self-adjoint in a generalized way 8 [10] H (−) acts in a way di�erent than
H (+) = H (−)† and there are right and left eigenvalues,

H (−) ]|n; !1 : : : !m〉= (z0n+ !1 + · · ·+ !m) ]|n; !1 : : : !m〉 ;
〈 ]n; !1 : : : !m|H (+) = (z∗0n+ !1 + · · ·+ !m)〈 ]n; !1 : : : !m| : (4.4)

Then we have

�(t) =
∑
nn′
e−(
=2)(n+n′)te−i!0(n−n′)t

∑
mm′

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m d!′

1 : : : d!
′
m′

×e−i(!1+···+!m)tei(!
′
1+···+!′

m′ )tcnn′(!1; : : : ; !m; !′
1; : : : ; !

′
m′)

× ]|n; !1 : : : !m〉 ]〈n′; !′
1 : : : !

′
m′ | : (4.5)

For an arbitrary initial state �(0) a time-dependent asymptotic (t → +∞) state is
reached. The explanation of this fact is simple. The modes of the bath are independent
of each other [see Eq. (2.1)], and so we cannot expect that the bath reaches equilibrium
(cf. Ref. [6]). Thus,

�(t)→ �∗(t) =
∑
mm′

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m d!′

1 : : : d!
′
m′e−i(!1+···+!m)t

×ei(!′
1+···+!′

m′ )tc00(!1; : : : ; !m; !′
1; : : : ; !

′
m′)

× ]|0; !1 : : : !m〉〈 ]0; !′
1 : : : !

′
m′ | : (4.6)

For completeness, we also write the evolution equation for the density operator,

d�(t)
dt

=−i
∑
nn′
e−(
=2)(n+n′)te−i!0(n−n′)t

∑
mm′

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m d!′

1 : : : d!
′
m′

×e−i(!1+···+!m)tei(!
′
1+···+!′

m′ )t

×(z0n+ !1 + · · ·+ !m − z∗0n
′ − !′

1 − · · · − !′
m′)

×cnn′(!1; : : : ; !m; !1; : : : ; !m′) ]|n; !1 : : : !m〉〈 ]n′; !′
1 : : : !

′
m′ | ; (4.7)

which is clearly equal to

d�(t)
dt

=−i(H (−)�− �H (+)) =−iL� ; (4.8)

where L is the generalized Liouvillian operator [25]. So we see that the density operator
follows an evolution described by a generalized Liouville–von Neumann equation.
In spite of the result obtained in Eq. (4.6) in Section 5 we show that the reduced

density operator �r; which is obtained by taking the partial trace with respect to the

8 Recall that H is self-adjoint in the Hilbert space, where H =H×, but in the generalized Hilbert space
this property essentially becomes Eq. (4.4).
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environment modes, reaches equilibrium, namely a time-independent state. An equiva-
lent way to �nd the equilibrium state, closer to the spirit of our formalism, is to use
a particular space of observables, as in paper [35].

5. Reduced density operator

As an illustration of the formalism we consider a simple example where the initial
state is a very particular state of the composed system,

�(0) = �S(0)⊗ �E(0) ; (5.1)

where

�S(0) = c11|1〉〈1|+ c10|1〉〈0|+ c01|0〉〈1|+ c00|0〉〈0| (5.2)

is the initial state of the discrete oscillator, or the initial reduced density operator (with
c11; c00¿0, c11 + c00 = 1 and c10 = c∗01) and

�E(0) = |v〉〈v| (5.3)

is the initial state of the bath, which does not have any quantum, namely, it is in
the ground state. This corresponds to a bath at zero temperature T = 0 (in the zero
and one-particle sector). The main features at any T can be reproduced but we begin
with this example because the mathematical computations are easier (recall that this
model can be decomposed in sectors of constant number of quanta). Also our initial
conditions are such that there is no correlation between the oscillator and the bath.
Our aim is to �nd the time dependence of the reduced matrix elements. It is derived

from the time evolution of the density operator

�(t) = e−iH
(−)t�(0)eiH

(+)t = e−iH
(−)t I (−)�(0)I (+)eiH

(+)t ; (5.4)

where I (−) and I (+) are the identities in spaces �+ and �− respectively 9 [see
Eqs. (3.24)].

�(t) =
(
e−iz0t |1̃; v〉〈1; v|+

∫ ∞

0
d! e−i!t |0̃; !〉〈0; !|

)
�(0)

×
(
eiz

∗
0 t |1; v〉〈1̃; v|+

∫ ∞

0
d!′ ei!

′t |0; !′〉〈0̃; !′|
)

: (5.5)

We have considered only the terms of the identity that correspond to zero-particle
and one-particle subspaces, since, from the conservation of the number of quanta, there
is no contribution of other terms. We emphasize that no approximations were carried
out up to now.

9 The di�erence in the conventions with respect to the use of + and − is the following. In operators + and
− are related with the analytic continuations for ±i�; while + and − in spaces are associated with the time
evolution, which is well de�ned only for positive or negative times, respectively.
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Once we have the time evolution of the density operator, the following step would
be to get the reduced density operator, tracing over the basis corresponding to the
environment,

�r(t) = trE�(t) =
∞∑
m=0

∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!m d!′

1 : : : d!
′
m

×〈!1 : : : !m|�(t)|!′
1 : : : !

′
m〉�(!1 − !′

1) : : : �(!m − !′
m) ; (5.6)

where the m= 0 term means 〈v|�(t)|v〉:
As said earlier, the contribution of terms m= 2; 3; : : : vanishes. Therefore, using the

relations between “new” and “old” bases [Eqs. (3.16) and (3.17)] and the conservation
of trace, we obtain a positive-de�nite reduced density operator:

�r(t) = c11P(t)|1〉〈1|+ c10�0(t)|1〉〈0|
+ c01�∗

0 (t)|0〉〈1|+ {c00 + c11[1− P(t)]}|0〉〈0| ; (5.7)

where

�0(t) =
e−iz0t

�′+(z0)
+
∫ ∞

0
d! e−i!t �2g2(!)

�+(!)�−(!)
; (5.8)

and P(t) = |�0(t)|2 is the survival probability of the state with only one quantum in
the discrete part.
We can write P(t) as the sum of four terms where the �rst one, e−
t=|�′+(z0)|2;

shows an exact exponential behavior. Expanding |�′+(z0)|−2 as 1 + O(�2); we split
the probability into two terms, one containing the purely exponential contribution and
the other that we call “background”, which give rise to deviations from the purely
exponential decay law, so that

P(t) = e−
t + background : (5.9)

If we take a time neither very short nor very long, the background will be smaller
than the purely exponential term (for �.1) and can be neglected, which leads to an
exponential decay-law. This is not true for short times since (dP=dt)(0) = 0, which
leads to the so-called Zeno e�ect [11]. For very long times the exponential term will
decay faster than the background, which is known as Khal�n e�ect [24]. We can force
P(t) to have an exponential appearance by de�ning the decay rate �(t) to be time
dependent, namely

P(t) ≡ e−�(t)t ; (5.10)

with

�(t) = 
− 1
t
ln(1 + e
t background) :

Obviously for an intermediate time the background can be neglected and �(t) ' 
.
The main restriction, imposed by the Zeno period, is

dP
dt
(0) =−�(0) = 0 : (5.11)
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For very long times the decay probability has also a non-exponential contribution as a
consequence of the semi-�niteness of the energy spectrum. From papers [6,7] we know
that the survival amplitude goes to zero as t goes to in�nity as a consequence of the
Riemann–Lebesgue theorem. Then the behavior of �0 depends on the small-frequency
behavior of g2(!). For small !; �+(!) ∼ −!0, where condition (2.2) was also used.
Then the form of �0 depends essentially on g(!) for large t. As an example we
consider the case where g2(!) ∼ !n exp(−!2=�2), where � is a cuto� [see paragraph
before Eq. (3.10)]. By evaluating the survival amplitude we have

�0(t) = �2
∫ ∞

0
d!

g2(!)
|�+(!)|2 e

−i!t ∼
∫ 1=t

0
d!!n e−i!t exp

(
−!2

�2

)
;

where the contribution of high-frequency terms is negligible. Performing the change of
variables !t = x, we obtain

�0(t) ∼ t−(n+1)
∫ 1

0
dx xn e−ix

(
1− x2

�2t2
+

x4

�4t4
+ · · ·

)
: (5.12)

We can see that the survival amplitude merges into an algebraic long-time tail. The
�rst relevant contribution behaves as t−n−1. As a consequence the decay rate for long
times must behave as

�(t)˙
ln t
t

: (5.13)

The behavior at short times and intermediate times coincides with those obtained in
Ref. [21]. In Fig. 2 we show the qualitative behavior of P(t). Zeno’s time, tZ , and
Khal�n’s time, tK , are not in scale in the picture in order to show the three di�erent
contributions to the decay probability.
Eq. (5.7) is the exact solution to the proposed problem, without taking any approxi-

mation. The �rst, second, and third terms will vanish for t → ∞; in fact, P(t → ∞)=0
and the same happens for �0(t) (recall that P= |�0|2). The �rst term of (5.8) has the
factor e−(
=2)t and the second one will tend to zero because of the Riemann–Lebesgue
theorem. The probability of having the vacuum will grow in time. This means that all
quanta in the discrete spectrum, except the ground state, decay into the continuum. So
we �nd the equilibrium reduced density operator

�∗ = (c00 + c11)|0〉〈0|= tr �|0〉〈0|= |0〉〈0| : (5.14)

As expected, the equilibrium state is the vacuum, namely for t → ∞ there are no
quanta in the discrete spectrum, because the initial quantum has decayed into the bath
(the discrete oscillator has spread its energy over the in�nite oscillators of the bath
with a distribution centered at the shifted frequency !0) [5,18,6]. This means that the
discrete harmonic oscillator has thermalized at T = 0. A similar result was recently
obtained in Ref. [36].
In order to check the compatibility of the solution found in Eq. (5.7) we �rst brie
y

sketch the main points of the derivation we have done. We have obtained the exact
solution of the Liouville equation. As a particular case, we have considered an initial
condition restricted to the zero- and one-particle sectors and have traced this solution
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Fig. 2. Behavior of the decay probability showing the Zeno, exponential, and Khal�n times.

over the environment modes. In this case, the survival probability P(t) in Eq. (5.7)
can be approximated by an exponential behavior, when the background contribution
is neglected. Now the solution for �r(t) obtained through this approximation can be
derived from a master equation of a Lindblad’s form, where the Lindblad generator is
proportional to the destruction operator a, since in our case we are only considering a
zero-temperature bath in the case of a damping motion caused by friction [37]:

�̇r(t) =−i
0[a†a; �r] +


2
(2a�ra† − a†a�r − �ra†a) :

The probability of �nding n quanta follows a Pauli master equation:

@
@t
〈n|�r|n〉= 
[(n+ 1)〈n+ 1|�r|n+ 1〉 − n〈n|�r|n〉] : (5.15)

It is easy to see that �r of Eq. (5.7), when the background is neglected, is solution of
the Pauli equation (5.15). 10

10 Moreover, �r(t) is possitive de�nite since this condition is equivalent to �11�00¿|�10|2(�ij = 〈i|�r | j〉)
which is obviously satis�ed by �r(t) provided it is satis�ed by �r(0).
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The results listed above are well known, but show that our formalism works as well
as the usual well-established theories on the subject.

6. Semigroups, Wigner time-inversion and irreversibility

One of the features of the system we are studying is its irreversible evolution; the
system reaches the equilibrium at the far future, and of course the inverse evolution
is not possible anymore. These properties were already found in Refs. [5,25] and here
they are brie
y reviewed.
The presence of a time-asymmetric behavior can be shown in two di�erent ways:

As the splitting of the usual evolution group in two semigroups or as the impossibility
to make a time inversion. We consider that the second one is the most eloquent.

6.1. Semigroups

Physical states can be chosen to be in test space �+; as we have done (or, with a
simple and physically irrelevant change of convention in space �−), while correspond-
ing generalized eigenvectors are in its dual �×

+ (or �×
−). The proof is simple. From

the Paley–Wiener theorem [10] the following lemma can be deduced:
If f(!) ∈ H 2

+; e
i!tf(!) ∈ H 2

+ only for positive times. Similarly if f(!) ∈ H 2
−;

ei!tf(!) ∈ H 2
− only for negative times.

The asymmetry in Hardy spaces can be immediately seen from the Fourier transform
representation. From the Paley–Wiener theorem it is known that Hardy class functions
from above can be represented as

f(!) =
1√
2�

∫ ∞

0
ds ei!sf̂(s) ;

where

f̂(s) =
1√
2�

∫ ∞

−∞
d! e−i!sf(!) :

The Fourier transform of Hardy class functions H 2
+ is in the space of square inte-

grable functions with support on the positive real axis and as the Fourier transform of
ei!tf(!) is given by

F{ei!tf(!)}= f̂(s− t) ;

i.e., a function with support on [0;∞) is transformed into a function with support on
[t;∞). For a negative time this last function has no longer support on [0;∞) and
therefore ei!tf(!) does not belong to H 2

+. Analogously, the same property can be
proved for the Hardy class H 2

−.
To simplify, we analyze the one-particle case; generalization to n-particle states is

straightforward. Let �(!) be a function in �[S ∩ H 2
±] such that, as a consequence of



486 D.G. Arb�o et al. / Physica A 277 (2000) 469–495

previous lemma, ei!t�(!) will also be in the same space for t ¿ 0 only. As �(!) =
〈!|�〉 then we can write in Dirac notation

ei!t�(!) = ei!t〈!|�〉= 〈!|e−iH (−)t |�〉 ; (6.1)

and taking into account Eq. (B.5) we can state that if |�〉 ∈ �+ then e−iH
(−)t |�〉 ∈ �+

only for t ¿ 0. In the same way, if |�〉 ∈ �− then e−iH
(+)t |�〉 ∈ �− for t ¡ 0. Then

if we postulate that �+ is the space of physical states and that the physical evolution
brings physical states into physical states, it turns out that this evolution takes place
only in the period t ¿ 0 and so irreversibility naturally appears. 11

6.2. The Wigner time-inversion

The Wigner time-inversion operator acts in a real representation as [38]

K’(x) = ’∗(x) : (6.4)

[cf. Eq. (1.3)]. Then, as the complex conjugate of the functions of H 2
+ are the functions

of H 2
− we have that [25]

K :�+ → �− 6= �+ ;

K :�− → �+ 6= �− : (6.5)

Then the Wigner operator is not well de�ned either within �+ or within �− and so
those states in �+ or �− are not, in general, t-symmetric. Therefore if we consider
that only the states of �+ are “physical” or “admissible” the Wigner time inversion
transforms these states into “unphysical” ones and therefore it turns out to be impossible
since unphysical states simply do not exist in nature. Then, through this mathematical
structure, irreversibility is incorporated in our theory.
Nevertheless (�+ ∩�−) is not an empty set [15] and so the time-inversion operator

will be well de�ned there:

K : (�+ ∩ �−)→ (�+ ∩ �−) ; (6.6)

and these states will describe reversible processes, which will be t-symmetric.
All these things lead us to the postulate of the Introduction: “Physical states are in

�+ ( or �−)”. In fact, this postulate provides a mathematical structure to deal with

11 Moreover, states in �+ are linear combination of generalized vectors |ñ; ]!1 : : : !m〉, and these vectors
evolve as

e−iH
(−) t | ]n; !1 : : : !m〉 = e−i(!0n+!1+···+!m)t e−(
=2)nt | ]n; !1 : : : !m〉 : (6.2)

Therefore, with the exception of n = 0, they decay towards increasing t. Then we say that physical vectors
in �+ decay towards positive time (except the states belonging to �+ ∩�−; as the vacuum state |0〉 ⊗ |v〉,
which does not decay). Analogously,

e−iH
(+) t |n; !1 : : : !m〉 = e−i(!0n+!1+···+!m)t e(
=2)nt |n; !1 : : : !m〉 ; (6.3)

and we can say that the unphysical states in �− decay towards negative times.
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irreversible processes, as also shown in papers [25,5–8]. The choice between �+
and �− is conventional and does not lead to physical consequences, but once we
choose one of these spaces the distinction between past and future becomes substan-
tial. Moreover, if we take into account the global structure of the universe, this choice
can be motivated from the asymmetry of this structure [13,14].

7. Concluding remarks

We outline the main results of this work.
We have diagonalized the full Hamiltonian of our model and extended it in such a

way that the solution is analytic in the interaction parameter. A rigorous mathematical
formalism can be introduced in order to deal with unstable quantum systems (see the
appendices).
Using this formalism, we have obtained a second quantized version of the decay

of unstable systems and we have found the corresponding creation and annihilation
operators of unstable states.
By means of a simple example, the exact time evolution of the reduced density

matrix at zero temperature has been studied. We have obtained an exponential decay
approach of P(t) to the asymptotic value P(t → ∞) = 0 which is expected when
the particle is in thermal equilibrium with a zero temperature bath. For short-times
we have found a quadratic behavior for the decay probability P(t) (Zeno e�ect). This
short-time deviation from the exponential decay law was recently measured for the �rst
time (see Ref. [39]). Other deviations from the exponential decay law, in this case for
long times, naturally arise in our framework: Khal�n e�ect, which unfortunately are in
practice far su�ciently from any observational time scale.
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Appendix A. Creation and annihilation operators

Consider the annihilation and creation “unsmeared operators”, b! and b†!, respec-
tively, that we have used in our calculations. Usually they are introduced in the math-
ematical framework of quantum �eld theory by virtue of expressions like [9]

b(�) =
∫

�(!)b! d! (A.1)
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or

b†(�) =
∫

�∗(!)b†! d! ; (A.2)

where b(�) and b†(�) are the (well-de�ned or “smeared”) annihilation and creation
operators of the one-particle state � ∈ H (being H a Hilbert space). In this context,
we �nd that

b†(�) :
∞⊕
n=0

sym(H⊗n)→ ∞⊕
n=0

sym(H⊗n) ;

b†(�)�= b†(�)(�0; �1; : : : ; �n; : : :) = (0; b
†
0(�)�0; b

†
1(�)�1; : : : ; b

†
n(�)�n; : : :) ;

(A.3)

where

b†n(�)�n = b†n(�)[sym(�
(1)
n ⊗ �(2)n ⊗ · · · ⊗ �(n)n )]

= sym(�(1)n ⊗ �(2)n ⊗ · · · ⊗ �(n)n ⊗ �) (A.4)

and b(�) = [b†(�)]†.
Of course, in the framework of the Hilbert space foundation of quantum mechanics

“de�nitions” (A.1) and (A.2) are strictly formal.
It is evident that these equations are analogous to the formal de�nition of the Dirac

delta

�(x) =
∫

�(!)�(x − !) d! ; (A.5)

so, as in the case of the Dirac delta, the rigorous meaning of the “unsmeared oper-
ators” b! and b†! must be found in the rigged Hilbert space formulation of quan-
tum mechanics and their action is interpreted as the annihilation, respectively the
creation, of a spectrum localized quanta, represented by a Dirac delta centered in the
real value !.
One way to do this is considering the explicit de�nitions of b! and b†! as distribution

valued operators. S ⊂H⊂S× being a rigged Hilbert space, we have

b! :
∞⊕
n=0

sym(S⊗n)→
[

∞⊕
n=0

sym(S⊗n)
]×

;

b!�= b!(�0; �1; : : : ; �n; : : :) = (b1!�1; b2!�2; : : : ; bn!�n; : : :) ; (A.6)

where

bn!�n = bn![sym(�(1)n ⊗ �(2)n ⊗ · · · ⊗ �(n)n )] (A.7)

and bn! acts as in its de�nition given in Section 2. Also

b†! :
∞⊕
n=0

sym(S⊗n)→
[

∞⊕
n=0

sym(S⊗n)
]×

;

b†!�= b†!(�0; �1; : : : ; �n; : : :) = (0; b
†
0!�0; b

†
1!�1; : : : ; b

†
n!�n; : : :) ; (A.8)
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where

b†n!�n = b†n![sym(�
(1)
n ⊗ �(2)n ⊗ · · · ⊗ �(n)n )]

= sym(�(1)n ⊗ �(2)n ⊗ · · · ⊗ �(n)n ⊗ �!) : (A.9)

Observe that, with these de�nitions, only the normal product is well de�ned and that
the “†” symbol is merely a convenient notation, that is, a rigorous Hermitian conjuga-
tion is not involved. But if we want to de�ne the canonical commutation relations we
will be in trouble, because the product of functionals is not uniquely de�ned. So this
is not the right way either.
Fortunately, there is another way to de�ne the annihilation and creation “operators”,

b! and b†!. This point of view is more abstract than the previous one. Remember
that the Dirac delta can be considered as a tempered distribution, i.e., a continuous
linear functional on the one-particle regular states space S. In an analogous way, the
annihilation and creation “operators”, b! and b†!, and all the respective “products” can
be considered as continuous linear functionals on the Canonical Commutation Relations
Algebra =CCR(S).
We summarize some properties which characterize this kind of algebras [40]. Re-

member that, S being a nuclear metrizable space, there exists a non-decreasing basis
{p�}�∈I of continuous seminorms such that each seminorm is Hilbertian. Let us denote
byH� the Hilbert space which is the completion of the quotient space S=Ker(p�) with
respect to the quotient norm p̂� = p�=Ker(p�), i.e., the space of equivalence classes
de�ned by

�� = {� ∈ S: p�(�− �) = 0} ;

where

p̂� :S=Ker(p�)→ R+ ;

p̂�(��) = p�(�) :

The ∗-algebra CCR(S) is de�ned as the Hausdor� projective limit [41] of the collection
{CCR(H�)}�∈I , where CCR(H�) is the C∗-algebra [42] generated by the family of
operators {b(�): � ∈ H�}, with respect to the mappings that inject each CCR(H�)
into CCR(H�) if �¿�, where the order in I is induced by the ordering of the basis of
seminorms. We can characterize the CCR(S) as follows. Since every projective limit of
a collection of C∗-algebras is a b∗-algebra, i.e., a complete symmetric ∗-algebra whose
topology is de�ned by a basis of continuous submultiplicative seminorms, CCR(S)
is also a b∗-algebra (see Ref. [43]). Moreover, we have that CCR(S) is the strict
inductive limit [41] of the collection {⊕n

j=0 sym(S
⊗j)}∞n=0 and so CCR(S) is a nuclear

strict inductive limit of a collection of Fr�echet spaces or LF∗-algebra [44]. With this
we have that the algebra is complete, barreled, and nuclear.
Finally we have that CCR(S)⊂CCR(H)⊂ [CCR(S)]×; which represents a gener-

alized Gel’fand triplet. So, viewing relations (A.1) and (A.2) as generalized expansions
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in the sense of the well known Maurin’s theorem, one can identify b! and b†! as con-
tinuous linear functionals on the algebra CCR(S); and we can say that they belong to
[CCR(S)]×.

Appendix B. Rigged extension

In this appendix we �nd a state space � with the required properties to implement
our formalism of unstable states. In order to adequately de�ne the vectors obtained in
Section 3 we must restrict the Hilbert space, which is the basic mathematical structure
of ordinary quantum mechanics. Recall that Dirac’s bras are de�ned as linear func-
tionals on kets of H. 12 These functionals belong to H×; the topological dual of H:
But in this case H× is isomorphic to H; thus, one works indistinguishably with kets
and bras. However, if we restrict the topology in order to take a dense subset � of
H; we break the one-to-one correspondence between elements � of � and continuous
linear or antilinear functionals F over them. We denote by �′ the dual space of linear
functions and by �× the dual space of antilinear functional. We usually use the latter
one. It leads to a triplet structure symbolized as �⊂H⊂�×, where, to assure the
convergence in the norm which de�nes the topology of �, we require that 〈�|F〉 is
�nite [10,15,9]. This space � will be the space of “regular” states �+; as explained
above. Changing the convention it can be �−.
In our case, a necessary condition for |�〉 ∈ � is that, the following expression, a

generalization of Eq. (3.16), would have a rigorous meaning,

〈�|ñ; v〉= 〈�|[ã (−)?]n|0; v〉
=

1

[�′(z0)]n=2

[
〈�|nv〉+ �

∫ ∞

0
d!1

g(!1)
[z0 − !1]+

〈�|n− 1; !1〉+ · · ·

+�n
∫ ∞

0
: : :

∫ ∞

0
d!1 : : : d!n

g(!1)
[z0 − !1]+

· · · g(!n)
[z0 − !n]+

〈�|0; !1 : : : !n〉
]
:

(B.1)

The last term of the second member of Eq. (B.1) must be well de�ned and so the
function 〈�|0; !1 : : : !n〉 = �∗

0 (!1 : : : !n) must have an analytic continuation in each
variable !i (06i6n) to a region which includes the singularity z0, so that the integral
de�nes an analytic n-dimensional function evaluated at z0.
The simplest choice for 〈�|0; !1 : : : !n〉 which does not depend on the localization

of z0 is that 〈�|0; !1 : : : !n〉 would be a Hardy function from below H 2
− [15] for each

variable. It is equivalent to

〈�|0; !1 : : : !n〉 ∈ �(S ∩ H 2
−)

⊗n : (B.2)

12H is the Hilbert space of the states we are considering. It can be the whole space of states or some
subspace with precise physical properties, as the incoming or outgoing spaces.
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This generalizes the criterium previously used for the one-particle sector [5,25,12].
From this criterium it can be proved that all the mathematical expressions above are
well de�ned (see Appendix C). Then in order for 〈i; !1 : : : !m|�〉 (i+m= n; n ∈ N)
to be well de�ned, it must belong to the following function space

〈i; !1 : : : !m|�〉 ∈
n⊕

m=0
�[S ∩ H 2

+]
⊗m ; (B.3)

where S is the Schwartz space [15,9], and � is the Heaviside step function, which
gives the restriction to the positive real axis.
If we do the same in order to de�ne 〈�|n; v〉, we �nd another realization space

〈i; !1 : : : !m|�〉 ∈
n⊕

m=0
�[S ∩ H 2

−]
⊗m ; (B.4)

with (i + m= n; n ∈ N). Therefore we de�ne the following spaces:

�± =
{
�=〈i; !1 : : : !m|�〉 ∈

∞⊕
m=0

�[S ∩ H 2
±]

⊗m
}

: (B.5)

The generalized eigenvectors belong to the dual spaces �×
±, since they are antilinear

functionals [10] on spaces (B.3) and (B.4),

|i; ]!1 : : : !m〉 ∈ �×
+ ;

|i; !1 : : : !m〉 ∈ �×
−: (B.6)

These generalized eigenvectors ful�ll the following relations (see [5]):

〈i; ]!1 : : : !m| ]i′; !′
1 : : : !

′
m′〉= 0 ;

〈i; !1 : : : !m|i′; !′
1 : : : !

′
m′〉= 0 ; (B.7)

〈i; !1 : : : !m| ]i′; !′
1 : : : !

′
m′〉= �ii′�mm′

(m!)2
∑
�∈Gp

∑
�∈Gp

�(!′
�1 − !�1 ) : : : �(!

′
�m

− !�m) :

(B.8)

Eqs. (B.7) are valid except for i = i′ = 0; and in this case we have

〈 ]0; !1 : : : !n| ]0; !′
1 : : : !

′
n′〉=

�nn′

(n!)2
∑

�; �∈Gp

�(!′
�1 − !�1 ) : : : �(!

′
�n
− !�n) ;

〈0; !1 : : : !n|0; !′
1 : : : !

′
n′〉=

�nn′

(n!)2
∑

�; �∈Gp

�(!′
�1 − !�1 ) : : : �(!

′
�n
− !�n) ; (B.9)

where Gp is the group of permutations. Eqs. (B.7) say that the norm of generalized
eigenvectors is zero (except i=0), which is a necessary fact to conserve energy [25,5].
It is not contradictory to have null-norm vectors because these are generalized vectors
which are not in the usual Hilbert space and have an underlying inde�nite metric
structure [25]. If we de�ne spaces H+ and H− as spaces �− and �+ where the
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condition about S is not required, we have

H± =

{
�=〈n; !1 : : : !m : : : |�〉 ∈

∞⊕
m=0

�[H 2
±]

⊗m

}
;

then we arrive at the triplets described under Eq. (3.24) and in Eq. (B.10). 13

Using Eq. (B.5), we �nd a double structure of rigged Hilbert spaces for our model,

�+⊂H+⊂�×
+ ;

�− ⊂H− ⊂�×
− : (B.10)

Appendix C. The double integral theorem

In Ref. [12] it was demonstrated that if we want that the integral∫
R+
d!

g(!)〈�|!〉
z0 − !

(C.1)

to be well de�ned, it is su�cient that

〈�|!〉 ∈ �(S ∩ H 2
−) : (C.2)

In the two variables case it is the integral∫
R+
d!

g(!)
z0 − !

∫
R+
d!′ g(!

′)〈�|!;!′〉
z0 − !

; (C.3)

that must be well de�ned. In this case we prove the following theorem.

Theorem. If

�(!;!′) = 〈�|!;!′〉 ∈ �(S ∩ H 2
−)

⊗2 ; (C.4)

then integral (C:3) is well de�ned.

Proof. If condition (C.4) is ful�lled, as S is a Fr�echet space 14 we have [41, p. 459]

�(!;!′) =
∞∑
i=0

�i�i
1(!)�

i
2(!

′) ; (C.5)

where
∑∞

i=0 |�i|¡ 1, �i
1(!), �i

2(!) ∈ �(S ∩ H 2
−) (i = 1; 2; : : :), �i

1, �i
2 → 0 when

i → ∞; and the r.h.s. of Eq. (C.5) is absolutely convergent, namely the series
∞∑
i=0

p(�i�i
1�

i
2)

13 In this way, �± is dense in H± which is the outgoing (incoming) space [45]. The H cited in paper [5]
is actually the outgoing space H+.
14 A Fr�echet space is a metrizable complete space.
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is convergent for any continuous seminorm p over �(S ∩ H 2
−)

⊗2. Let us now de�ne
the seminorm pz0 as

pz0 (�) = D2
∫
R+
d!

|g(!)|
|z0 − !|

∫
R+
d!′ |g(!′)||〈�|!;!′〉|

|z0 − !′| ; (C.6)

where D is the distance from R+ to z0 (D = 
=2). We must demonstrate that pz0 is a
continuous seminorm. We use the H�older inequality [46]∥∥∥∥ g(!)

z0 − !
g(!′)〈�|!;!′〉

z0 − !

∥∥∥∥
1

=D−2pz0 (�)6‖g(!)g(!′)�(!;!′)‖1
∥∥∥∥ 1
(z0 − !)(z0 − !′)

∥∥∥∥
∞

(C.7)

for any z0 ∈ C− (the lower half-plane). 15 Since∥∥∥∥ 1
(z0 − !)(z0 − !′)

∥∥∥∥
∞
= sup

{∣∣∣∣ 1
(z0 − !)(z0 − !′)

∣∣∣∣ ;!;!′ ∈ R+
}
= D−2 :

(C.8)

Eq. (C.7) reads

pz0 (�)6‖g(!)g(!′)�(!;!′)‖1 (C.9)

for any z0 ∈ C−: Then pz0 (�) is not only a continuous seminorm but also a continuous
norm over �(S ∩ H 2

−)
⊗2. Then

∞∑
i=0

pz0 [�i�i
1(!)�

i
2(!

′)]

=D2
∞∑
i=0

|�i|
∫
R+
d!

|g(!)|
|z0 − !|

∫
R+
d!′ |g(!′)||�i

1(!)||�i
2(!

′)|
|z0 − !′|

=D2
∞∑
i=0

∫
R+
d!

∫
R+
d!′

∣∣∣∣�i
g(!)
z0 − !

g(!′)
z0 − !′�

i
1(!)�

i
2(!

′)
∣∣∣∣¡∞ : (C.10)

So, de�ning

fz0
i (!;!′) = �i

g(!)
z0 − !

g(!′)
z0 − !′�

i
1(!)�

i
2(!

′) ; (C.11)

from the corollary of the Lebesgue theorem [47, p. 33] we know that, if the series
∞∑
i=0

fz0
i (!;!′)¡∞

15 We remember that

‖f‖1 =
∫
R+

|f(!)| d! ;

‖f‖∞ = sup{|f(!)|;! ∈ R+} ;

and also that S ∈ L1, i.e., any Schwartz function is integrable.
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converges a.e. in R+×R+, then the series, considered as a function of (!;!′); belongs
to L1 and∫

R+
d!

∫
R+
d!′

∞∑
i=0

fz0
i (!;!′) =

∞∑
i=0

∫
R+
d!

∫
R+
d!′fz0

i (!;!′) : (C.12)

Then, going back to Eq. (C.3) we have∫
R+
d!

g(!)
z0 − !

∫
R+
d!′ g(!

′)〈�|!;!′〉
z0 − !

=
∫
R+
d!

g(!)
z0 − !

∫
R+

∞∑
i=0

�i�i
1(!)�

i
2(!

′)

=
∞∑
i=0

�i

∫
R+
d!

g(!)�i
1(!)

z0 − !

∫
R+
d!′ g(!

′)�i
2(!

′)
z0 − !

: (C.13)

The l.h.s. of Eq. (C.13) is well de�ned since it is an integral of a L1 function. Moreover
it is the sum of products of two well-de�ned integrals, like the one of Eq. (C.1), since
from hypothesis �i

1(!); �
i
2(!

′) ∈ �(S ∩ H 2
−). Thus, the proof is complete.

Of course, this theorem can be generalized from the case of two factors, to the case
of n factors and, taking into account Eq. (3.18), it proves that Eq. (B.1) is well de�ned
if condition (B.2) is ful�lled.
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