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Abstract 

Soft sensors (SS) are of importance in monitoring polymerization processes because numerous 

production and quality variables cannot be measured online. Adaptive SSs are of interest to maintain 

accurate estimations under disturbances and changes in operating points. This article proposes an 

adaptive SS to online estimate the mass conversion in the emulsion copolymerization required for 

the production of Styrene-Butadiene rubber (SBR). The SS includes a bias term calculated from 

sporadic laboratory measurements. Typically, the bias is updated every time a new laboratory report 

becomes available, but this strategy leads to unnecessarily frequent bias updates. The SS includes a 

statistic-based tool to avoid unnecessary bias updates and reduce the variability of the bias with 

respect to classical approaches. A control chart (CC) for individual determinations combined with an 

algorithmic Cusum is used to monitor the statistical stability of the average prediction error. The 

adaptive SS enables a bias update only when a loss of said statistical stability is detected. Several 

bias update methods are tested on a simulated industrial train of reactors for the latex production in 

the SBR process. The best results are obtained by combining the proposed CC-based approach with a 

previously developed Bayesian bias update strategy. 

 

1. Introduction 

Styrene-Butadiene rubber (SBR) is a commodity used primarily in the tire industry. SBR 

exhibits similar tensile strength, higher ozone resistance and better weatherability than the natural 

rubber.[1] The first stage in a typical SBR process is the synthesis of a latex through an emulsion 

copolymerization of styrene (S) and butadiene (B) carried out in a train of continuously-stirred tank 

reactors (CSTR). All the ingredients are continuously fed into the first reactor of the train (mainly, 

monomers: S and B; initiator: I; emulsifier: E, chain transfer agent: X; and water: W). Then, the 

emulsion flows through the other reactors as the copolymerization progresses, and the final latex is 

obtained in the last reactor.[2] One important variable to be monitored along the copolymerization is 

the mass fraction of the reacted monomers (or mass conversion) in the last reactor of the train. 

Mass conversion is a key variable. In fact, a low conversion turns the process inefficient because of 

low copolymer production and high costs for recovering the non-reacted monomers. On the other 

hand, too high conversions lead to high branching degrees that can deteriorate the final rubber 

properties. Unfortunately, industrial online sensors available for mass conversion are affected by 

drift and fouling, causing frequent service outages. Industry practice is to periodically collect latex 

samples (e.g., a sample per hour) which are then measured in an analytical laboratory. These offline 

measurements are quite accurate, but the high measurement delays prevent the implementation of 
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effective closed-loop strategies. In contrast, some emulsion polymerization variables can be 

observed from measurements of typical process variables (such as, temperatures, pressures, feed 

flows, etc.), allowing the monitoring of variables through online sensors. For example, an online 

sensor based on an artificial neural network (ANN) model was developed for estimating and 

controlling quality variables in the semibatch Nitrile rubber process.[3] Also, an online sensor based 

on ANN proved useful for the online estimation of production and quality variables in the continuous 

SBR process.[4] 

A soft sensor (SS) is basically a mathematical model that allows estimating the value of an 

unmeasured variable from one or more known or online measured process variables. In this sense, 

an SS is low cost, offers a quick estimation of a non-measurable variable and can also be used to 

detect failure states in a process.[5] The base mathematical model of an SS can be derived from 

either first principles or data captured in the process (data-driven SS). Also, SS can be implemented 

by combining both approaches. Currently, data-driven SS have gained great relevance due to 

significant advances in data acquisition systems and machine-learning techniques.[5-12] 

Unfortunately, SS estimates are always affected by unavoidable errors caused by inaccurate 

mathematical models, uncertain model parameters, sensor drifts, measurement noises, etc. To 

compensate for estimation errors, several adaptive techniques have been developed to 

automatically update an SS. For instance, Urhan and Alakent proposed the use of a multi-model SS 

together with two learning methods (adaptive moving window and just-in-time learning) that allow 

the calculation of the weighting factors to be applied to each sub-model.[6] Yuan et al.[8] used a 

locally-weighted partial least squares (LWPLS) algorithm to design an adaptive SS capable of 

performing adequately under abrupt or smooth changes in the monitored variable. More recently, 

Yamada and Kaneko employed Gaussian mixture models to partition large data sets from the 

process and then build several SS models.[9] The final SS prediction of the monitored variable is 

obtained by weighting the individual predictions of each model. All these adaptive strategies are 

aimed at continuously updating the SS to reach more accurate estimates. Many other adaptive SS 

have been proposed in the literature.[7, 10-12] 

Several mathematical models related to the SBR process have been published. Broadhead and 

Hamielec developed a nonlinear dynamic model for the production of SBR in a CSTR.[13] Almost 

simultaneously, Gugliotta et al.[2] published the nonlinear dynamic model for a train of CSTRs. This 

last model included three main modules: a mass balance module (MBM), a molar mass module 

(MMM), and an energy balance module (EBM). The MBM consists of a set of nonlinear ordinary 

differential equations that allows the dynamic prediction of several emulsion polymerization 
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variables, such as the polymerization rates, the reactant concentrations, the phase volumes, the 

conversion, the mass fraction of styrene bound to the copolymer, etc. The MMM is implemented 

with another set of nonlinear ordinary differential equations that uses the outputs of the MBM to 

calculate the number- and weight-average molar masses and the tri- and tetrafunctional branching 

degrees of the copolymer. In contrast, the EBM is a set of nonlinear algebraic equations that allows 

the calculation of the refrigerant flow rate required to keep constant the reaction temperature in 

each reactor of the train. The model was adjusted to reproduce experimental data collected from an 

industrial plant currently operated by Pampa Energy S.A. in Argentina. More recently, Saldivar-

Guerra et al.[14] presented a mechanistic dynamic model for the production of elastomers in trains of 

CSTRs, where SBR was specifically considered. 

Based on the model by Gugliotta et al.[2], adaptive SS-based methodologies have been 

proposed for monitoring and controlling the production of SBR in a train of CSTRs and for monitoring 

the quality variables of the product.[15-18] For example, Minari et al.[15] successfully estimated the 

optimal feed of reagents at intermediate reactors of the train to increase the production of the 

process without significantly affecting the properties of the latex. The ANN-based SS included two 

independent ANN blocks for estimating:[4] 1) solid content, polymer production, average particle 

diameter, and average copolymer composition; and 2) average molecular weight and average 

branching degrees. The inputs of the SS are the reagent feeds to the first CSTR and the reaction heat 

in each reactor. Godoy et al.[16] developed an SS for monitoring production and quality variables of 

the SBR process based on the molar feed flows of 8 reagents fed into the first reactor of the train 

plus the reaction heat in every reactor. The SS of Minari et al.[4] and Godoy et al.[16] exhibited 

acceptable performance when tested through simulated examples. Then, Godoy et al.[17] proposed a 

self-validation strategy for detecting sensor failures in the SBR process.  

The last mentioned SSs were not adaptive, thus limiting their applicability in the industry. 

Sangoi et al.[18] proposed a data-driven adaptive SS based on a linear regression of the molar feed 

flows of styrene, butadiene, initiator, and the total mass flow of evaporated refrigerant to monitor 

the mass conversion of the process online. In their work, a novel statistical Bayesian methodology 

was proposed for adaptation of the SS every time a new laboratory report is available. Nevertheless, 

the proposed methodology showed deteriorated performance in some particular scenarios, for 

example, when the process was in a stationary state, the methodology produced unnecessary 

adaptation in response to random noise of instrumental sensors or due to typical uncertainties in 

laboratory reports. 
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In general, industrial processes often use off-line laboratory measurements of samples taken 

at specific places and times to update SSs according to a pre-specified methodology. However, this 

classical approach has several drawbacks, such as: low sampling frequencies, uncertainties in 

sampling times, delays in the availability of the laboratory reports, errors in the laboratory 

measurements, etc.[5, 19] The prediction error is a key variable for the design, evaluation and 

maintenance of an SS. For a given process variable (yt) sampled at time t, the laboratory will provide 

the measurement result 𝜏 minutes later, at time T = t + 𝜏. Then, the prediction error evaluated at the 

time T, 𝜀T
p

, is defined as: 

 

𝜀T
p

= �̂�T
lab  − �̂�T−𝜏 (1) 

 

where the symbol “^” indicates estimated value of a given variable, �̂�T
lab is the laboratory report 

available at the time T, and �̂�T−𝜏 is the estimate of yt provided by the SS at T- 𝜏. The prediction error 

can be used to evaluate the inevitable deterioration of the SS performance over time. Said 

deterioration can be gradual (generally due to some drifts in the sensors or in the process), or abrupt 

(for example, due to a change in the operating point of the process, the presence of a large 

disturbance, or a failure of some sensor).[20, 21] 

In the process industry, a widely-used procedure for updating an SS is to add a term -the bias- 

to the base mathematical model.[19, 22] Then, the SS estimate is corrected by some bias updating 

strategy, while the base mathematical model and its parameters remain unchanged over time. In 

principle, an effective bias updating strategy requires determining not only the magnitude of the 

update, but also its timing. Most methods update the bias by a magnitude proportional to the 

current prediction error or its cumulative sum in a given time window (see Appendix).[19] Despite 

their simplicity, these methodologies have the drawback of requiring the selection of at least one 

parameter to calculate the magnitude of the update. In addition, the optimal value of the parameter 

may depend on the operating point of the process, the existence of disturbances in the sensors or in 

any other parts of the process, the sampling frequency and the level of uncertainty in the laboratory 

determinations, among others.[18] To mitigate some of these drawbacks, it was proposed to calibrate 

specific SS models for some typical operating points of the process. Then, the best adaptation 

strategy was obtained by weighting the incidence of the different models in relation to the actual 

operating point of the plant.[23, 24] Concerning the timing, it is common to update the bias when a 

new laboratory report is available.[18, 19, 25, 26] This strategy leads to implement unnecessary bias 

 18628338, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ren.202300025 by C
O

N
IC

E
T

 C
onsejo N

acional de Investigaciones, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

updates (e.g., when the process is in a steady state and the prediction error changes due to usual 

sensor noises or laboratory errors). Furthermore, frequent bias updates can degrade the 

performance of closed-loop control strategies that use the output of the SS as a feedback signal. 

Then, it is of interest to develop a statistic-based tool to decide whether or not to implement a bias 

update each time a new laboratory report becomes available. Therefore, some authors have 

proposed to update the bias only if: (i) the laboratory measurement is reliable, and (ii) the prediction 

error exceeds a minimum threshold.[19, 24, 27] In general, confidence in laboratory measurements can 

be ensured by repeatability and reproducibility studies, equipment calibrations, etc. It has been 

suggested to set the minimum threshold as 1.96cal, being cal the standard deviation of the 

prediction error calculated at the calibration stage of the SS.[19] A low bias update rate demonstrates 

the ability of an adaptive SS to adequately follow changes in process operating conditions. Usually, 

operators show greater confidence in those SS that have a low bias update rate.[27] 

Another problem inherent in bias update strategies is the random nature of the information 

fed into the SS. At least, three sources of randomness are recognized: (i) the online measurements of 

the sensors are corrupted by noise, (ii) the laboratory determinations are affected by unavoidable 

uncertainties, and (iii) the sampling times corresponding to the laboratory reports are inaccurate 

(time stamping errors). These uncertainties could deteriorate the performance of the SS as a 

consequence not only of erroneous estimates of the magnitude of the bias updates but also of the 

time in which they are applied. 

Control charts (CC) are typically applied to statistically monitor several process variables. In 

engineering applications, CC have also been used to detect online sensor faults and to support post-

fault detection decisions.[28] Recently, a CC has been used to monitor the error in a process variable 

by comparing a sensor reading with the prediction of the same variable through a neural network.[29] 

Similarly, Kazemi et al.[30] analyzed the performance of a set of data-driven SS in the presence of 

several disturbances and suggested the joint use of standard CC and CC of cumulative sums (Cusum) 

to detect online failures. The statistical concepts underlying CC are of interest for the development 

of new process monitoring strategies. For example, a variant of the Cusum method was useful to 

detect changes in process parameters, even in the presence of non-Gaussian data.[31] As far as the 

authors are aware, CC have not yet been investigated for strategies aimed at updating the bias of an 

adaptive SS. 

This article proposes an adaptive SS-based methodology specifically designed to monitoring 

mass conversion in the production of SBR, which avoids the unnecessary bias updates that would be 

obtained with a classic SS. In the new proposal, a bias update is implemented only when a 
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statistically significant change in the mean of 𝜀T
p

 is detected. That change is determined from a 

combination of two complementary CCs. The CCs scheme is coupled with a methodology for bias 

update also based on  𝜀T
p

. The proposed methodology is evaluated through simulated examples 

generated on the basis of the first principle model by Gugliotta et al.[2] For comparison, classic SSs 

that are often used in industrial applications to update the bias are also implemented. All the 

alternative SSs are evaluated through ad-hoc performance indexes.  

2. The Proposed Adaptive Soft Sensor 

Figure 1 schematically represents the general structure of the proposed adaptive SS, which 

includes a basic SS with a bias update term, 𝛽𝑡. The fundamentals of the basic SS and some 

alternatives to calculate 𝛽𝑡 are briefly described in the Appendix. Note that 𝛽𝑡 is a piecewise 

constant function that will be updated at some T only. In fact, the basic idea of the current proposal 

is to enable the bias update only when a loss of statistical stability in the mean of 𝜀T
p

 is detected at 

some T. Otherwise, the bias will remain unchanged (𝛽T = 𝛽T−1
). 

To monitor the mean of 𝜀T
p

, it is proposed the simultaneous use of two widely used CC: a 

moving-range CC for individual measurements and a Cusum CC. These two tools are selected for the 

complementarity of their statistical powers when monitoring the average value of some parameter. 

In fact, a moving-range CC is efficient at quickly detecting a relatively large change; while Cusum can 

provide a somewhat delayed alarm but is capable of detecting small gradual changes. 
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Figure 1. Schematic representation of the proposed adaptive SS for a continuous process. 

 

The efficiency of a CC as a statistical tool is subject to the normality of its input data. In the 

present case, the normality of 𝜀T
p

 can be ensured in the absence of significant disturbances or sensor 

failures, and for a fixed operating point. Under such ideal process operation, the following is 

expected: (i) any of the process measurements, 𝐑𝑡, are affected by unavoidable sensor noises, which 

in turn could be accepted to follow a Gaussian distribution; and (ii) the laboratory measurements 

�̂�T
lab follow a Gaussian distribution. Under such conditions, the CC are calibrated to accept the 

statistical stability of 𝜀T
p

, and therefore no bias update will be necessary (i.e., 𝛽T = 0). Then, it is 

expected that 𝜀T
p

, obtained from Equation 1, follows a stable Gaussian distribution along the time. 

When such statistical stability is lost, then a bias update will be implemented, and Equation A.1 will 

provide a corrected estimate. 

The following two sub-sections describe the implementation of each CC. 
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2.1. Control Chart for individual measurements 

Assuming that 𝜀T
p

 follows a normal statistical distribution, the corresponding control limits and 

central line are calculated during the calibration stage of the CC under a 3- concept, as follows:[32] 

 

Upper Control Limit = UCL = 𝜀̅p + 3
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 (2.a) 

Central Line = CL = 𝜀̅p (2.b) 

Lower Control Limit = LCL = 𝜀̅p − 3
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 (2.c) 

 

where 𝜀̅p is the average prediction error, 𝑀𝑅̅̅̅̅̅ is the second order-average moving range, and 𝑑2 is a 

factor that allows the estimation of the standard deviation as 𝑀𝑅̅̅̅̅̅ /𝑑2, as an alternative to the usual 

definition given by: [∑ (𝜀𝑖
p

− 𝜀̅ p)2 /(𝑛 − 1)𝑛
𝑖=1 ]

1/2
. In fact, for sample sizes smaller than 10 (n < 10), 

the proposed calculation yields more accurate estimates.[33] The parameters 𝜀̅p and 𝑀𝑅̅̅̅̅̅ are 

calculated as follows: 

 

𝜀̅p =
1

E
∑ 𝜀𝑖

pE
𝑖=1           (3.a) 

𝑀𝑅̅̅̅̅̅ =
1

E−1
∑ 𝑀𝑅𝑖 =

1

E−1
∑ |𝜀𝑖+1

p
− 𝜀𝑖

p
|E−1

𝑖=1
E−1
𝑖=1       (3.b) 

 

where 𝜀𝑖
p

 (i = 1, …, E) represents the i-th prediction error calculated on the basis of a calibration data 

set of E samples. 

Under the hypothesis of normality of the 𝜀T
p

, the statistical stability of its average value, 𝜀T̅
p

, 

was determined on the basis of the following four decision rules:[32] 1) one point outside of the 

control limits; 2) two consecutive points, or two of three consecutive points outside the two-sigma 

warning limits but still inside the control limits; 3) four consecutive points, or four of five consecutive 
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points beyond the one-sigma limits; and 4) a run of eight consecutive points on one side of the 

center line. 

2.2. Algorithmic Cusum Control Chart 

The one-sided upper and lower Cusum statistics, 𝐶𝑖
+ and 𝐶𝑖

−, respectively, are calculated as 

follows:[32] 

 

𝐶𝑖
+ = max[0 , (𝜀𝑖

p
− 𝜇0) + 𝐶𝑖−1

+ ],      (with 𝐶0
+ = 0) (4.a) 

𝐶𝑖
− = max[0 , (𝜇0 − 𝜀𝑖

p
) + 𝐶𝑖−1

− ],     (with 𝐶0
− = 0) (4.b) 

 

where 𝜇0 is the target value. The statistics 𝐶𝑖
+ and 𝐶𝑖

− accumulate the deviations of the prediction 

error above and below the target value 𝜇0, respectively. Thus, in order to detect a small shift in 𝜀T
p

, 

the target 𝜇0 is here chosen as the average prediction error obtained from the calibration data set, 

i.e., 𝜇0 = 𝜀̅p (Equation 3.a). In principle, the prediction error should be as low as possible, then it is 

expected 𝜀̅p  0. The control limit, H, is adopted as four times the standard deviation of the 

prediction error obtained from the calibration data set, i.e., 𝐻 = 4
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 (Equation 3.b). Then, 𝜀T

p
 is 

assumed to be out of statistical control when either 𝐶𝑖
+ or 𝐶𝑖

− falls outside the control limit; i.e., 

when 𝐶𝑖
+ > 𝐻 or 𝐶𝑖

− > 𝐻. Finally, when an out-of-control is detected, 𝐶𝑖
+and 𝐶𝑖

− are reset to 𝐶𝑖
+/2  

and 𝐶𝑖
−/2, respectively. 

3. Case of Study 

A linear adaptive SS (that includes a bias updating term) will be used to online obtain the 

estimated mass conversion, 𝑦𝑡 = 𝑥𝑡, in a SBR process emulated through the model reported by 

Gugliotta et al.[2] Figure 2 shows a simplified scheme of the SBR polymerization process carried out in 

a train of 10 CSTRs. Each reactor has a local refrigerant accumulator that allows the emulsion 

temperature to be regulated at 10 ºC. The evaporated refrigerant leaving the i-th accumulator, 𝐺𝑅,𝑖, 

is injected into a collector pipe. 
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Figure 2. Simplified scheme of the polymerization process. The gray lines indicate the cooling circuit. 

 

The train of reactors operates in a quasi-steady state due to undesirable disturbances or 

planned changes in demanded polymer production. Each reactor has a volume of 18.000 dm3. The 

total mass flow can range from about 200 dm3 min-1 to 550 dm3 min-1, depending on the level of 

production required. An approximate composition of the mass flows of the input reagents is: 10% 

styrene, 35% butadiene, 30% to 45% water, and 10% to 25% other reagents. 

The following (column) vector of measurements is defined (superscript " ′ " indicates vector 

transpose): 𝐑𝑡 = [𝐹S𝑡
 𝐹B𝑡

 𝐹I𝑡  𝐺R𝑡
]′, where 𝐹S𝑡

, 𝐹B𝑡
, and 𝐹I𝑡  are the molar flows (of S, B, and I, 

respectively) fed into the first reactor of the train at time t; and 𝐺R𝑡
 is the total mass flow of 

refrigerant consumed by the NR = 10 reactors of the train, i.e.: 𝐺R𝑡
= 𝐺R,1𝑡

+ ⋯+ 𝐺R,NR𝑡
, where 

𝐺R,i𝑡 (i = 1, …, NR) is the mass flow of refrigerant consumed by the i-th reactor. Even though other 

available measurements could have been included in 𝐑𝑡 (e.g., the molar flows of E, X, and H2O), it 

was preferred to select a minimum amount of variables to achieve a simpler SS. More specifically, 

the molar flow of X was not included because it has practically no effect on 𝑥𝑡. On the other hand, 

the E and H2O feed rates are almost proportional to the I feed rate when the total flow rate is 

changed to modify the polymer production. If that proportionality is lost, then the adaptive SS will 

have to compensate for the modeling error. The four chosen variables were also confirmed through 

a correlation study that pointed to these variables as the most correlated with conversion in this 

process.  

3.1. Mathematical Model of the Soft Sensor 

According to the structure of Equation A.1, the linear mathematical model of the proposed 

inferential sensor is represented through the following multivariate regression: 
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𝑥𝑡 = (𝜃0 + 𝜃1 �̃�S𝑡
+ 𝜃2 �̃�B𝑡

+ 𝜃3 �̃�I𝑡 + 𝜃4 �̃�R𝑡
) + 𝛽𝑡 = ([1  �̃�𝑡′] ∙ 𝚯) + 𝛽𝑡 (5) 

 

where  𝚯 = [𝜃0 𝜃1 𝜃2 𝜃3 𝜃4]′ (51) is a vector of unknown parameters, and the symbol “~” refers to 

a variable contaminated by experimental noise. 

The calibration of the SS consists of adjusting the five parameters 𝜃0, … , 𝜃4. To this effect, the 

detailed mathematical model was used to emulate the synthesis of the commercial degree SBR-

1712.[2] For simplicity, it was assumed that the samples to be analyzed in the laboratory were 

collected at constant intervals of ∆T = 4 h. Three global latex production levels were adopted from 

typical industrial recipes in the reactor train (see Table 1): 522.2 dm3 min-1, 386.3 dm3 min-1, and 

227.2 dm3 min-1, and implemented along the time periods P1 to P3, respectively. First, a period of 

1,200 min was used to stabilize the process. For each production level, each feed flow (𝐹S𝑡
, 𝐹B𝑡

, 𝐹I𝑡) 

was varied sequentially through pulses of [-10%, 0%, +10%, 0%] with respect to their nominal values. 

Each pulse lasted 800 minutes. After each change in the production level, an additional stabilization 

period of 120 minutes was considered. Then, the total simulation time for the three periods was 504 

hours, and measurements of samples taken every 4 hours were simulated. Therefore, 127 sets of 

simulated measurements were obtained. To achieve some polymer quality restrictions, the emulsion 

temperature in each reactor was set at 10 ºC. Purities of styrene, butadiene and initiator were 98%, 

98% and 50%, respectively. All recipes were adjusted to achieve the final specifications of the 

industrial SBR-1712 in the last reactor: mass conversion  58%, fraction of styrene bounded to the 

copolymer  23%, number-average molar mass  210,000 g mol-1; weight-average molar mass  

760,000 g mol-1; number-average of trifunctional branching points  0.19; and number-average of 

tetrafunctional branching points  0.08.[2] 

 

Table 1. Reference feed flows (dm3 min-1) utilized for calibrating the inferential sensor (periods P1, 

P2, P3, in hours), and for testing the bias updating method (period P4, in hours). 

Period 𝐹S  𝐹B  𝐹I  𝐹W 
 

Othersa)  
Total Flow 

rate 

P1: 0 – 168 52.6  185.0  0.12  162.5  122.0  522.2 

P2: 169 – 336 39.0  136.8  0.06  139.4  71.0  386.3 
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P3: 337 – 504 22.7  80.0  0.02  100.5  24.0  227.2 

P4: 505 – 654 54.2  190.7  0.40  165.7  126.5  537.5 

a)Approximate feed flows (dm3 min-1) of other reagents. 

 

At times T = [T1, T2, …] = [4 h, 8 h, …], the simulated values of 𝑥T and 𝐑T were stored. At each 

sampling time T, the laboratory determination of x, �̃�T
lab, was simulated as follows: 

 

�̃�T
lab = 𝑥T + 𝜀T

lab(𝜇lab, 𝜎lab) (6) 

 

where the simulated laboratory error 𝜀T
lab was assumed as a normally distributed random value with 

mean 𝜇lab = 0 and standard deviation 𝜎lab = 1% of the mean of 𝑥T. 

The noisy measured variables �̃�T were simulated as follows: 

 

�̃�T = 𝐑T + 𝛆𝐑(𝛍𝐑, 𝛔𝐑) (7) 

 

where 𝛆𝐑(𝛍𝐑, 𝛔𝐑) = [𝜀𝐹S
(𝜇S, 𝜎S)  𝜀𝐹B

(𝜇B, 𝜎B)  𝜀𝐹I
(𝜇I, 𝜎I)  𝜀𝐺R

(𝜇𝐺R
, 𝜎𝐺R

)]′ is the (column) vector of 

sensor errors. The error of each sensor was randomly drawn from a zero-mean Gaussian 

distribution. In the industrial plant, the standard deviation of the refrigerant flow meter signal is 

approximately three times the standard deviations of the other flow meters. Then, the simulated 

standard deviations were 1% (for 𝐹S𝑡
, 𝐹B𝑡

, 𝐹I𝑡) and 3% (for 𝐺R𝑡
), with respect to the means of their 

respective signals.  

Finally, the 127 simulated pairs (�̃�T
lab, �̃�T) were utilized for the calibration of the inferential 

model of Equation 5. The parameters 𝚯 (51) were estimated through a standard least squares 

procedure, i.e.: 

 

𝚯 = (ℝ′ ℝ)−1 ℝ′ 𝐗  (8) 
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where 𝐗 = [�̃�T1

lab  �̃�T2

lab   … ]′ (1271) is a vector that contains the noisy laboratory values, and ℝ 

(1275) is a matrix whose i-th row is the augmented row vector of noisy inputs,  

[1 �̃�S𝑇𝑖
 �̃�B𝑇𝑖

 �̃�I𝑇𝑖
 �̃�𝑅𝑇𝑖

]. From Equation 8, the following parameters were obtained: 

𝚯 = [0.6058   8.573  − 0.0008   0.3790   0.0002]′. These parameters resulted in a R2 value of 0.52, 

with p-values of approximately 0, 0.014, 0.010, 0.150, and 0.040, respectively, indicating statistical 

significance for all regression variables. It is important to note that the modeled process is nonlinear, 

the calibration data includes different production levels and is contaminated with significant noises. 

Under these considerations, the obtained multivariate linear regression model is acceptable. 

3.2. Calibration of the Control Charts 

The prediction error was calculated from the calibration data set, as follows: 

 

𝛆p = [

𝜀T1

p

⋮
𝜀T127

p
] = [

�̃�T1

lab

⋮
�̃�T127

lab
] − [

 1     �̃�ST1   
    �̃�BT1   

   �̃�IT1   
    �̃�RT1

 

⋮    
   1     �̃�ST127

  �̃�BT127
   �̃�IT127

   �̃�RT127

] 

[
 
 
 
 
𝜃0

𝜃1

𝜃2

𝜃3

𝜃4]
 
 
 
 

= 𝐗 − ℝ 𝚯 (9) 

 

The 127 values of 𝛆p are represented by dots in Figure 3a. Although the calibration set 

includes different operating conditions (mainly different production rates), the prediction error 

exhibits a random behavior in any period. Figure 3b shows a Q-Q plot for the prediction error of 

Figure 3a. The straight trend shown in Figure 3b suggests an underlying Gaussian distribution for 𝜀T
p

. 

From Figure 3a, the average value of the prediction error is close to zero and the standard deviation 

is 0.79. 
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Figure 3. a) Prediction error corresponding to the whole calibration data set. b) Q-Q plot for the 

prediction error. 

 

To calibrate the CCs, the first step was to detect and exclude outliers and out-of-control points 

in the data set. Ten points were excluded because they all violated at least one of the four decision 

rules. Then, the procedures of sections 2.1 and 2.2 were applied to obtain the control limits 

corresponding to the CC for individual measurements and the parameters 𝜇0 and 𝐻 for the Cusum 

CC. The following values were obtained: CL = 0; LCL = -2.4; UCL = 2.4; 𝜇0 = 0; and H = 3.16 (strictly, 

𝜇0 < 0.02 was obtained during the calibration stage). Also, the constant 𝑑2 adopts the value 1.128, 

which corresponds to the two samples used for the calculation of every moving range.[32] 

3.3. Simulation of the SBR Train with the Adaptive Soft Sensor 

To evaluate the adaptive SS, the recipe of period P4 (see Table 1) was simulated along 150 h. 

The measured variables were assumed to be acquired at time intervals t = 1 min. Every 4 h, a 

laboratory determination �̃�T
lab was simulated through Equation 6, and the measurement report was 

affected by a delay time τ = 2 h. The time stamping error was randomly sampled from a zero-mean 

Gaussian distribution of standard deviation 0.25 h. The mass conversion in the last reactor of the 

train was estimated through Equation 5; and the bias 𝛽𝑡 was updated according to the procedure 

described in Figure 1. 

Table 2 details the reference case (C1) and five scenarios (C2 to C6) that include process 

disturbances and sensor failures. The reference case C1 keeps the operating conditions of P4 

unchanged, without including process disturbances or sensor errors. Case C2 simulates simultaneous 

abrupt reductions of all the reactant feed rates at 5,250 min, with a decrease of the total latex feed 

rate from 537 dm3 min-1 to 511 dm3 min-1. Case C3 considers a sudden reduction of 5% in the purity 
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of the initiator, at 4,000 min. Case C4 simulates a failure in the cooling system of Reactor 5 that 

causes a temperature increase from 10 °C to 15 °C, at 5,250 min. Case C5 assumes an increasing 

linear drift (0.01 % min-1) in the signal transmitted by the sensor of 𝐹S𝑡
, from 4,000 min to 6,500 min. 

Case C6 assumes an off-set of +15% in the signal transmitted by the sensor of 𝐺R𝑡
, from 4,000 min to 

6,500 min. Every disturbance C2 to C6 was implemented starting from the reference case, C1. Note 

that C2, C3 and C4 produce a transition to a different final value of xt. In contrast, C5 and C6 

correspond to errors in the transmitted measured signals, while xt remains unaffected. 

 

Table 2. Simulated scenarios along the period P4. 

Case  Disturbance or Sensor Failure  Affected variables 

C1  Reference case (no disturbance)  - 

C2  Latex feed rate: from 537 dm3 min-1 to 511 dm3 min-1  𝐹S𝑡
, 𝐹B𝑡

, 𝐹I𝑡  

C3  Initiator purity: 5% undetected reduction  𝐹I𝑡  

C4  Temperature of Reactor 5: 5 °C rise  𝐺R𝑡
 

C5  Sensor of 𝐹S𝑡
: Undetected linear drift (+0.01 % min-1)  𝐹S𝑡

 

C6  Sensor of 𝐺R𝑡
: Undetected offset (+15%)  𝐺R𝑡

 

 

The mass conversion xt was estimated through the method proposed in Figure 1. For 

comparison, the following bias updating algorithms were implemented: (i) the classical approach of 

Equation A.2a, with  ranging from 0 to 1 in steps of 0.05; (ii) the cumulative sum approach of 

Equation A.2b with n = 4 as a typical value (also with  from 0 to 1 in steps of 0.05); and (iii) the 

Bayesian approach of Equation A.3 with k = 2.[18] Additionally, to study the impact of the proposed 

CC strategy, the results were compared to those obtained through approaches i), ii) and iii) without 

considering any CC. 

The (positive) true relative error in the estimated conversion is defined as follows: 

 

𝜀T𝑖

t = |
𝑥T𝑖

 − �̂�T𝑖

𝑥T𝑖

| (10) 
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Three indexes were defined to evaluate the performance of all bias updating methods: 1) 𝜀:̅ average 

value of 𝜀T𝑖

t ; 2) Nbu: number of bias updates; and 3) 𝜎𝛽: standard deviation of the bias updates. 

 

𝜀̅ =
1

𝑁
∑ 𝜀T𝑖

t𝑁
𝑖=1  (11.a) 

 

Nbu = number of times that 𝛽𝑖 ≠ 𝛽𝑖−1,   (i = 2, …, N) (11.b) 

 

𝜎𝛽 =
1

𝑁 𝑑2
∑  |𝛽𝑖 − 𝛽𝑖−1|

𝑁
𝑖=2  (11.c) 

 

where N = 32 is the number of simulated laboratory reports along the last 128 hours of the period 

P4 (the first 22 h of P4 were used to stabilize the numerical solutions). Note that the index 𝜀  ̅can be 

computed only when the true mass conversion is known. Although this is not possible in a practical 

application, this index was used in the simulated examples to assess the capabilities of the studied 

methods to estimate the true conversion, xt. 

 

4. Main Results and Discussion 

Main results are summarized in Figure 4 to Figure 7 and Table 3. The following nomenclature 

is used to refer to the bias update methodologies: “cl” for the classical method of Equation A.2a; 

“cs” for the cumulative sum method of Equation A.2b; and “by” for the Bayesian method of Equation 

A.3. Then, “cl-cc”, “cs-cc”, and “by-cc” are used for the corresponding CC-based methods. 

For all cases C1 to C6, Figure 4 and Figure 5 respectively show the indexes 𝜀  ̅and Nbu for every 

update method, as a function of the parameter . The analysis of such figures indicates that there is 

not a given  that minimizes the indexes; on the contrary, the optimum  depends on both the case 

and the method. For the Bayesian method, constant values of 𝜀  ̅are observed because such method 

is independent of . 
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The simulation results of Figure 4 and Figure 5 show the advantages of incorporating a CC to 

monitor the prediction error and improve the performance of the adaptive SS. For the -dependent 

methods, the inclusion of a CC reduces not only the magnitude of the index 𝜀  ̅but also its sensitivity 

to  (Figure 4). Then, the CC ensure low values of 𝜀  ̅in any method, for a relatively wide range of 

values of . Particularly, note that the performance of the “by-cc” method (no  required) is similar 

to the performances of methods “cl-cc” and “cs-cc” with the optimum  (see Figure 4). Figure 5 

clearly indicates that Nbu diminishes when CC are used (without CC, Nbu = 32 because the bias is 

updated after each laboratory report). Thus, a Nbu < 32 indicates that 32-Nbu unnecessary bias 

updates have been avoided. 

In an ideal case without perturbations in the process (case C1), no bias update is expected to 

be required. This would only happen when the classical methods “cs” and “cl” operate with the 

optimum parameter  = 0 (Figure 4a and 5a). However, this is an unreal operating condition, since 

Figure 4 alerts on the impossibility of selecting a common optimum value for  that is effective for 

all cases. In fact, the minimum 𝜀  ̅depends on both the case and the bias update method. Particularly, 

note that the optimum  can range from 0 (case C1) to 0.95 (case C3 with “cs-cc”, or C6 with “cl-cc”). 

In practice, it is impossible to determine the optimal values of . For this reason, the 

remaining results were simulated with  = 0.3, as is often suggested in industrial applications.[19] 

Table 3 summarizes the performance indexes. Almost all the performance indexes show an 

advantage when using CC (the only exception detected is 𝜀  ̅in C6, but those values are similar with or 

without CC). The most conclusive results focus on the Nbu and 𝜎𝛽 indexes, whose values are 

significantly lower when CC are used. 

For simplicity, cases C2 and C6 were selected to show the remaining results. Figure 6 shows the 

resulting biases t obtained through all methods. Although the overall trends are quite similar, the 

biases show less variability when CC are used (Figure 6b and 6d). This is mainly observed in the first 

5250 minutes for C2 and the first 4000 minutes for C6, when there are no disturbances or changes 

that affect the process. These results are particularly highlighted by the lower values of 𝜎𝛽 (see Table 

3). As a consequence of the similar tendencies of the biases, the estimates 𝑥T obtained through the 

different methods are quite similar. As an example, Figure 7 shows the results corresponding to the 

“cl” and “by” methods. 

Finally, it is worthwhile notice that the utilization of CC-based approach “by-cc” improves the 

performance with respect to “by”, evidenced through a decreased in almost all performance indexes 

(Table 3). The optimization problems required in the Bayesian methods were solved by an initial 
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golden section search followed by a parabolic interpolation algorithm.[34] In all the analyzed cases, C1 

to C6, the required computation times were negligible (< 10 msec, on a standard PC with an i7 

processor and 8 GB of RAM). Furthermore, the optimization problem proved to be robust, with no 

convergence problems in multiple runs. 

 

Table 3. Performance indexes (with  = 0.3 in the cl, cl-cc, cs, and cs-cc methods). 

  cl cl-cc cs cs-cc by by-cc 

C1 

𝜀×̅102 0.5 0.4 0.6 0.4 0.7 0.4 

Nbu 32 2 32 4 32 2 

𝜎𝛽×103 1.3 0.1 1.1 0.1 1.6 0.2 

C2 

𝜀×̅102 1.6 1.5 1.9 1.7 1.3 0.9 

Nbu 32 12 32 10 32 7 

𝜎𝛽×103 3.3 2.3 3.2 2.4 3.8 2.4 

C3 

𝜀×̅102 0.8 0.7 1.0 0.9 0.8 0.7 

Nbu 32 10 32 7 32 4 

𝜎𝛽×103 1.5 0.6 1.4 0.5 1.9 0.5 

C4 

𝜀×̅102 0.6 0.6 0.7 0.7 0.7 0.6 

Nbu 32 4 32 7 32 3 

𝜎𝛽×103 1.5 0.4 1.1 0.3 1.8 0.4 

C5 

𝜀×̅102 0.5 0.4 0.7 0.4 0.7 0.4 

Nbu 32 4 32 4 32 4 

𝜎𝛽×103 1.3 0.0 1.1 0.1 1.6 0.2 

C6 

𝜀×̅102 0.9 0.9 1.0 1.1 0.9 0.9 

Nbu 32 8 32 12 32 6 

𝜎𝛽×103 1.6 0.6 1.4 0.8 1.9 0.8 
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Figure 4. Performance index 𝜀  ̅as a function of parameter , for every case and methodology. 

Bayesian algorithms are independent of  (horizontal lines for “by” and “by-cc”). 
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Figure 5. Comparison of Nbu as determined through the CC monitoring of the prediction error, as a 

function of parameter . For the Bayesian algorithms, Nbu is independent of  
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Figure 6. Comparison of biases obtained through the studied methodologies ( = 0.3 was used in the 

-dependent methods). 
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Figure 7. “True” mass conversion xt, simulated laboratory determinations �̃�T
lab, and estimations 

obtained through the studied methodologies ( = 0.3 was used in the -dependent methods). 

 

5. Conclusions 

The proposed adaptive SS was effective to estimate the mass conversion in all the considered 

scenarios C1 to C6, including free-error steady state conditions, changes in the reactant feed rates 

(i.e., changes in the plant operating point), presence of unmeasured impurities in the reactants, 

failures in the cooling system, and failures in the sensors. 

The proposed tool utilized online (or high-frequency) measurements of process variables and 

sporadic (or low-frequency) laboratory measurements of samples of the estimated variable. The SS 

enabled the bias update only when a loss of statistical stability of the prediction error is detected. 

The resulting adaptive SS was effective in keeping a low average prediction error, even using fewer 

bias updates than those resulting from classical methodologies. In addition, less variability in the bias 
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pattern was achieved. This advantage is of particular interest when a process operates in closed loop 

using feedback from the SS outputs. 

The statistic monitoring through CC revealed a secondary positive effect on any classic SS, 

given by a decrease in the sensitivity of the SS to the parameter . Anyway, from a practical point of 

view, the proposed methodology applied to the Bayesian approach seems to be preferable. In fact, 

this method does not require the adoption of any parameters. Furthermore, in the current proposal, 

both the magnitudes and timing of the bias updates result from a fully probabilistic approach that 

takes into account the random nature of the sensor signals and laboratory reports. 

The adaptive SS of Figure 1 can be easily implemented in the industrial plant. The required 

online measurements are the styrene, butadiene, and initiator flows fed into the first reactor, and 

the total flow of refrigerant demanded by the train. In addition, the sporadic laboratory 

measurements are necessary. The first stage consists of calibrating the SS through Equation 8. The 

second stage is the CC calibration (as described in section 3.2). Then, the adaptive SS of Equation 5 is 

implemented with the bias  obtained from some of the methods described in the Appendix. 

Bias correction through Equation A.1 is able to compensate for deviations in the average value 

of the prediction error. However, the current strategy is unable to correct for a possible 

deterioration in the variability of the prediction error. This would require a more general 

methodology, including some effective CC to monitor variability (e.g., a moving range CC) and an 

adaptive SS capable of compensating for an increase in the variability of the prediction error (e.g., an 

SS on-line recalibration). These aspects deserve further investigations. 

 

Appendix. The Basic Soft Sensor and some Methods for Bias Calculation 

The mathematical model of an SS with a bias term that is used to monitor a given variable yt at 

any time t, can be written as follows: 

 

�̂�𝑡 = 𝑓(𝐑𝑡, 𝚯) + 𝛽𝑡 (A.1) 

 

where the symbol “^” indicates estimated value of a given variable; 𝑓(𝐑𝑡, 𝚯) is the base 

mathematical model of the ideal (error-free) SS, which utilizes information taken from J online 
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measured process variables 𝐑𝑡 = [𝑟1(𝑡)⋯ 𝑟J(𝑡)] = [𝑟1𝑡
⋯ 𝑟J𝑡], and includes a set of L parameters 

𝚯 = [𝜃1  ⋯ 𝜃L]; and 𝛽𝑡 is the bias, typically a piecewise constant function that must be chosen to 

minimize the unavoidable modeling error (i.e., with the goal of reaching �̂�𝑡 ≅ 𝑦𝑡).[19] 

The bias can be calculated on the basis of either the instantaneous prediction error or a 

cumulative sum of the prediction errors, i.e.:[19] 

 

𝛽T = 𝛽T−1
+ 𝛼 𝜀T

p
;     (0 ≤ 𝛼 ≤ 1) (A.2a) 

 

𝛽T = 𝛽T−1
+ 𝛼 (

6

𝑛(𝑛+1)(𝑛+2)
∑ 𝑖(𝑛 − 𝑖 + 1)𝑛

𝑖=1  𝜀T−(𝑖−1)

p
);     (0 ≤ 𝛼 ≤ 1) (A.2b) 

 

where the parameter 𝛼 and the number of past measurements to be included in the calculation of 

Equation A.2b, n, must be previously chosen. A subscript ‘T-i’ in a given variable indicates the value of 

that variable at the i-th sampling time previous to T.[18] Thus, for n = 1, Equation A.2b becomes 

Equation A.2a. 

Calculation of the bias through Equation A.2a and A.2b has several drawbacks. In fact, the 

performance of the SS is highly sensitive to the chosen values of 𝛼 and n; furthermore, the optimal 

values that minimize the modeling errors can be highly dependent on the particular operating 

conditions of the process.[18] Besides, Equation A.2a and A.2b are deterministic, and therefore 

overlook the statistical attributes of the prediction error, which are in turn caused by the laboratory 

determinations �̂�T
lab and the measurements 𝐑𝑡. 

A Bayesian inference method has been developed to update the bias each time a new 

laboratory report becomes available.[18] The magnitude of the bias is calculated by solving the 

following optimization problem: 

 

max
𝛽T

{−
1

2 𝜎p
2 𝑘

 [𝜀T−(k−1)

p
+ ⋯+ εT−1

p
+ �̂�T

lab − (𝑓(𝐑T−τ, 𝚯) + 𝛽T) –  𝑘 𝜇p]
2
−

1

2𝜎β
2  [𝛽T − 𝜇β]

2

 
} (A.3) 
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where k is an adopted constant (typically, k = 2 or 3); and 𝜇p, 𝜎p, 𝜇β and 𝜎β are calculated on the 

basis of historical values of the prediction error, i.e. 𝜀T−K

p
,⋯ , 𝜀T−1

p
  (K >> k). This approach has 

produced better results than those based on Equation A.2a and A.2b. 
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Summary for the Table of Contents 

An adaptive soft sensor (SS) is proposed to estimate the mass conversion in the continuous 

emulsion copolymerization of styrene and butadiene carried out in an industrial train of 

reactors. The bias term of the SS is updated when a loss of statistical stability is detected. The 

best simulation results are obtained when the bias is updated using a Bayesian approach. 
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