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Abstract: A model for growing trees is introduced where nodes receive new links through some redirection process.
When a new node enters the network it connects to a randomly selected node, then, after flipping a biased coin, it
could stay there or go to its ancestor, and the process is repeated up to c times.
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1 INTRODUCTION

Growing random networks are interesting objects studied in the last twenty years by physicists and
mathematicians, since they appear in several applications, see [1], [2], [3]. In its most basic form, a growing
tree with redirection is defined as follow: a group of initial nodes is given, a new node enters the system,
first connects to a target node (chosen randomly in the whole network) and then, with some probability p,
redirects its link to the ancestor of the target node. This model was proposed in [4], and generalized in [5],
where the entering node flips a coin and follows j 6= 1 links before connecting to a node. This model has an
interesting feature, a phase transition between unbounded growth and condensation at some pj .

We propose here a variant of this model: a node enters the system, connects to a random node, and
then, with some probability p redirects its link to the ancestor of the target node, and with probability 1− p
stays there; if it stays, the process ends, if not, we repeat this process up to c times. Our model present a
secondary phase transition when c goes to infinity, which is not the limit of the critical values {pc}, and it
will be analyzed in a forthcoming work.

2 REDIRECTION WITH C=2
Let us focus on the case c = 2, in order to fix ideas. Initially, at t = 0, the network is composed of one

node, the seed. At each time step t a new node enters the network and connects to a random node, chosen
uniformly among the existing nodes. With some probability p redirects its link to the ancestor; then, with
probability p redirects again to the ancestor of the ancestor. The total number of nodes is N = 1 + t, and
the number of links is L = t. We will define the height of a node as the minimum number of links to the
seed. The probability that a node at the depth g in the directed network receives a link is:

Pg = (1− p)Ng + p(1− p)Ng+1 + p2Ng+2, (1)

except for the seed, where:
P0 = N0 + pN1 + p2N2, (2)

and the following normalization holds:

N0 + pN1 + p2N2 +
∞∑
i=1

[
(1− p)Ni + p(1− p)Ni+1 + p2Ni+2

]
= N (3)

2.1 CONDENSATION

When t� 1, the rate equation for Ng and for the average depth G =
∑
gNg, are respectively:

∂tN1,t =
1

N

[
p2N2 + pN1 +N0

]
∂tNg,t =

1

N

[
(1− p)Ng−1 + p(1− p)Ng + p2Ng+1

]
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and

∂tG = p2n1 + (1− p− p2) + G

t
, (4)

where ng = Ng/N is the proportion of nodes at depth g.
Now, there are two possible cases:

1. If n1 goes to zero in the long time limit, 4 simplifies into

∂tG = (1− p− p2) + G

t
, (5)

whose solution is G ∼ (1− p− p2)t ln t. This solution suggest that a phase transition occurs around
pc =

√
5−1
2 , since the coefficient cannot be negative.

2. If n1 does not vanish in the long time limit, we must take it into account. Let us highlight that a value
of n1 with these characteristics implies the formation of a condensate in the network, the seed attracts
a non-vanishing fraction of the links in the network.

Now, let us find the values of p and the corresponding value of n1 for which such a condensate exists.
To do so, we need to find the stationary solutions of the equations for ng:

(1 + t)∂tn1 = (n0 + pn1 + p2n2)− n1
(1 + t)∂tng =

[
(1− p)ng−1 + p(1− p)ng + p2ng+1

]
− ng (6)

The stationary solution are obtained by recurrence and by using the fact that n0 is negligible in the
long time limit. Indeed, N0 remains equal to 1 by construction, so that n0 → 0. It is easy to get the
general stationary solution:

ng =
1

C

(
1− p
p2

)g−1
, (7)

whose normalization constant is

C =

∞∑
g=1

(
1− p
p2

)g−1
.

Consequently, the system reaches a stationary solution when 1−p
p2

< 1 and hence p >
√
5−1
2 , so

C = p2

p2+p−1 .

By inserting the solution n1 = p2+p−1
p2

into 4 we arrive at the evolution equation

∂tG =
G

t
, (8)

so the average depth G
N ∼

G
t asymptotically goes to a constant, in agreement with the observed

formation of condensates. Let us stress that the existence of non-vanishing stationary values of ng is
not possible in the 1-redirection model. In contrast, the formation of condensates take place for any
other value c > 1. This result follows after generalizing 4 into:

∂tG =
G

t+ 1
+

(
2− 1− pc+1

1− p

)
+

c−1∑
g=1

ng c∑
i=g+1

pi

 , (9)

and the transition occurs at pc, pc being a root of 2− 1−pc+1

1−p .
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2.2 p <
√
5−1
2 CASE

Let us introduce the time scale dτ = dt/(1 + t) in which the set of equations to solve read as:

∂τN1 = N0 + pN1 + p2N2

∂τNg = (1− p)Ng−1 + p(1− p)Ng + p2Ng+1 (10)

This is a linear and homogeneous set of equations and we can expect the solutions to have a time dependence
eβτ ∼ tβ , where β is an eigenvalue of the dynamics.In the case p >

√
5−1
2 we have shown that β = 1 is

a proper eigenvalue and we found the eigenvector 7. In the following we look for the solution β(p) that
is reached when p <

√
5−1
2 . Solving the whole spectrum of eigenvalues of the dynamics matrix is out of

question. Instead, we introduce the ansatz Ni = Ait
β and look for the solutions Ai for t� 1:

βA1 = pA1 + p2A2

βAg = (1− p)Ag−1 + p(1− p)Ag + p2Ag+1 (11)

which can be solved by recurrence.
A priori, any value of β ∈ (0, 1) is available, except those ones for which any of the amplitudes Ai

becomes negative. In order to find the values of β that fulfill this condition we have studied the recurrence
in a numerical way, at a fixed value of p, by looking at F (β) where F is the index of first amplitude AF that
becomes negative. By construction, F (β) should go to infinity for allowed values of β. Numerical analysis
in figure 1 show that a whole region of β < βc are excluded due to this non-negative constraint, and, on
the other side, any value of β > βc makes all values of Ai stay positive and it is, a priori, susceptible to be

chosen. In the limiting case, p→
√

(5)−1
2 , the value β = 1 is recovered.

Figure 1: Left panel: relationship between the possible eigenvalue β and the index of the first negative amplitude,
F (β). The results are obtained by numerically integrating 11 up to gmax = 10000. Right panel: observed value of
βc obtained with the first negative amplitude approach, results are compared with those obtained with the theoretical
prediction 13.

Let us try to find analytically the location of the transition. To do so, we focus on the equation

βAg = (1− p)Ag−1 + p(1− p)Ag + p2Ag+1

for large values of g, we assume that Ag depends continuously on g, so Ag+1 = Ag + A′g +
1
2A
′′
g and

Ag−1 = Ag − A′g + 1
2A
′′
g , replacing this new values on the above equation the recurrence becomes into the

following homogeneous differential equation:

2(1− β)Ag + 2(p2 + p− 1)A′g + (p2 − p+ 1)A′′g = 0. (12)
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It is straightforward to show that the solutions of this equation undergo a transition at:

βc =
−p4 − 2p3 + 3p2 + 1

2(p2 − p+ 1)
. (13)

Above this value, the amplitude Ag is positive and asymptotically behaves like an exponential Ag ∼

e
−2(p2+p−1)+

√
4)

2(p2−p+1)
g

where 4 = 4(p2 + p − 1)2 − 8(p2 − p + 1)(1 − β); below this value the solution
exhibits an oscillatory behaviour taken negatives solutions, consequently, these values of β are forbidden.

This theoretical prediction is shown in total agreement with the numerical analysis performed, as we can

see in the graph, at least for values of p <
√

(5)−1
2 .

3 DEGREE DISTRIBUTION WITH c = 2

It is difficult to derive a closed equation for the degree distribution. This is due to the fact that a 2 −
variable distribution for the degrees of the nodes at the extremes of one link has to be added in order to
account for the redirection with c = 2. Similarly, once one tries to write an equation for that distribution,
this involve three degrees characterizing two adjacent links has to be considered, etc., leading to an infinite
hierarchy.

Figure 2: In the left figure, degree distribution measured from simulations with p = 0.4 and t = 2 106. In the right
figure, power law exponent ν of the values between 10 and 101.5 of the distribution k−ν .

To do so, we perform 50 computer realizations of the random process, measure the degree distribution
after long time t = 2 106 and average over the many realizations. One can observe that the stationary part
of the distribution converges toward a power law k−ν , as we show at the figure 2.
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