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ABSTRACT The harvesting of algae rich in triacylglycerol from an open raceway pond with volume-changes
synchronized to the circadian cycle and under limited nitrogen supply is researched. A reduced metabolic model of
its non-balanced growth is embedded into a macroscopic balance for simulating growth in such a type of bioreactor.
Afterwards, the model is used jointly with optimal control to derive cyclic inlet and outlet flow policies as well as optimal
nitrogen levels for different time-horizons and initial physiological states in a case study which uses bibliographic data
for the Tisochrysis lutea alga.
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1. Introduction
Bioprocessing is used extensively for the production, from
living cells, of high value bioproducts like nutrition supple-
ments, pharmaceuticals and biofuels (Nolasco et al., 2021).
Single-cell photoautotrophic microorganisms which con-
vert photons into cellular energy and capture carbon diox-
ide have been subject of growing research. Eukaryotic
(microalgae) or prokaryotic (cyanobacteria) microorgan-
isms can synthesize products of industrial interest such
as, proteins, polysaccharides, lipids, vitamins and pig-
ments. These microorganisms mainly require water, light,
and inorganic nutrients to grow and they do not compete
with food production for resources such as land and wa-
ter. Mathematical modeling coupled with optimal control
can help to optimize these complex biological systems
because it allows exploiting its biological mechanisms
to increase productivity. Open raceway pond (ORP),
which is one of the oldest and simplest photobioreactor
types, is known to be one of the most suitable systems
for large-scale microalgae production given its minimal
capital and operating costs, low electric energy require-
ment for their functioning and easy to scale up (Narala
et al., 2016). As autotrophic algae subject to circadian
cycles store energy and carbon during the day to sup-
port growth and maintenance during the night, optimizing
cyclic harvesting policies should be a research priority,
but to the best of our knowledge, the paper by Bayen
et al. (2015) is the only one that researched this subject.
The authors researched an optimal control problem for
optimizing the production of methane in a digester with
the dilution rate as control variable by using a relatively
simple unstructured model of the system. Baroukh et al.
(2014) derived a core carbon metabolic network common
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to unicellular photoautotrophic microalgae containing the
central metabolic pathways (photosynthesis, glycolysis,
pentose-phosphate pathway, citric acid cycle, oxidative
phosphorylation, chlorophyll, carbohydrates, amino acid
and nucleotide synthesis). The authors did not represent
species-specific pathways such as the synthesis of sec-
ondary metabolites since they assumed these pathways
to have negligible fluxes compared to main pathways.
This model may be helpful for optimizing the production
of lipids by microalgae subject to photoperiodic illumi-
nation. Nevertheless, applying optimal control to this
biotechnological system is not easy because of the need
of adequately represent the day-night cycle and optimiz-
ing several controllable variables which have different
time-scale impacts into the microbial metabolism.

This paper is concerned with the optimal control of
a variable-volume ORP producing lipids useful as raw
material for biodiesel. Numerical research on a case study
with bibliographic information is presented.

2. Modeling metabolism subject to
circadian cycles

Unstructured biotechnological models have limited bio-
logical insights while the utilization of structured models
opens the door to a quantitative analysis of the intracel-
lular metabolic mechanisms. Flux Balance Analysis is
a constraint-based modeling approach representing the
steady state mass and energy balances within the cell.
It assumes that the extracellular environment of the cell
culture is constant. This is not the case for circadian
processes and this hypothesis, usual in metabolic engi-
neering, is unsuitable for microorganisms subject to pho-
toperiodic cycles because they store energy and carbon
during the day to support growth and maintenance during
the night. As the autotrophic metabolism results synchro-
nized with the circadian cycle, intermediate metabolites
such as carbohydrates and lipids accumulate during the
day and are consumed during the night (Lacour et al.,
2012). To model this behavior some metabolites can be
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Figure 1: Metabolic network for generic unicellular photoautotrophic microalgae.

seen as products during the day and substrates during the
night. In this way, metabolic modeling may still be pos-
sible in order to understand the microalgae metabolism
submitted to day/night cycles. Dynamic Reduction of
Unbalanced Metabolism (Baroukh et al., 2014) is a pro-
posal that intends to conciliate macroscopic and metabolic
modeling scales by deriving from a metabolic network the
dynamics of macroscopic variables and the accumulation
of intracellular metabolites. This framework allows mod-
eling intracellular processes under non-balanced growth
submitted to circadian cycles for non-limiting nitrogen
conditions and under nitrogen starvation conditions. The
model was expressed as eight macroscopic reactions repre-
senting an intracellular network and is depicted by Fig. 1.

A reduced model described by eight macroscopic reac-
tions and 21 metabolites was presented where functional
biomass and photons are represented as metabolites. The
description of the metabolic network is summarized by
the Table 1. For each macroscopic reaction, simple first or-
der kinetics were proposed. In this way, six sub-networks
were obtained: i) photosynthesis, ii) upper glycolysis,
iii) carbohydrate synthesis, iv) lower glycolysis, v) lipids
synthesis, vi) biomass synthesis.

Note that upper glycolysis comprises three macro-
scopic reactions. The information about the reactions
network is compacted into the stoichiometric matrix K′,
where rows correspond to key metabolites and columns
correspond to macroscopic reactions. K′, may be di-
vided into sub-matrixes K′

S, K′
A and K′

B shown in Table 2
which corresponds to substrates S = Ligth, CO2, O2, Pi-
orthophsophate-, SO4, NO3, Mg, H2O, H, intracellular
metabolites A = ATP –adenosine triphosphate–, ADP –
adenosine diphosphate–, NADH –nicotinamide reduced–,

NAD –nicotinamidephosphate oxidized–, NADP –Nicotin-
amidephosphate oxidized–, NADPH –nicotinamide-
phosphate reduced–, GAP –glyceraldehyde-3-phosphate–,
G6P –glucose-6-phosphate–, PEP –glucose-6-phosphate–,
CARB –carbohydrates–, TAG –triacylglycerol–, and func-
tional biomass B respectively.

We assume that energy cofactors ATP, ADP, NADH
NAD, NADP, NADPH are in pseudo steady-state and
their mass contribution to total biomass are assumed as
negligible compared to storable intracellular molecules
(CARB, TAG, PEP, G6P, GAP).

The availability of nitrogen into the cells plays a cru-
cial role on the synthesis of intracellular metabolites and
on the release of extracellular organic mass and it is ex-
pected to impact extensively on the harvesting operation
(Baroni et al., 2020). There are two main hypotheses to
explain the deviation of intracellular carbohydrates and
lipids levels in conditions of nitrogen starvation with re-
spect to non-limiting nitrogen conditions: i) Excretion
of some carbon compounds during nitrogen starvation
with a constant inorganic carbon flux. ii) Dissipation
of light to down regulate the flux of inorganic carbon.
Hence, during nitrogen starvation, microalgae might use
these mechanisms to protect themselves from the light
surplus and from the excess of carbon coming into their
metabolism. The excretion hypothesis relies on the fact
that excretion of intracellular compounds was observed
for some microalgae during nutrient depleting conditions
(Underwood et al., 2004). The phenomenon of excretion is
microalgae-dependent. The dissipation hypothesis relies
on the fact that microalgae have dissipation mechanisms
at the level of photosynthesis to vent the energy surplus
(Klok et al., 2013; Nogales et al., 2012). The kinetics for
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Table 1: Sub-networks for metabolic reactions of generic unicellular autotrophic microalgae.

Sub-network Macroscopic reac-
tion

Stoichiometry Kinetics

Photosynthesis MR1 30 Light + 3 CO2 + 2 H2O + Pi → GAP
+ 3 O2

rMR1 = kMR1*I

Upper glycolysis
MR2 ATP + H2O ↔ ADP + Pi + H rMR2 = 0Futile cycle
MR3 2 GAP + H2O → G6P + Pi rMR3 = kMR3*GAPG6P synthesis
MR4 G6P + ATP → H + ADP + 2 GAP rMR4 = kMR4*G6PG6P consumption

Lower glycolysis MR5 GAP + ADP + Pi + NAD ↔ PEP + ATP
+ NADH + H2O + H

rMR5 = kMR5*GAP –
k’MR5*PEP

Carbohydrate
synthesis

MR6 G6P ↔ CARB + Pi rMR6 = kMR6*G6P –
k’MR6*CARB

Lipids synthesis MR7 GAP + 16.61 PEP + 2 ADP + 13.46
NAD + 29.3 NADPH + 34.48 H + 2.15
O2 ↔ TAG + 14.61 Pi + 2 ATP + 13.46
NADH + 29.3 NADP + 4.31 H2O +
16.61 CO2

rMR7 = kMR7*PEP*GAP –
k’MR7*TAG

Biomass synthe-
sis

MR8 3.13 PEP + 7.37 O2 + 4.46 H + 1.31
NO3 + 1.14 G6P + 0.11 TAG + 0.03
SO4 + 0.0025 Mg → B + 11.67 CO2 +
4.23 Pi + 6 H2O

rMR8 = kMR8*PEP*G6P*NO3

Table 2: Stoichiometric matrix K′ and submatrixes K′
S, K′

A and K′
B.

MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8

Ligth -30
CO2 -3 16.61 11.67
O2 3 1 -2.15 -7.37
Pi -1 1 1 -1 14.51 4.23

KS’ SO4 -0.03
NO3 -1.31
MG -0.025
H2O -2 -1 -1 1 4.31 6
H 1 1 1 -34.38 -4.46

ATP -1 -1 1 2
ADP 1 1 -1 -2
NADH 1 13.46
NAD -13.46
NADP -1 -29.3

KA’ NADPH 29.3
GAP 1 -2 2 -1 -1
G6P 1 1 1 -1.14
PEP 1 -16.61 -3.13
CARB 1
TAG 1 -0.11

KB’ B 1

both mechanisms are modeled as follows:

rexcr = kexcr max
(

XC/B
Qmin

excr
;0
)

PEP (1)

rMR1 = k′MR1

(
1− XC/B

Qmax
r

)
I (2)

where both the excretion or the dissipation kinetics de-
pends on the XC/B ratio of the cell, being XC the fraction
of carbon in total biomass and B the concentration of
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functional-biomass. According to Eq. 1, excretion of PEP
would only starts when XC/B reaches a minimum thresh-
old (Qmin

excr) and increases proportionally with XC/B once
this threshold has been reached. Excretion of any other
component would have the same type of kinetics. In the
same way, the kinetic function 2 would be modulated by
the XC/B ratio and the rate MR1 will be approaching to
zero when this ratio approaches to the threshold Qmax

r . In
summary, the autotrophic metabolism of algae is modeled
by the reaction network shown in Tables 1 and 2 plus
the excretion kinetics given by Eq. 1 or the dissipation
kinetics defined by Eq. 2.

3. Cyclic volume-varying continuous
operation mode

For production of lipids for biofuels from microalgae, the
composition of the harvested culture must be optimized to
obtain the maximum feasible quantity of TAGs. In order
to build a model for optimizing the harvesting of lipids
from algae subject to a circadian cycle and under nitrogen
starvation, the metabolic model above presented must be
embedded into macroscopic balances corresponding to the
operation mode of the ORP. Furthermore, the objective,
the states and the control variables must be defined. The
continuous operation mode usually has been regarded as
the most efficient, but it is not well suited to synchronize
with autotrophic reactions aligned to the circadian cycle.
On the other hand, a cyclic fed-batch operation can syn-
chronize culture conditions and volume variations with
day-night cycles. Because of feeding of a nutrient solution,
the culture volume increases and if it is possible to control
the outlet flow and retain a portion of a fed-batch culture
of the end of one cycle to use the residual part as inoculum
for the next cycle, this operation mode is called repeated
fed-batch or variable-volume continuous-reactor –VVCR–
(Asenjo and Merchuk, 1995). This mode can be synchro-
nized to the circadian cycle by varying the culture volume
via the control of inlet and outlet flows. Also, nitrogen
starvation allows to flow the photosynthesis’ energy into
molecules which do not contain nitrogen. Nitrogen levels
can be controlled by manipulating the concentration of the
nitrogen source in the inlet flow. In summary, the macro-
scopic model corresponding to a VVCR operation mode
with controlled nitrates concentration can be described
by the following system of ordinary differential equations
(ODEs):

d
dt



NO3
CARB
TAG
PEP
G6P
GAP

B


=



rNO3

rCARB
rTAG
rPEP
rG6P
rGAP

rB


B− Fi

V



NO3
CARB
TAG
PEP
G6P
GAP

B


+

Fi

V



NOin
3

0
0
0
0
0
0


(3)

The dynamics of the culture volume is given by:

dV
dt

= Fi −Fo (4)

As it is assumed that excretion doesn´t have any effect
into the intracellular kinetics, the balance of excreted PEP
would be given by Eq. 5:

dPEPexcr

dt
= rexcrB− Fi

V
PEPexcr (5)

Any other excreted component different from PEP
would have the same kind of balance equation. Here,
CARB, TAG, PEP, G6P and GAP are macroscopic con-
centrations of intracellular compounds; B is the macro-
scopic concentration of functional biomass, NO3/NOin

3
are the concentration of nitrates in the culture/feed-flow
respectively and Fi/Fo are the culture inflow/outflow. For
the remaining metabolites, the quasy-steady-state assump-
tion is taken as activities of these compounds are not
explicitly considered in kinetics of Table 1. The rates-
vector r =

[
rNO3 ,rCARB,rTAG,rPEP,rG6P,rGAP,rB

]
’ repre-

sents the net production of the respective components and
is computed as follows:

r = KstoichΛ (6)

where Kstoich is the matrix of stoichiometric coefficients
built by taking rows associated to component NO3(t),
CARB(t), TAG(t), PEP(t), G6P(t), GAP(t), B(t), from
matrix K′. The vector of independent intracellular reac-
tions is denoted by Λ =

[
rMR1 , . . . ,rMR8

]
. The photons

inflow is computed by interpolation between points pro-
vided by a table expressed as follows:

It = I (t) (7)

that summarizes illumination data plots as the one de-
picted in Figure 2, which represents 5 ideal unclouded
summer days, where t is the time and t = 0 h correspond
to the sunrise.

Figure 2: Typical daily light intensity.

The total biomass, which has a variable composition,
is computed by:

X (t) = ∑
e

∑
A
(eAA(t)+ ebB(t))

A ∈ {CARB;TAG;PEP;G6P;GAP}
e ∈ {C;H;O;N;P;S}

(8)

where eA and eB correspond to the number of atoms of
element e per mol of A and mol of B, respectively while
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Table 3: Elemental composition of intracellular com-
pounds and functional biomass.

C H O N P S

GAP 3 7 6 0 1 0
G6P 6 13 9 0 1 0
PEP 3 5 6 0 1 0

CARB 6 10 5 0 0 0
TAG 36.2 63.4 8 0 1 0

B 8.59 14.13 2.49 1.26 0.15 0.025

A(t) and B(t) correspond to the concentration of A and
functional biomass B at time t. Elemental composition
of compounds grouped on A are specified on rows of the
matrix presented in Table 3.

Microalgae cultures are usually carried out in two
steps. First, microalgae are grown in optimal growth
conditions until a high biomass concentration is reached.
Then, TAGs accumulation is triggered by nitrogen starva-
tion. However, to further improve productivity, the culture
conditions should be optimally controlled. This opens
the door for using optimal control in order to compute
the best way for manipulating environmental conditions.
Optimal control is a branch of optimization that deals
with finding controls of a dynamical system over a fixed
or free time-period. It includes a cost functional that is a
function on state and control variables, a set of differential
equations describing the system dynamics and algebraic
equations stating hardware characteristics and constraints
to the dynamic system. It can be defined as follows:
Maximize

J = G
(
x
(
t f
)
,x(t0)

)
+

∫ t f

0
F (x(t) ,u(t))dt (9)

subject to:

dx
dt

= f (x(t) ,u(t))dt x(0) = x0 (10)

SMin (t)≤ S (x(t))≤ SMax (t) (11)

CMin (t)≤C (u(t))≤CMax (t) (12)

where Eq. 10 states the dynamic of the process, Eq. 11
set states and path constraints, Eq. 12 set control vari-
able constraints; and x(t), u(t) and t are respectively the
state-variables vector, the control-variables vector and the
time. As biodiesel is produced from lipids, the objective
function 9 is rewritten as the maximization of the quantity
of harvested TAGs along the whole culture time:
Maximize∫ t f

t=0
(Fo (t)TAG(t))dt (13)

The dynamics of intracellular components and func-
tional biomass under no nitrogen-starvation conditions are
defined by Eqs. 3. The dynamics of the culture volume
is represented by Eq. 4. Equation 5 defines the dynam-
ics of excretion. Furthermore, with this hypothesis, rPEP
must be replaced by (rPEP - rexcr) in Eq 3 in order to

Figure 3: Representation of a VVCR type ORP for cultur-
ing of microalgae.

consider the effect of intracellular dilution caused by the
excretion process. For the model corresponding to the
dissipation hypothesis, Eq. 5 is deleted and Eq. 2 replaces
the kinetic equation corresponding to the reaction MR1
shown in Table 1. So, the states-vector is given by x(t) =
{NO3 (t) ,CARB(t) ,TAG(t) ,PEP(t) ,G6P(t) ,GAP(t),
B(t) ,V (t) ,PEPexcr (t)} if we consider the excretion
hypothesis or by x(t) = {NO3 (t) ,CARB(t) ,TAG(t),
PEP(t) ,G6P(t) ,GAP(t) ,B(t) ,V (t)} if we consider the
dissipation hypothesis. The following assumptions al-
lowed considering the above-described dynamic mod-
els: (i) The VVCR culture is homogeneous and perfectly
mixed. (ii) Evaporation effects are negligible. In a VVCR,
both the inlet Fi (t) and the outlet Fo (t) flows can be ma-
nipulated. In addition, to induce nitrogen starvation, the
concentration of nitrate, NOin(t)

3 , in the inlet flow must
be controlled. So, the vector of control variables would
be given by u(t) = Fi (t) ,Fo (t) ,NOin

3 (t). Fig. 3 shows a
representation of an ORP used as a VVCR system with
these three control variables.

Bounds for the control variables depend on the ORP
hardware and are formally defined as follows:

0 ≤ Fi (t)≤ Fmax
i

0 ≤ Fo (t)≤ Fmax
o

0 ≤ NOi
3 (t)≤ NOimax

3

(14)

The following constraint, which imposes the ORP
volume as an upper bound to the culture volume must be
enforced over the whole optimization time-horizon:

0 ≤V (t)≤V max (15)

Realistic optimal control problems usually do not have
analytic solutions and it is necessary to employ numerical
methods to solve them. The GPOPS software (Rao et al.,
2010), which implements the Radau pseudo-spectral col-
location method, was developed in response to a growing
demand from the research and academic community for
an optimal control software able to solve complex optimal
control problems. Its freeware 5.2-version was employed
in this work.

4. Numerical results for an ORP
culturing Tisochrysis lutea

In this section, the harvesting of TAGs from a VVCR-
operating ORP culturing T. lutea is numerically optimized.
The experimental data were taken from (Lacour et al.,
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Table 4: Kinetic parameters, state constraints and control constraints.

Parameter Value Units

kMR1 1.1·10−3(Excretion)/1.5·10−3(Dissipation) µE (m2 s mol h M B)−1

kMR3 223.53 (h mol B)−1

kMR4 10.30 (h mol B)−1

kMR5 436.95 (h mol B)−1

k’MR5 10.00 (h mol B)−1

kMR6 80. 00 (h mol B)−1

k’MR6 6.50 (h mol B)−1

kMR7 1.50·103 (M h M B)−1

k’MR7 0.80 (h mol B)−1

kMR8 1.00·104 (M2 h mol B)
kexcr 8.00 (h mol B)−1

Qexcretion
min 13.00 mol/mol

Qrdissipation
max 48.00 mol /mol

Initial State
State Depleted Undepleted Minimum Maximum

NO3 Free Free 0.0 g/L 2.0 g/L
CARB 0.0 mol/L 0.0397 mol/L 0.0 mol/L 0.2 mol/L
TAG 0.0 mol/L 0.0047 mol/L 0.0 mol/L 0.2 mol/L
PEP Free Free 0.0 mol/L 0.2 mol/L
G6P Free Free 0.0 mol/L 0.2 mol/L
GAP Free Free 0.0 mol/L 0.2 mol/L

B 0.004 mol/L 0.005 mol/L 0.0 mol/L 1 mol/L
V 1000 L 1605.1 L 0 L 2000 L

PEPexr 0 mol/L 0 mol /L 0 ∞

Control Minimum Maximum

Fi 0 L/h 100 L/h
Fo 0 L/h 400 L/h

NOin
3 0 g/L 1 M/L

2012). In that work, continuous cultures of T. lutea (clone
T-iso, CCAP 927/14) were done in duplicates in 5 liters
cylindrical vessels at constant temperature (22 °C) and
pH = 8.2, maintained by automatic injection of CO2. Ni-
trates, carbon, organic nitrogen levels, chlorophyll, total
carbohydrates and neutral lipid concentrations were mea-
sured. The experiment was carried on by 8 days and
a nitrogen starvation was performed from day 1 to day
5.5. Baroukh et al. (2014) tested in silico several variants
of excretion and dissipation hypotheses and concluded
that PEP excretion with membrane-lipids synthesis and
dissipation of photons with membrane-lipids synthesis
during nitrogen starvation were the two likeliest hypothe-
ses. Kinetic parameters for the model above presented and
parameters for both hypotheses are summarized in Table 4.
Two states-conditions are enforced to highlight the cyclic
nature of TAGs production in an ORP operating according
to the VVCR mode under photoperiodic cycles: the initial
and final volume and biomass concentrations must have
the same values. So, the culture composition at the end-
time may be considered as the composition of the culture
for the start of another production run. The photons flow
per unit if illuminated culture-surface corresponds exactly
to the flow depicted in Fig. 2. We numerically optimized

the reactor operation for temporal horizons of 72, 96 and
120 h in search for cyclic harvesting policies, while con-
sidering initial, maximum and minimum state values and
control bounds summarized in Table 4. The number of
mesh refinement steps, while using GPOPS, was set to 5.
Two initial “physiological states” were evaluated. First,
to consider that production starts with biomass depleted
from CARB and TAG, initial values for these compounds
were assumed to be nil. In this way functional biomass is
assumed to be initially empty from them. To determine
the optimal profiles for biomass “undepleted” from intra-
cellular CARB and TAG, we performed another set of
optimization runs considering as initial states the ones
corresponding to t = 48 h (which were extracted from the
optimization with biomass initially depleted). It is consid-
ered that biomass have reached a stationary physiological
state correlated with the circadian cycle at this time. The
initial conditions for both cases are also summarized in
Table 4.

Results for both the excretion and the dissipation hy-
potheses are summarized in Table 5. The column “objec-
tive function” reports the quantity of harvested TAGs. The
variable Q reports the total volume of harvested culture;
i.e., the integral of the outlet flow while CPU indicates

154 | Marquez et al. (2024)



LATIN AMERICAN APPLIED RESEARCH 54(2): 149–157 (2024)

Figure 4: Optimal control profiles (Fi —; Fo —; NOi
3 —) and optimal dynamics of B (—) and V (—) for biomass

initially depleted from CARB and TAG (dissipation hypothesis).

Figure 5: Optimal dynamics of intracellular states for biomass initially depleted (excretion hypothesis).

the computation time spent on an Intel® Core™ i7-CPU,
2.9 GHz, 16 GB RAM PC. Meaningful results for the
dissipation hypothesis were harder to achieve because the
stiffness of the ODE Eq. 2 leaded to a challenging opti-
mization problem with many more collocation points than
in the excretion hypothesis.

Figure 4 and 5 depict the optimal profiles of control
variables for the problem solved over the 120 h time-
horizon with initial conditions corresponding to the “un-

depleted” initial state and the excretion hypothesis. The
optimal control policies and the dynamics of macroscopic
states (concentration of functional biomass and culture
volume) are illustrated in Fig. 4 while the dynamics for
intracellular states are depicted in Fig. 5. Dots represent
collocation points generated by GPOPS when solving the
problem.

To illustrate the dynamics of the total biomass and its
aggregate components, Fig. 6 depict the evolution of the
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Figure 6: Dynamics of functional biomass, aggregated intracellular components and total biomass for the excretion
hypothesis and “undepleted” initial states.

Table 5: Solution data for the harvesting optimization.

Time
horizon (h)

Objective
function (mol) Q (L) CPU time

(s)

Excretion hypothesis

Initial state: Depleted biomass

0-72 81.89 6261 39.4
0-96 108.49 8464 56.1
0-120 134.99 10592 172.3

Initial state: Undepleted biomass

0-72 91.53 6767 41.1
0-96 117.71 8977 36.8
0-120 144.47 10971 59.8

Dissipation hypothesis

Depleted biomass

0-72 83.84 6404 36
0-96 111.11 8688 50.4
0-120 138.75 11078 218.4

Undepleted biomass

0-72 90.5 6714 27.8
0-96 117.75 8975 37.3
0-120 145.26 11250 41.1

concentration of functional biomass and intracellular com-
ponents. Note that the concentration of functional biomass
B(t) vary between 0.7 g/L and 3 g/L while the concen-

tration of total aggregate biomass X (t) lies in the 10 g/L
to 40 g/L range. So, the functional biomass constitutes
roughly the 7 % of the total aggregated biomass. Control
profiles derived for both hypotheses were applied to the
alternative models but in all cases differences of the objec-
tive function were negligible and not distinguishable from
rounding-off errors. The control profiles were remarkably
similar for both hypothesis and initial conditions.

5. Conclusions
Metabolic modeling was seldom used jointly with optimal
control because of the complexity associated to optimizing
large dynamic models. Although optimizing metabolic
networks in non-steady state is challenging, dynamic re-
duction of unbalanced metabolism allows using metabolic
modeling with optimal control. In this work, a dynamic-
algebraic mathematical model of production of microalgae
in a VVCR-ORP, under the circadian cycle and subject to a
limited nitrogen supply was developed and used to numer-
ically optimize TAGs harvesting. The metabolic model
was embedded into macroscopic balances corresponding
to a VVCR operation mode and three variables were con-
sidered as control variables: the inlet flow, the outlet flow
and the nitrates concentration in the inlet. Afterwards, an
optimal control problem was proposed to derive optimal
manipulation policies for these control variables. Opti-
mization profiles over time-horizons of 3, 4 and 5 days for
kinetic information corresponding to the T. lutea alga were
obtained for two initial physiological states. Two mech-
anisms to deal with nitrogen starvation were considered
and control policies were optimized to compute cyclic
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harvesting policies which resulted quite similar for both
initial physiological states and both hypotheses. It seems
that there exists an optimal min-volume/max-volume ratio
that tends to be around 1/4 for any cycle of the working
timeframe. This work shows that it is possible to jointly
use optimal control and dynamic metabolic modeling. As
a next research step, we are currently culturing C. Vul-
garis to obtain experimental kinetic and yield data that
will allow us to derive and experimentally validate optimal
harvesting policies for such a microalga.
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