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This review attempts to show that there may be a relationship between inflamma-
tory processes induced by chronic overstimulation of the renin-angiotensin system
(RAS) and the worldwide deficiency of vitamin D (VitD) and that both disorders
are probably associated with environmental factors. Low VitD levels represent a risk
factor for several apparently different diseases, such as infectious, autoimmune, neu-
rodegenerative, and cardiovascular diseases, as well as diabetes, osteoporosis, and
cancer. Moreover, VitD insufficiency seems to predispose to hypertension, metabolic
syndrome, left ventricular hypertrophy, heart failure, and chronic vascular inflamma-
tion. On the other hand, inappropriate stimulation of the RAS has also been associated
with the pathogenesis of hypertension, heart attack, stroke, and hypertrophy of the left
ventricle and vascular smooth muscle cells. Because VitD receptors (VDRs) and RAS
receptors are almost distributed in the same tissues, a possible link between VitD and
the RAS is even more plausible. Furthermore, from an evolutionary point of view, both
systems were developed simultaneously, actively participating in the regulation of
inflammatory and immunological mechanisms. Changes in RAS activity and activation
of the VDR seem to be inversely related; thus any changes in one of these systems
would have a completely opposite effect on the other, making it possible to speculate
that the two systems could have a feedback relationship. In fact, the pandemic of VitD
deficiency could be the other face of increased RAS activity, which probably causes
lower activity or lower levels of VitD. Finally, from a therapeutic point of view, the
combination of RAS blockade and VDR stimulation appears to be more effective than
either RAS blockade or VDR stimulation individually.

oxidative stress; mitochondria; cardiovascular disease; angiotensin receptor blocker;
vitamin D receptor

VITAMIN D (VitD) deficiency is pandemic. Our hypothesis main-
tains that this deficiency is probably due to environmental factors,
such as diet, sun exposure, sedentary life style, and stress.1 Recent
studies suggest that, in addition to its importance in bone metab-
olism, VitD plays a central role in such basic cell functions as
multiplication, differentiation, and metabolism. This may explain
why low VitD levels represent a risk factor for several apparently
different diseases, such as infective, autoimmune, neurodegenera-
tive, and cardiovascular diseases, as well as diabetes, osteoporosis,
and cancer. Accumulating evidence suggests that an adequate intake
of VitD may significantly decrease the prevalence and improve the

clinical outcomes of these diseases (42, 60, 92, 146). Moreover, VitD
insufficiency seems to predispose to hypertension, diabetes, meta-
bolic syndrome, left ventricular hypertrophy, heart failure, and
chronic vascular inflammation (57, 99, 107, 181).

The relationship between baseline VitD status, dose of VitD
supplements, and cardiovascular events remains to be investigated
by ongoing randomized trials; however, increasing evidence sug-
gests that the provision of a simple, well-tolerated, and inexpen-
sive correction of VitD insufficiency favorably affects the mor-
bidity and mortality of cardiovascular disease and prevents the
most common chronic degenerative diseases (104).

Evolution

The photosynthesis of VitD evolved over 750 million years
ago; the phytoplankton coccolithophor Emeliani huxleii is an
early example (55). Nevertheless, the exact role of VitD in

1 This article is the topic of an Editorial Focus by R. Brooks Robey and
Mardi A. Crane-Godreau (134a).
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early plants and animal forms is unknown. From an evolution-
ary standpoint, a fascinating example is an ancient vertebrate
lacking a calcified skeleton and teeth, the lamprey (Petromyzon
marinus), in which a type of VitD receptor (VDR) has been
described (131). In this jawless fish, several noncalcemic roles
for VitD, including its action as a sensor for endogenous or
exogenous toxins and as an inducer of cytochrome P-450
(CYP) enzymes, have been proposed. More interestingly, VitD
plays a role in the regulation of the lamprey’s primitive
immune function (172). Lamprey studies provide valuable
insight into the evolution of the adaptive immune system, as
these ancient vertebrates possess a convergently evolved adap-
tive immunity with cells that function like the T cells and B
cells in higher vertebrates (141). This could have implications
for the anti-inflammatory effect of VitD, which is described
later in this review.

Because VitD can be synthesized via a photochemical pro-
cess only, early vertebrates that ventured onto land had to
ingest foods that contained VitD or had to be exposed to
sunlight to photosynthesize VitD in their skin to satisfy their
bodies’ VitD requirements (54).

Also, the renin-angiotensin system (RAS) is found in ani-
mals as primitive as the jellyfish, the lamprey, and the crab,

among others. However, none of these animals has a closed
circulatory system (109). What function does the RAS serve in
these animals if they do not have the necessity of retaining
sodium and there is no pressure to maintain? Why would the
members of these species have a RAS? The RAS is also a
system of self-defense. ANG II regulates the synthesis of
proinflammatory substances, and inflammation is the most
basic mechanism found in any living organism, allowing them
to defend themselves against any aggressor (136, 139).

Finally, it could be proposed that VitD and RAS evolved in
nature in a similar and parallel way (Fig. 1).

Sources and Synthesis of VitD

Two main sources of VitD are available to humans: sunlight
(exposure to solar UV-B radiation) and food (including dietary
supplements). VitD exists in two forms: VitD2 (ergocalciferol)
and VitD3 (cholecalciferol). VitD2, found in plants, is the
product of UV-B (290–315 mm) irradiation of ergosterol and
can be consumed as a supplement or in fortified foods (57).
VitD3, a product of UV-B irradiation of 7-dehydrocholesterol,
is synthesized in the human epidermis or is found in oily fish,
fortified foods, and supplements.
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receptors VDR
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Fig. 1. Occurrence of angiotensin receptors and vitamin D (VitD) receptors (VDRs) in nature.
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VitD is converted in the liver to 25-hydroxyvitamin D
[25(OH)D], which is the major circulating metabolite of VitD.
Serum 25(OH)D concentrations, which reflect VitD intake and
endogenous production, should be measured to clinically as-
sess VitD status (57). In the kidney, 25(OH)D is converted by
1�-hydroxylase to its active form, 1,25-dihydroxyvitamin D
[1,25(OH)2D]. VitD in the form of 1,25(OH)2D is a hormone,
because it is produced primarily in one organ (the kidney) and
then circulates throughout the body, where it exerts wide-
ranging effects. Extrarenal synthesis of 1,25(OH)2D occurs
through cytokine stimulation (175) and is locally important in
the paracrine regulation of cell growth, differentiation, and
function (101). This may explain why VitD deficiency has
been associated with type 1 diabetes, cancer, and multiple
sclerosis (92).

It is now recognized that most cells in the body have a VDR,
and they also have the ability to produce 1,25-dihydroxyvita-
min D3 [1,25(OH)2D3], which in turn is capable of regulating
a wide variety of genes that have important functions in
regulating cell growth, modulating immune function, and pro-
moting cardiovascular health (59).

VitD Deficiency

VitD deficiency and VitD insufficiency are prevalent in most
of the world’s population (41, 57, 114). Although a consensus
regarding the optimal level of serum 25(OH)D has not been
established, most experts define VitD deficiency as a 25(OH)D
level of �20 ng/ml (50 nmol/l) and VitD insufficiency as
21–29 ng/ml. For all studied end points to date, the optimal
concentration of 25(OH)D is �30 ng/ml (14). A rapidly
evolving knowledge base indicates that VitD deficiency is
much more prevalent than has previously been recognized and
is present in up to 50% of young adults (154) and apparently
healthy children (57). The Third National Health and Nutrition
Examination Survey (NHANES III), a nationally representa-
tive cross-sectional survey of the noninstitutionalized popula-
tion in the United States carried out from 1988 to 1994,
reported the prevalence of VitD deficiency in the United States
to be 25–57% of adults (95).

Racial differences in the adequacy of VitD stores have been
shown (48). VitD deficiency is seen frequently in African
Americans, who also present a high prevalence of hypertension
(112). In addition, VitD deficiency throughout life from its
earliest phases may adversely affect the microvasculature in
African Americans, thereby playing a major role in the genesis
and maintenance of hypertension (135). This is probably due to
skin pigmentation with melanin, which is a limiting factor in
the cutaneous synthesis of VitD. Melanin acts as an effective
natural sunscreen; therefore, increased skin pigment can reduce
the solar UV-B-mediated cutaneous synthesis of VitD3 by as
much as 99% (18).

Epidemiological studies have also recently linked VitD
deficiency with an increased risk of major adverse cardiovas-
cular events (169). Accordingly, data from NHANES III show
an elevated risk of cardiovascular death (coronary heart dis-
ease, heart failure, and stroke) in adults with 25(OH)D serum
levels in the lowest quartile (mean � 13.9 ng/ml) compared
with those in the three higher quartiles (mean � 21.6, 28.4, and
41.6 ng/ml) (36).

Relationship Between VitD and the RAS

Three decades ago, an original early work suggested a
possible link between VitD and the RAS (68).

The RAS is a regulatory cascade that plays a critical role in
the regulation of blood pressure and electrolyte and plasma
volume homeostasis. Inappropriate stimulation of the RAS has
been associated with hypertension, heart attack, stroke, and
hypertrophy of the left ventricle and vascular smooth muscle
cells (181).

It is well established that renin secretion is regulated by renal
perfusion pressure, renal sympathetic nerve activity, and tubu-
lar sodium load (8, 49). It is also stimulated by factors such as
prostaglandins, nitric oxide (NO), and adrenomedullin and
inhibited by other factors, including ANG II (feedback),
endothelin, vasopressin, and adenosine (8, 49). These stim-
ulations of renin secretion are often mediated by an increase
in intracellular cAMP and are accompanied by increases in
renin gene transcription (134). Recent studies have signifi-
cantly enhanced our knowledge of the regulation of gene
expression encoding for renin production on a cellular basis
(7, 116, 121). It is interesting to note that, to regulate gene
expression, 1,25(OH)2D3 can act as a negative regulator of
specific DNA sequences [VitD response element (VDRE)] in
the promoter of target genes [inhibition of other transcriptional
complexes by the VDR-retinoid X receptor (RXR) heterodimers
or the VDR homodimers, interaction of the VDR-RXR het-
erodimers with corepressors, and binding of the VDR to a
negative VDRE]. Therefore, 1,25(OH)2D3 can suppress renin
gene expression through a cis-DNA element(s) in the renin
gene promoter. The finding that 1,25(OH)2D3 suppresses the
expression of renin’s gene is of utmost interest, although the
exact molecular mechanism has not been elucidated (88).
However, one important mechanism underlying this action is
transrepression of renin gene transcription by 1,25(OH)2D3 by
targeting the cAMP-PKA pathway (174) (Fig. 2).

Several mechanisms have been proposed to explain the
relationship between VitD and blood pressure (124). Some of
these relationships show that VitD downregulates renin gene
expression and inhibits renin synthesis, thereby suppressing the
RAS (87, 88, 143, 174).

In VitD-deficient animals, there is an increased incidence of
hypertension, left ventricular hypertrophy, and atherosclerosis
(143). In normal mice, VitD deficiency stimulates renin ex-
pression, whereas injection of 1,25(OH)2D3 reduces renin
synthesis. In cell cultures, 1,25(OH)2D directly suppresses
renin gene transcription by a VDR-dependent mechanism.
Mice lacking the VDR gene develop hyperreninemia, resulting
in elevated production of ANG II, leading to hypertension,
cardiac hypertrophy, and increased water intake (75, 88, 173).

The increased levels of renin can also act through the
prorenin/renin receptor (108) and may, independently of ANG
II, cause renal and/or cardiovascular damage (166).

Recent studies show that diabetic VDR-null mice developed
more severe nephropathy than did wild-type mice, suggesting
that VitD protects against hyperglycemia-induced renal injury
by regulating the RAS. It has been further suggested that
1,25(OH)2D3 suppresses hyperglycemia-induced AGT expres-
sion in the kidney by blocking NF-�B activation of AGT gene
transcription. A functional NF-�B binding site in the AGT
gene promoter was bound by the p65/p50 heterodimer in the
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presence of high glucose, in association with the induction of
the promoter activity (177).

VitD’s suppression of renin expression is independent of
calcium metabolism, the volume- and salt-sensing mecha-
nisms, and ANG II feedback regulation (88, 89).

Using a transgenic mouse model with mice overexpressing the
human VDR in renin-producing cells, Kong et al. (76) demon-
strated that suppression of renin expression by 1,25(OH)2D in
vivo is independent of parathyroid hormone and calcium.

Clinical studies conducted over the last two decades have
shown an inverse association between plasma 1,25(OH)2D3

concentration and blood pressure and/or plasma renin activity
in normotensive men and patients with essential hypertension
(17, 78, 90, 132). In accordance with the aforementioned data,
other studies have shown a reduction in blood pressure in
patients with primary hypertension who were receiving VitD3

supplements (123), as well as a reduction in blood pressure,
plasma renin, and ANG II concentration in patients with
secondary hyperparathyroidism (73, 118).

In a study of subjects exposed to UV-B radiation in a tanning
bed three times per week for 3 mo, Krause et al. (77) reported
a 180% increase in 25(OH)D levels and a 6-mmHg reduction
in systolic and diastolic blood pressure. A small, randomized,
placebo-controlled study of patients with type 2 diabetes and
low baseline 25(OH)D levels showed that a single dose of
100,000 IU of VitD2 reduced systolic blood pressure by a mean
of 14 mmHg and significantly improved endothelial function as
measured by forearm blood flow (146). In the NHANES III
study, the mean systolic blood pressure was �3 mmHg lower
in individuals in the highest quintile of serum 25(OH)D levels
than those in the lowest quintile (137).

Receptors

VDRs. Even though bone, small intestine, and kidneys are
the primary organs responsive to VitD, the effects of VitD in
the body are more far-reaching. Increasing experimental data
have revealed a broad range of biological actions for the VDR,
including induction of cell differentiation (19, 61), inhibition of

cell growth (82), immunomodulation (93, 110), and control of
other hormonal systems (87, 128). The VDR has been identi-
fied in many tissues and organs, including those not typically
associated with calcium homeostasis and bone metabolism
(58). It is present in a large variety of cell types, including
myocytes, cardiomyocytes, pancreatic beta cells, vascular en-
dothelial cells, neurons, immune cells, osteoblasts, and chon-
drocytes (57, 181) (Table 1).

The VDR is a steroid hormone nuclear receptor that binds to
1,25(OH)2D with high affinity and mediates transcriptional
gene regulation (56). 1,25(OH)2D regulates �200 genes, in-
cluding those involved in renin production in the kidney,
insulin production in the pancreas, release of cytokines from
lymphocytes, production of cathelicidin in macrophages, and
growth and proliferation of vascular smooth muscle cells and
cardiomyocytes (57).

The extranuclear receptor localization is still controversial.
Several reports indicate a subcellular distribution in the cyto-
plasm, in discrete regions of the nucleus, and along the nuclear
envelope (10), whereas the membrane-initiated effects are
attributed to a plasma membrane-associated receptor (106); in
fact, the VDR has been found in caveolae-enriched plasma
membrane (62). Moreover, microscopy studies have revealed
that the VDR has mitochondrial, membrane-based, cytosolic,
and perinuclear localizations (43). Silvagno et al. (142) found
that human platelets express the VDR, which is mainly located
in the mitochondrial compartment. The anucleated platelets are
a good model in which to study the extranuclear VDR local-
ization involved in the nongenomic response to VitD. In
agreement with the intracellular distribution suggested by
Western blot analysis, an anti-VDR antibody revealed the
presence of the VDR in the mitochondrial structures and in the
cytosol, without significant labeling of other platelet structures.
In their work, they report not only the presence of the VDR in
human platelets but also, most interestingly, its mitochondrial
localization.

In a recent study, Gonzalez-Pardo et al. (43) also described
a mitochondrial VDR. Indeed, fractionation studies demon-
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gene

transcription
gene

transcriptionVDR RXR

Co-activators

1,25(OH)2D3Renin
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Cell
membrane
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Mitochondria

Nucleus
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Fig. 2. Cellular interactions of angiotensin and VitD recep-
tors. RXR, retinoid X receptor; RAS, renin-angiotensin sys-
tem; VDRE, VitD response element; 1,25(OH)2D3, 1,25-
dihydroxyvitamin D3.
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strated the presence of the receptor in the mitochondrial com-
partment, and the observation was confirmed by immunoelec-
tron microscopy analysis of platelets. In agreement and more-
over, a recent study from our laboratory showed that low
mitochondrial VDR expression was associated with increased
ANG II type 1 (AT1) receptor expression in the course of RAS
upregulation in an animal experimental model, whereas VDR
induction by paricalcitol [19-nor-1,25(OH)2D2, a VDR activa-
tor (VDRA)] treatment conditioned a minor AT1 receptor
expression linked to VDR upregulation. These results suggest
a cytoprotective effect of paricalcitol, revealing for the first
time a possible AT1 receptor-dependent protective effect that
occurs at the mitochondrial level (39).

Again, the presence of the VDR in several tissues (Table 1)
supports the assumption that the VitD endocrine system is in-

volved in various physiological functions beyond calcium-phos-
phate balance. This notion is additionally confirmed by the pres-
ence of CYP27A and CYP27B, the enzymes that catalyze con-
version of 25(OH)D to 1,25(OH)2D3 in these tissues (60, 144).

VitD signaling is dependent on the availability and turnover
of the active VDR ligand 1,25(OH)2D3 and on the efficiency of
VDR transactivation. Transactivation of the VDR depends on
the correct molecular structure, effective nuclear translocation,
and presence of the unliganded heterodimer partner RXR and
other nuclear cofactors (32). In most cases in which 1,25(OH)2D3

acts as a positive regulator, the liganded VDR heterodimerizes
with the RXR and binds to specific DNA sequences (VDRE) in
the promoter of target genes to regulate gene expression. On the
other hand, 1,25(OH)2D3 can also act as a negative regulator, but
the mechanism of the negative regulation is more complicated and
only partially understood (88).

Finally, the mitochondrial localization of the VDR, which
has been recently confirmed (142), suggests a mitochondrial
nongenomic activity. Therefore, we suggest that this effect
could be associated with the RAS, since kidney mitochondrial
injury is attenuated by AT1 receptor blockade in experimental
models (25).

RAS receptors. Components of the RAS [renin, angiotensin-
converting enzyme (ACE), angiotensinogen, ANG I, and ANG
II] receptors have been found in many areas, including kidney
and adrenal tissues, blood vessels, and discrete regions of the
brain (22) (Table 1). Distribution of AT1 and ANG II type 2
(AT2) receptors has been mapped by in vitro autoradiography
throughout most tissues of many mammals, including humans.
The AT1 receptor occurs in sites known to be targets for the
physiological actions of angiotensin, such as the adrenal cortex
and medulla, renal glomeruli and proximal tubules, vascular
and cardiac muscle, and brain circumventricular organs (Table
1). In addition, many new sites of action have been demon-
strated. In the kidney, the AT1 receptor occurs in high density
in renal medullary interstitial cells. In the heart, the highest
densities of the AT1 receptor occur in association with the
conduction system and vagal ganglia. In the central nervous
system, high AT1 receptor densities occur in many regions
behind the blood-brain barrier, supporting a role for neurally
derived angiotensin as a neuromodulator (2). The AT1 receptor
is also found in hepatocytes and bile duct epithelial cells (64,
84, 115, 170). The AT2 receptor also has a characteristic
pattern of distribution in several tissues, including the adrenal
gland, heart, and brain. The role of this receptor in physiology
is still being elucidated, but it appears to involve inhibition of
proliferation and participation in development (2).

ANG II also stimulates mitochondrial oxidant release, leading
to energy metabolism depression. By lowering mitochondrial
oxidant production, ANG II inhibition enhances energy produc-
tion and protects mitochondrial structure. This seems to be one of
the mechanisms underlying the benefits of ANG II inhibition in
hypertension, diabetes, and aging rodent models (28).

Hence, some cellular mechanisms responsible for the pro-
tective actions of RAS inhibitors were previously discussed in
recent reviews by us (26–28). Moreover, and as mentioned
above, we found high levels of mitochondrial AT1 receptor
mRNA expression in renal cortexes from rats (39). Some
mitochondria were increased in size and contained dilated
crests and larger-than-normal spaces in their interiors. These
changes were not present with paricalcitol treatment.

Table 1. Systems where VitD and RAS receptors are
localized

System VitD RAS

Endocrine Thyroid Thyroid
Parathyroid

Adrenal
Pancreatic beta cells Pancreatic beta cells

Posterior pituitary
Cardiovascular Vascular smooth muscle

cells
Vascular smooth muscle

cells
Myocardium Myocardium and

myocardial
mitochondria

Endothelium
Connective tissue

Musculoskeletal Striated muscle Striated muscle
Osteoblasts
Chondrocytes

Gastrointestinal Intestine Intestine
Stomach Stomach
Esophagus

Salivary glands
Pancreas Pancreas
Colon Colon

Hepatic Liver Liver
Urinary Kidney (tubules,

juxtaglomerular
apparatus, podocytes)

Kidney (tubule,
juxtaglomerular
apparatus, podocytes,
mesangial cells)

Bladder
Reproductive Testis Testis

Ovary Ovary
Uterus Uterus
Spermatozoa Spermatozoa
Prostate Prostate

Immune Leukocytes Leukocytes
Bone marrow Bone marrow
Platelets Platelets

Spleen
Thymus

Respiratory Lung Lung
Integumentary Epidermis Epidermis

Dermis Dermis
Nervous system Brain Brain

Sensory neurons Sensory neurons
Other White and brown

adipose tissue
White and brown

adipose tissue
Placenta Placenta
Mitochondria Mitochondria

VitD, vitamin D; RAS, renin-angiotensin system. Data are from Refs. 5, 16,
30, 31, 44, 119, 140, 147, and 167.
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The existence of intramitochondrial AT1 and AT2 receptors
and a functional RAS has been subsequently corroborated by
Abadir et al. (1). How these receptors are transported to the
mitochondria is still controversial. Interestingly, disruption of
the AT1 receptor was associated with an increased number of
mitochondria and upregulation of the prosurvival genes nico-
tinamide phosphoribosyltransferase (Nampt) and sirtuin 3
(Sirt3) in the kidney, leading to a marked prolongation of the
lifespan of mice (12).

Finally, the RAS appears to be much more complicated than
it was thought to be a few years ago. Thus, ANG II-(1–7)
exhibits direct and indirect effects, the latter resulting from the
ANG II-(1–7)-dependent formation of NO and vasodilatory
prostaglandins. ANG II-(1–7) potentiates the hypotensive ef-
fect of bradykinin and also plays a major role in control of
hydroelectrolytic balance. It possesses its own receptors, AT1,
AT2, AT3, AT4, AT5, AT6, and AT7, which are recognizable by
[Sar1-Thr8]ANG II or sarthran (24). Also, ANG II and its
derivatives, ANG III, ANG IV, and ANG-(1–7), alter vascular
contractility with different mechanisms of action (158). New
evidence has accumulated showing the existence of several
novel receptor-interacting proteins and various ANG II recep-
tor activation mechanisms, such as dimerization and mechan-
ical stretch-induced activation, which differ from classical
ANG II receptor signaling. These findings may provide new
potent therapeutic targets for the treatment of cardiovascular
disease (102).

Finally, it should be noted that the VDR and AT1 receptor
are distributed in almost the same tissues (Table 1).

Mechanisms in Which VitD and RAS Interact

RAS activity and VitD levels could be related in several
ways. In this review we focus on inflammatory response,
oxidative stress, and atherosclerosis.

Inflammatory Response

Association of VitD deficiency with markers of inflamma-
tion (such as tumor necrosis factor-�) (122) is evidenced by
elevated levels of C-reactive protein and IL-10 (181). Further-
more, administration of 1,25(OH)2D to VitD-deficient individ-
uals downregulated inflammatory markers (e.g., C-reactive
protein) and conferred an antiproliferative effect (138). VitD is
known to have immune-modulating effects (94). There are four
potential ways by which serum VitD can influence T cell
function: 1) direct effects on T cells mediated via systemic
VitD, 2) indirect effects on antigen presentation to T cells and
the intracrine synthesis of VitD, 3) direct effects of VitD on T
cells following synthesis of the active form of VitD, a para-
crine mechanism, and 4) intracrine conversion of 25(OH)D to
VitD by T cells (51). In addition, VitD is required for the
development of invariant natural killer T cells and CD8�� T
cells. The selective requirement for VitD and the VDR in the
development of these two populations of regulatory T cells,
and not conventional T cell development, suggests that there
may be some common mechanism (113).

The recent finding by Isakova et al. (66) that IL-6 is a
potential mediator of the association between low levels of
VitD and albuminuria is congruent with prior reports.

Hypertension and proteinuria are the two major factors that
induce many inflammatory and mitogenic mediators such as

transforming growth factor-� (13). In renal proximal tubular
cells, 1,25(OH)2D3 stimulates expression of transforming
growth factor-�1, a growth factor with anti-inflammatory and
profibrotic actions that plays an important role in the develop-
ment and progression of nephrosclerosis (171).

The RAS has a fundamental role in the mechanisms of
inflammation (161) and defense for the different cells and
tissues of organisms. This last function is fulfilled by regula-
tion of oxidative stress at the cytoplasmic and mitochondrial
levels. This phenomenon was also shown to be associated with
the metabolic syndrome (34), as well as the initiation of renal
fibrogenesis during unilateral ureteral obstruction (96).

ANG II induces proinflammatory genes and other proinflam-
matory substances and increases oxidative stress, which could
damage endothelium, myocardium, and renal tissue. Chronic
activation of NF-�B (a protein complex that controls the
transcription of DNA) and chronic activation of NAD(P)H
oxidase are fundamental steps in these proinflammatory mech-
anisms in which intramitochondrial oxidative stress could play
a critical role (34, 127). In this way, NF-�B is a potent inducer
of proinflammatory cytokines and oxidative stress in cardio-
vascular disease (71). Also this chronic stimulus is a well-
known event in many other proinflammatory diseases (53).

This sequence of events might explain why reduction of
ANG II synthesis by angiotensin-converting enzyme inhibitors
and angiotensin receptor blockers has a protective effect
against cardiovascular disease (34). From an evolutionary
standpoint, this occurred before its role as a regulator of arterial
pressure. If we were to consider cardiovascular disease as
being inflammatory, then beyond its antihypertensive effect,
blockade by the RAS could be seen as an etiological treatment
of cardiovascular disease (139).

NF-�B activation leads first to a proinflammatory immune
response and then to a VitD-dependent anti-inflammatory re-
sponse. Binding of the active metabolite 1,25(OH)2D3 to the
VDR yields a transcription factor that represses NF-�B acti-
vation and, additionally, modulates and downregulates adap-
tive, but enhances innate immune, responses and improves
redox balance, thus counterbalancing inflammation on multiple
levels. However, these built-in late counterbalances against
inflammation work only when stores of calcium and 25(OH)D3

are abundant (53). Therefore, a connection between lowered
VitD metabolism and persistent NF-�B activation can be
postulated. Consistent with this notion, it has been reported that
the VDR reduces NF-�B activation by interference with
NF-�B p65 and p105 (40).

Knowledge about the impact of VitD deficiency on chronic
NF-�B activation is growing (53).

Oxidative Stress

Oxidative stress and free radicals result from an increase in
production and/or a decrease in clearance. An excess of free
radicals is detrimental to cell function [including function of
beta cells (50, 52, 70), endothelial cells (4), fat cells (157),
muscle cells (120), and nerve cells (20)]. Decreasing produc-
tion or increasing clearance should reduce the net amount of
free radicals and cell damage. Different patients (98) (or the
organs, tissues, or cells of an individual patient) may be more
or less sensitive to free radicals and have different susceptibil-
ity to oxidants or greater antioxidant defenses (3, 6, 33, 129).
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The same level of oxidative stress may be more or less
deleterious, depending on the protective antioxidant enzyme
defense system and reparative process.

It is clear that the increased generation of cellular reactive
oxygen species (ROS) and the activation of redox-sensitive
signaling cascades are critical events involved in ANG II
actions (163). After binding to its AT1 receptor, ANG II
triggers intracellular superoxide production (46, 72, 103).
ANG II also enhances NO generation (126), and since the
reaction of NO with superoxide generates peroxynitrite, it can
promote the production of ROS and reactive nitrogen species
and reduce NO availability (103, 160). Under normal physio-
logical conditions, ANG II-mediated ROS and reactive nitro-
gen species production and the resulting stimulation of redox-
sensitive signaling pathways are closely regulated (160). How-
ever, under conditions associated with RAS overactivation,
such as hypertension, diabetes (133, 162), and normal aging
(11, 47, 156, 168), ANG II-dependent oxidant generation
becomes a significant contributor to cell oxidation and tissue
damage (28, 117).

Oxidative stress linked to VitD metabolism was initially
discussed in 1988 (21). These experiments suggested that an
increase in mitochondrial membrane lipid hyperperoxide pro-
duction resulted in a loss of 1�- and 24-hydroxylase activity in
proximal tubule cells (21).

Chang et al. (23) found, in monocytes and vascular smooth
muscle cells, that 1,25(OH)2D3 inhibits NO synthase (NOS),
which in turn reduces NO and free radical production.

Recently, it has been demonstrated that ANG II upregulation
stimulates NOX4-derived ROS via the AT1 receptor (45), that
NOX4 is the major isoform expressed in renal cells, and that
the VDR attenuates obstructive renal injury, at least in part, by
suppressing the RAS (176). More recently, our group showed
that paricalcitol has an antioxidant effect in the myocardium,
aorta, and kidney tissue (63), as well as in mitochondrial
fractions from renal cortexes of obstructed kidneys (39).

Treatment with a VDRA has survival benefits that are
probably related to its effects beyond its traditional role in
mineral metabolism. Recently, Tanaka et al. (152) showed that
VDRA reduces oxidative stress in hemodialysis patients. After
4 wk of treatment with calcitriol (1.5 �g/wk iv), Tanaka et al.
reported no significant changes in serum intact parathyroid
hormone, calcium, or phosphorus levels; however, the ratio of
oxidized to unoxidized albumin was markedly decreased. Fur-
thermore, after calcitriol treatment, the radical scavenging
activity of albumin was greater that of untreated albumin (152).
Their data suggest that intravenous calcitriol treatment reduces
oxidative stress and strengthens antioxidant defenses by inhib-
iting albumin oxidation.

Atherosclerosis

VitD can inhibit various aspects of inflammation leading to
intimal and medial calcification (167).

It is also well known that the immune system actively
participates in the inflammatory process. T lymphocytes and
macrophages are known stimulators of intimal thickening and
plaque formation in arteries that are susceptible to atheroscle-
rosis. Th1 lymphocytes secrete IFN-	, which is a potent
macrophage activator and a Th2 lymphocyte suppressor. Th2
lymphocytes, in turn, are antiatherogenic (through the produc-

tion of IL-10, which inhibits macrophage activation) (86). The
development of CD4
 T cells into T helper (Th) type 1 (Th1)
or Th type 2 (Th2) cells determines the outcome of an immune
response and is primarily directed by cytokines. VDRAs have
potential ameliorating effects on the development of athero-
sclerosis, acting on several mechanisms. First, they directly
affect naive CD4
 T cells by enhancing the development of
Th2 lymphocytes (through IL-4 production) (15). Furthermore,
treatment with VDRA inhibits the transcription of IFN-	,
which is required for Th1 development or is a product of Th1
cells (15, 145). Moreover, human and mouse naive CD4
 cells
differentiate into IL-10-producing T cells after treatment with
VDRA and dexamethasone (9). Through these mechanisms,
VDRAs may change the Th1-Th2 balance and influence the
production of anti-inflammatory mediators.

The stimuli of ANG II not only regulate vascular tone and
sodium balance but also activate immune cells and promote
cell infiltration into target organs (105).

Moreover, increased proinflammatory cytokines in the vessel
wall contribute to immune cell recruitment and modified LDL
cholesterol deposition by increasing scavenger receptor expres-
sion and cholesteryl ester synthesis and by decreasing cholesterol
efflux (155). Active VitD metabolites [1,25(OH)2D3 or its ana-
logs] promote monocyte-macrophage differentiation and diminish
proinflammatory cytokine release by immune mononuclear cells,
suggesting that 1,25(OH)2D3 signaling may regulate monocyte
vascular infiltration and macrophage cholesterol retention in the
vessel walls (42, 74).

Foam cells are the result of accumulated oxidized LDL
within the macrophages (then phagocytes) and, finally, form
the fatty streaks of the atheroma plaques. Oh et al. (111)
cultured macrophages in VitD-deficient or -supplemented me-
dia and exposed them to modified LDL cholesterol. They
found that 1,25(OH)2D3 suppressed foam cell formation by
reducing acetylated or oxidized LDL cholesterol uptake. Con-
versely, deletion of the VDR in macrophages accelerated foam
cell formation induced by modified LDL. Their results suggest
that reduced VDR signaling is a potential mechanism under-
lying increased foam cell formation and accelerated cardiovas-
cular disease.

Also dysfunctional mitochondria seem to contribute to the
pathophysiology of atherosclerosis. As mentioned above, at the
mitochondrial level, RAS overactivation plays a critical role (34).

Recently, in a model of apolipoprotein E-deficient athero-
sclerotic mice, our group showed that treatment with parical-
citol and enalapril, alone or in combination, ameliorates in-
flammatory and oxidative aortic injury in atherosclerotic mice
by decreasing monocyte chemoattractant protein-1, TNF-�, cy-
clooxygenase-2, NADPH oxidase subunit p22 phox, Mn-SOD
and inducible NOS protein expression and malondialdehyde
levels and by restoring GSH levels and CuZn-SOD and endo-
thelial NOS protein expression. Therefore, atherosclerotic pro-
cesses can be countered more effectively with the combined
use of drugs that act on the VDR (paricalcitol) and RAS
receptor (enalapril) (63).

Since the RAS is involved in the pathogenesis of atheroscle-
rosis and is downregulated by VitD, the interaction of parical-
citol and enalapril likely enhances the protective effect against
atherosclerosis lesions, probably by means of a more effective
amelioration of vascular inflammatory and oxidative injury to
the renal and cardiovascular endothelium (63).
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Clinical and Epidemiological Studies

Several clinical and epidemiological studies have shown that
there may be an association between hypertension and VitD.
Scragg et al. (137) recently reported the relationship between
serum 25(OH)D concentration and blood pressure. In their
study of data from NHANES III, they found a significant
inverse association between serum 25(OH)D concentration and
blood pressure that was evident even after adjustment for
variables including age, gender, ethnicity, and physical activ-
ity. Judd et al. (69) also analyzed the NHANES III survey data
and determined that there was a statistically significant inverse
association between circulating 25(OH)D concentrations and
systolic blood pressure. Martins et al. (97) found that a low
VitD level was associated with a higher risk of hypertension.

A possible mechanism underlying these findings was studied
in the Ludwigshafen Risk and Cardiovascular Health (LURIC)
study (159). This work was aimed at documenting a potential
association between 25(OH)D, 1,25(OH)2D, and the circulat-
ing RAS in a large cohort of patients that had been referred
(n � 3,316) for coronary angiography. After measuring 25(OH)D,
1,25(OH)2D, plasma renin, and ANG II concentration, the inves-
tigators showed an independent association between them. Their
data showed, for the first time in humans, that lower 25(OH)D and
1,25(OH)2D values are independently related to an upregulated
circulating RAS (159).

Hypotheses

It seems very possible that a functional interaction between
VitD and the RAS exists.

From the evolutionary point of view, both systems devel-
oped simultaneously and in parallel, both actively participating
in the regulation of inflammatory and immunological mecha-
nisms (Figs. 1 and 3). ANG II is a proinflammatory hormone,
and VitD seems to have anti-inflammatory effects. From this,
we can speculate that an increased proinflammatory response,
generated by various stimuli accompanying diverse patholo-
gies, such as the metabolic syndrome and cardiovascular dis-
eases, could inhibit VitD, that is, an increase in proinflamma-
tory tissue tone that facilitates the development of atheroscle-
rotic (cardiovascular) disease. This would help explain why, in
the process of enculturation, humans happened to be the only
mammal that developed cardiovascular disease (an inflamma-
tory disease), which also is the number-one cause of mortality
in the modern world.

In this review we hypothesize that increased RAS activity
and lower activation of the VDR can be complementary situ-
ations (Figs. 2 and 3), probably underlying a causal relation-
ship. Furthermore, intervening in one factor seems to change,
in the opposite direction, the other. It appears quite clear that
the RAS can be regulated by VitD, but in turn our novel
proposal is that increased ANG II or AT1 receptor may regulate
the levels of VitD.

This relationship is also evident in other pathologies that are
not discussed in this review but have been very well docu-
mented, such as hypertension (73, 91, 118, 123, 124, 143, 173,
180, 181), aging (27, 35, 65, 67, 79–81, 83, 100, 153, 164,
165), diabetes and obesity (29, 37, 38, 76, 85, 88, 125, 148,
151, 174, 176, 178, 179), and chronic kidney disease (66, 130,
149, 150, 176).

VDR

Cell membrane

AT1R AT2R

NAD(P)H 
oxidase

AT1R VDR

AT1R

VDR

VDR

AT1R

Mitochondria
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Direct
mitochondrial

effect
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Oxidative stress

Fig. 3. Potential interaction between RAS receptor and VDR, with focus on oxidative stress and inflammatory balance (1, 39). Proposed interaction between
angiotensin type 1 receptor (AT1R), angiotensin type 2 receptor (AT2R), and VDR may occur throughout the cell.
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In fact, the pandemic of VitD deficiency could be the other
face of increased RAS activity, which probably causes lower
activity or lower levels of VitD. To make this more likely, a
close spatial interaction between the two systems would be
necessary. We have shown that almost all tissues that express
the VDR also express ANG II receptors (Table 1). This
coexpression appears to be present in mitochondria as well,
which is basically where cellular energy is generated and
where cell signals are triggered, resulting in the oxidative
changes associated with chronic inflammatory processes, es-
pecially in the cardiovascular and renal systems (Fig. 3). A
RAS blockade or VDR stimulation produces similar changes in
these oxidative inflammatory disorders.

Finally, at a cellular and mitochondrial level, we have seen
that increased ANG II produced a decrease of the VDRs.

In other words, the pandemic of human VitD insufficiency
could be seen as an inflammation marker.
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