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Abstract: The development of biomaterial platforms for dispensing reagents of interest such as
antioxidants, growth factors or antibiotics based on functional hydrogels represents a biotechnological
solution for many challenges that the biomedicine field is facing. In this context, in situ dosing of
therapeutic components for dermatological injuries such as diabetic foot ulcers is a relatively novel
strategy to improve the wound healing process. Hydrogels have shown more comfort for the
treatment of wounds due to their smooth surface and moisture, as well as their structural affinity
with tissues in comparison to hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies,
negative pressure wound therapy or skin grafts. Macrophages, one of the most important cells of
the innate immune system, have been described as the key not only in relation to the host immune
defense, but also in the progress of wound healing. Macrophage dysfunction in chronic wounds
of diabetic patients leads to a perpetuating inflammatory environment and impairs tissue repair.
Modulating the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2)
could be a strategy for helping to improve chronic wound healing. In this regard, a new paradigm
is found in the development of advanced biomaterials capable of inducing in situ macrophage
polarization to offer an approach to wound care. Such an approach opens a new direction for the
development of multifunctional materials in regenerative medicine. This paper surveys emerging
hydrogel materials and bioactive compounds being investigated to induce the immunomodulation
of macrophages. We propose four potential functional biomaterials for wound healing applications
based on novel biomaterial/bioactive compound combination that are expected to show synergistic
beneficial outcomes for the local differentiation of macrophages (M1–M2) as a therapeutic strategy
for chronic wound healing improvement.

Keywords: biomaterials; inmunomodulation; macrophages M1–M2; polymers; wound-healing

1. Introduction

Wound healing is an exceedingly complex and finely regulated process, essential
to preserve healthy conditions. Acute wounds usually proceed through an organized
and appropriate repair process that eventually results in the regaining of skin structural
integrity, following trauma, burns, or surgery. However, chronic wounds have persistent
inflammation due to a disruption of the wound healing cycle as a result of impaired
angiogenesis, innervation, or cellular migration, among other reasons [1,2]. There are many
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illnesses which can cause these types of complications. Diabetes mellitus is one of the
most well known in relation to complex wound healing processes, and high incidence of
complications relate to this. Failure to heal, such as diabetic foot ulcers, can even lead to
limb amputation in the most severe cases [3].

In recent years, knowledge of the different factors involved in the repair of wounds has
progressed enormously. Macrophages, one the most important cells of the innate immune
system, have been described as key factors not only in the host immune defense, but also in
the resolution of wound healing. There has been increasing evidence showing macrophage
dysfunction in chronic wounds of diabetic patients, leading to a perpetuating inflammatory
environment and preventing reparative cell infiltration [4]. Moreover, improperly acting
macrophages lead to local environment malfunctioning, inducing the accumulation of
inflammatory cytokines and degraded extracellular matrix [5,6].

Macrophages are highly plastic cells capable of rapidly adopting a range of phenotypes
depending on the environment to ensure homeostasis, the clearance of debris and proper
healing [7–10]. They have been frequently classified into two extreme phenotypes in
response to cytokine cues: classically activated or pro-inflammatory macrophages (M1),
and alternatively activated or anti-inflammatory macrophages (M2). M1s are activated in
response to interferon-γ (IFN-γ) and lipopolysaccharide (LPS). In a polarized response, they
produce abundant pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α),
and pro-inflammatory mediators such as nitric oxide (NO). While M2s are stimulated by
IL-4 or IL-13 and secrete transforming growth factor (TGF-b), IL-10, and other growth
factors, such as platelet-derived growth factor (PDGF), resistin such as molecule α (Relmα),
epidermal growth factor, and vascular endothelial growth factor-a (VEGFA), leads to tissue
repair and inflammation resolution based on different pathways [8,11–14].

Modulating the macrophage polarization could be a strategy to improve chronic
wound closure. Wound healing is indeed a complex process, and advancements in this area
can have a significant impact on healthcare. The speed of wound closure is one important
aspect of wound healing, but there are many other factors to consider as well, such as
reducing the risk of infection, minimizing scarring, and promoting proper tissue regenera-
tion. Advancements in wound healing should improve patient outcomes and quality of life
by promoting faster and more effective healing, reducing the risk of complications, and
minimizing scarring and other long-term effects of wounds.

Recent results have shown that external intervention could lead to better wound closure
times and tissue regeneration [15–23]. In this regard, a new paradigm is emerging: the develop-
ment of advanced biomaterials in combination with biological active molecules or drugs capable
of inducing macrophage polarization, and thus the acceleration of wound healing [24,25].

The term ‘immunobioengineering’ is used to describe efforts by immunologists and
bioengineers to design biomaterials as delivery vehicles targeting the immune response [26].
In this context, the engineering of materials that can modulate the immune system is an
emerging field that is developing alongside immunology. An interesting general overview
underlying the steps of the host immune response upon exposure to biomaterials has been
reported by Bu et al. [27].

In particular, considering novel materials for in situ immunomodulation, these ad-
vances contribute not only to the wound healing field, but also to the progress of materials
engineering in general.

Strategies to enhance, suppress, or qualitatively shape the immune response are
of importance for diverse biomedical applications. However, the intricate cellular and
molecular signals regulating the immune system are extremely complicated to manipulate.
To meet this challenge, biomaterials are being developed intending to control how and
when some specific immune cells are stimulated in vivo.

The efficiency and biocompatibility of some therapeutic drugs can be significantly
improved through encapsulation within biomaterials. This approach provides protection
from enzymatic degradation and improves its pharmacokinetics [28]. Some biomaterials
have been designed to deliver immunomodulatory agents to the injury site, for example,
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in order to improve the wound healing process [24,25,29–31]. Most of them are hydrogels;
their high water content to emulate hydrated physiological environments, versatility, fine
tunability, and physical properties make them promising biomaterial candidates for a
variety of biomedical applications [32]. Different crosslinking degrees, elasticity modulus,
and pore sizes can be achieved through the optimization of the hydrogel synthesis. Besides
the physical characteristics, biochemical properties provide a wide opportunity to design
and customize hydrogels for specific applications. Therefore, optimizing physicochemical
properties and understanding the relationship between hydrogels (as carriers) and bioactive
compounds will contribute to develop novel ‘immunobioengineering systems.

Thus, the goal of this paper is to discuss the actual approaches to treat chronic wounds,
based on literature results which report hydrogels loaded with bioactive compounds
characterized by their macrophage modulation activity.

It is important to remark that the present paper will focus only on available literature
which considers only the biochemical role of the hydrogel components to achieve an
immunomodulatory activity. There are other factors which contribute to “better” hydrogels
for this purpose. For example, topography, porosity, stiffness, electrical properties, the
degree of degradation, etc. [27]. Nevertheless, our discussion will be specifically confined
to biomaterials and molecular signals that regulate the immune response by M1/M2
polarization based on biochemical effects.

The rational design of immunomodulating biomaterials is complex and there is plenty
of research to be conducted on developing customized materials for this purpose. As a
contribution to this evolving field, in this paper, we analyzed the relevant literature and
proposed hydrogel/immunomodulator combinations as innovative biomedical platforms
for specific applications in chronic wound treatments.

2. Macrophages
2.1. Macrophage Polarization Role in Wound Healing

This section will briefly describe how the immune system acts in the wound healing
process, focusing on the macrophage role. Wound healing involves extensive and com-
plex communication between different cells of the immune system such as neutrophils,
monocytes, and macrophages, among others. Traditionally, the wound healing process is
characterized by four phases that occur in a temporal sequence, but are partially overlap-
ping: homeostasis, inflammation, proliferation, and remodeling [1,33].

Neutrophils are the first immune cells to respond to an injury, and they play a critical
role in the early stages of wound healing by phagocytosing bacteria and debris. However,
excessive neutrophil infiltration and activation can also cause tissue damage and impair
wound healing. In chronic wounds, neutrophil infiltration can persist, leading to a sustained
inflammatory response that can delay healing [34].

Lymphocytes, specifically T cells and B cells, also play a role in the wound healing
process by promoting angiogenesis, tissue remodeling, and collagen synthesis. T cells can
produce cytokines that stimulate fibroblasts and endothelial cells, while B cells can produce
antibodies that promote wound healing [35].

However, the role of neutrophils and lymphocytes in chronic wounds is highly com-
plex and context-dependent, and their contributions to the healing process are not as well
understood as that of macrophages. Therefore, macrophages are the focus of the present
discussion, because the manipulation of macrophage polarization represents an opportu-
nity for developing new technologies based on biomaterials, to contribute to tackling the
problem of chronic wound healing.

Macrophage polarization plays a key role in leading the phases during the wound
healing response. During early wound healing, macrophages that invade the tissue exhibit
an inflammatory phenotype (M1) [36]. These activated macrophages act in pathogen
phagocytosis, destroy and remove damaged cells, including spent neutrophils, while
recruiting additional inflammatory cells. However, macrophage populations are dynamic,
and their phenotype is plastic, being able to change completely. In the following phase, the
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classically activated M1 phenotype gradually skews toward a subset of the alternatively
activated M2 phenotype, such as M2a, M2b, and M2c, that down-regulates inflammation
and promotes repair and regeneration. M2s are induced by a mix of stimuli, such as the
phagocytosis of apoptotic spent neutrophils, IL-4 or IL-13, and produce anti-inflammatory
cytokines such as TGF-b and IL-10 [37–40]. In diabetic wounds, prolonged inflammation
can result in fibrotic wound healing, and dysregulation of the immune response during
wound healing leads to the emergence of chronic wounds [41–43]. In such wounds, the
M1 to M2 macrophage switch fails. Unlike in acute wounds, macrophages are unable to
phagocytose neutrophils. This effect leads to the recruitment of more macrophages and an
increase in inflammation.

During the re-epithelialization stage, macrophages secrete vascular endothelial growth
factors and promote the proliferation of endothelial cells, skeletal myoblasts, and fibroblasts.
This phase is followed by angiogenesis, myotube formation, and collagen production. The
final phase involves collagen remodeling for the formation of new epithelium and scar tissue.

As mentioned earlier, macrophage polarization plays an important role throughout
the wound healing process and a dysfunction in their performance can lead to the dys-
regulation of normal wound healing [41,44]. Diabetic patients with wounds, such as
the case of diabetic foot ulcers, usually suffer from non-healing with inflammation and
microbial infection. In these cases, the wound healing response is altered due to dysregula-
tion in macrophage function and disruption of the transition of M1 macrophages to M2
macrophages, which may eventually lead to a delay in wound closure. The study with
a selective depletion of macrophages during the wound healing process led to delayed
re-epithelialization, reduced collagen deposition, impaired angiogenesis, and decreased
cell proliferation. These impairments were associated with an increased expression of TNF
and reduced expression of VEGF and TGF-1, indicating that macrophages help regulate the
cytokine environment during wound healing. The authors speculate that the dysfunction
of macrophages may contribute to the development of chronic wounds [45]. Although the
importance of the inflammatory phase has been demonstrated, wherein macrophages in
their pro-inflammatory phase were observed to promote vessel sprouting and growth of
blood vessels in the wound tissue, a prolonged inflammatory phase plays a detrimental
role in wound closure [8,46,47]. In this type of wound, a difficult resolution of polarization
is observed, the polarization to the M2 phenotype is stopped, and the anti-inflammatory
state and re-epithelization do not occur.

2.2. Novel Approaches in Immunomodulation

Different options have been proposed for the treatment of chronic wounds over the
years, including the use of biologic agents, bioactive materials and cell therapies [7,48,49].
Many current approaches focus on the attenuation of macrophages M1 and the promotion
of their transformation into the M2 phenotype. This strategy is represented in Figure 1.

In addition to immunomodulators, the endogenous properties of the gels themselves
can also modulate macrophages, such as hydrogels composed of hyaluronic acid, low-
molecular-weight pro-M1, and high-molecular-weight pro-M2.

M2 macrophages can be obtained in vitro in the presence of IL-4, IL-10, or IL-13,
but this stimulation does not work fine in an acute wound to switch from M1 to M2
phenotypes. For this reason, new approaches have been proposed to favor the modulation
of the macrophage phenotype that favors wound repair [50,51].

For example, Fu and colleagues investigated quercetin effects on wound healing in
diabetic rats [52]. Quercetin is one of the most abundant flavonoids, it is found in the leaves
and fruits of various plants. It is a versatile molecule with many pharmacological proper-
ties such as anti-cancer, anti-oxidation, anti-fibrosis, and anti-inflammation effects [53,54].
For this reason, quercetin is being deeply investigated in different biomedical conditions.
According to the researchers, quercetin reduced the expression of pro-inflammatory factors
and increased the expression of anti-inflammatory factors via modulating the macrophage
polarization switching from the M1 to M2 phenotype, which resulted in the acceleration
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of wound closure [34]. He and colleagues investigated the potential use of interleukin
(IL)-33. IL-33 is a member of the IL-1 cytokine family that binds to receptor ST2. This study
showed that exogenous IL-33 application promotes M2 macrophage polarization in diabetic
mice [34]. Subsequently, TGF-β secretion through the amplified M2 macrophages signifi-
cantly augmented the proliferation of fibroblasts and the production of ECM-associated
collagens. However, little is known about the mechanism of action of IL-33 [22].

Pharmaceutics 2023, 15, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 1. Polymers and bioactive compounds in hydrogels for skin regeneration promoted by mac-
rophage polarization from M1 to M2. 

In addition to immunomodulators, the endogenous properties of the gels themselves 
can also modulate macrophages, such as hydrogels composed of hyaluronic acid, low-
molecular-weight pro-M1, and high-molecular-weight pro-M2. 

M2 macrophages can be obtained in vitro in the presence of IL-4, IL-10, or IL-13, but 
this stimulation does not work fine in an acute wound to switch from M1 to M2 pheno-
types. For this reason, new approaches have been proposed to favor the modulation of 
the macrophage phenotype that favors wound repair [50,51].  

For example, Fu and colleagues investigated quercetin effects on wound healing in 
diabetic rats [52]. Quercetin is one of the most abundant flavonoids, it is found in the 
leaves and fruits of various plants. It is a versatile molecule with many pharmacological 
properties such as anti-cancer, anti-oxidation, anti-fibrosis, and anti-inflammation effects 
[53,54]. For this reason, quercetin is being deeply investigated in different biomedical con-
ditions. According to the researchers, quercetin reduced the expression of pro-inflamma-
tory factors and increased the expression of anti-inflammatory factors via modulating the 
macrophage polarization switching from the M1 to M2 phenotype, which resulted in the 
acceleration of wound closure [34]. He and colleagues investigated the potential use of 
interleukin (IL)-33. IL-33 is a member of the IL-1 cytokine family that binds to receptor 
ST2. This study showed that exogenous IL-33 application promotes M2 macrophage po-
larization in diabetic mice [34]. Subsequently, TGF-β secretion through the amplified M2 
macrophages significantly augmented the proliferation of fibroblasts and the production 
of ECM-associated collagens. However, little is known about the mechanism of action of 
IL-33 [22].  

Following the same approach based on macrophage polarization, Yu and colleagues 
investigated the effect of HG (high glucose) plus insulin on the macrophage phenotype 
polarization using a human monocytic THP-1 cell and diabetic rat model [23]. It is well 
known that the disruption of the insulin signaling pathway is one of the most distinctive 

Figure 1. Polymers and bioactive compounds in hydrogels for skin regeneration promoted by
macrophage polarization from M1 to M2.

Following the same approach based on macrophage polarization, Yu and colleagues
investigated the effect of HG (high glucose) plus insulin on the macrophage phenotype
polarization using a human monocytic THP-1 cell and diabetic rat model [23]. It is well
known that the disruption of the insulin signaling pathway is one of the most distinctive
pathological changes of type II diabetes [15,23]. In an in vitro study, researchers proved
that HG plus insulin promotes the macrophage phenotype transition from M1 to M2, and
attenuates inflammatory mediator secretion. Such results confirmed that both PI3K-Akt-
Rac1 and PPAR-γ signaling pathways are involved in the insulin-induced macrophage
phenotype switch and anti-inflammatory effect [23].

Similarly, Liu and colleagues showed that M2 polarization could be promoted and M1
polarization inhibited by activating the PTEN/AKT signaling pathway [55]. This could
be achieved by means of melatonin (MT)-pre-treated MSC-derived exosomes (MT-Exo).
Exosomes are lipid bilayer particles which are naturally secreted from the cells. They
are considered nanocarriers because they can transport different cargoes, such as micro-
RNAs (miRNAs), proteins, etc [56]. Currently, studies have revealed that MSC-derived
extracellular vesicles result in phenotypic change and modification in target organs. These
phenotypic alterations are triggered by the attenuation of oxidative stress in recipient
cells, prevention of apoptosis in target cells, and other mechanisms [57,58]. In addition to
exosomes, melatonin is a hormone that suppresses lipopolysaccharide (LPS)-induced pro-
inflammatory factors released in macrophages. Many actions of melatonin are mediated
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through interaction with the melatonin receptors 1 and 2, which are G-protein-coupled
membrane receptors found in several cell types [59–61].

Other approaches refer to the regulation of the AMPK/mTOR signaling pathway
in order to inhibit the activation of the NLRP3 inflammasome. This is due to the emerg-
ing evidence indicating that down-regulation of the NLRP3 inflammasome and cleaved
IL-1β inhibit inflammation, improving wound healing [62,63]. For this reason, Qing and
colleagues decided to investigate the effects of metformin on wound healing [64]. Met-
formin (dimethylbiguanide) is a synthetic guanidine derivative that lowers glucose levels
by inhibiting hepatic glucose production [57,65]. Furthermore, metformin inhibits the
expression of pro-inflammatory cytokines and protects against oxidative damage [66,67]. It
was demonstrated that metformin could inhibit the activation of the NLRP3 inflammasome
by regulating the AMPK/mTOR singularization pathway, thus achieving the polarization
of M2 macrophages and accelerating the wound healing process.

Meanwhile, Dai and colleagues proposed that the use of rapamycin could attenuate
NLRP3 inflammasome activation in macrophages by inhibiting mTOR phosphorylation [68].
As is known, mTOR acts as a regulator of the levels of pro- and anti-inflammatory cy-
tokines [68]. On the other hand, rapamycin, an mTOR inhibitor, is a potent immunosuppres-
sive drug that promotes wound healing by enhancing autophagy [69]. Therefore, rapamycin
could be a possible therapeutic option for the inflammatory response in impaired wound
healing, but further studies are needed to determine its therapeutic potential in vivo [70].

Table 1 presents a summary of the various strategies employed to immunomodu-
late macrophages in mouse models of chronic wounds using bioactive compounds as
immunomodulators. The table also includes information on the implicated pathway alter-
ations and their effects on the wound healing process. This is an incipient field, and we
expect that the information in the table will be the kick-off for starting a search for analogue
biomaterials capable of inducing the same functional effect on macrophages.

Table 1. Immunomodulator promoters of macrophage modulation in wound healing.

Immunomodulation
Strategy

Pathway Alteration in
Macrophage Phenotype Effects on Wound Healing Reference

ENDOGENOUS M1 ATTENUATION

Quercetin

Inhibits the activation of
TLR4/MyD88 signal transduction

pathway, leading to the
down-regulation of the activity of
NF-kB and IRF-5, thus inhibiting

the polarization of macrophages to
the M1 phenotype, reducing the

synthesis and release of
inflammatory factors.

Reduce the infiltration of
inflammatory cells.

Increase fibroblast activity and
collagen deposition.

Promote angiogenesis.

[19,71]

ENDOGENOUS MACROPHAGE MODULATION/M2 PROMOTION

IL-33
The binding of IL-33 to cells that

express ST2 results in the activation
of NF-kB and MAP kinases.

Accelerates re-epithelialization.
Increases the proliferation of

fibroblasts and ECM deposition.
[22,34]

HG plus insulin
Both the PI3K-Akt-Rac1 and
PPAR-γ signaling pathways.

Activates Akt-Rac-1 signaling.

Can decrease neutrophil infiltration.
Accelerates vessel maturation. [23]

Metformin
Regulates the AMPK/mTOR

signaling pathway to inhibit NLRP3
inflammasome activation.

Improves angiogenesis.
Inhibits the expression of

pro-inflammatory cytokines.
Accelerates collagen deposition.

Re-vascularization, fibroblast
regeneration and myofibroblast

differentiation.

[64,66]
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Table 1. Cont.

Immunomodulation
Strategy

Pathway Alteration in
Macrophage Phenotype Effects on Wound Healing Reference

Melatonin
Upregulates the expression of

PTEN, inhibiting the
phosphorylation of AKT.

Facilitates angiogenesis and
collagen synthesis. Suppresses the

pro-inflammatory factors.
Promotes the anti-inflammatory

factor IL-10, along with increasing
the relative expression

of IL-10 and Arg-1.

[55,61]

Rapamycin

Reduces the NLRP3 inflammasome
activation by inhibiting mTOR

phosphorylation
and NF-κB activation.

Enhances autophagy.
Wound closure.

Reduces the activation of the
inflammatory cascade.

[70]

Analyzing the data reported, it can be observed that many bioactive compounds share
common action pathways, with the control of the inflammasome activation pathways being
of relevance.

Hassanshahi et al. reviewed and described an apparent intricate relationship between
inflammasome activation and recruitment, and macrophage polarization during wound
healing [72]. Therefore, new effects that will have action on the inflammasome pathways
may be of interest to evaluate the progress of different wound repair processes.

3. Hydrogels in Immunomodulation Strategies

Hydrogels are interesting biomaterials for the controlled release of bioactive molecules
(in particular pharmaceutical proteins) and cell encapsulation. The biodegradable hydrogel
structure disintegrates into nontoxic substances to induce an excellent biocompatibility
of the gel. Chemical cross-linking is the highly resourceful method for the formation of
hydrogels, having the required mechanical strength. Often, cross-linkers used in hydrogel
preparation should be extracted from the hydrogels before use due to their reported toxicity.
Physically cross-linked methods for the preparation of hydrogels are the alternative solution
of cross-linker toxicity and are of huge interest for labile bioactive substance and cell
encapsulation and entrapment, especially when the hydrogel development is conducted in
the absence of organic solvents and under mild conditions [73].

Drug loading procedures can be performed at two different times of the hydrogel
synthesis: at the beginning by mixing the drug with the other reagents, or at the end, after
the hydrogel has been produced [74].

In situ loading methods are suitable for hydrophilic drugs and are based on dissolving
the drug in water together with the polymer powder. The other technique is called post-
loading and refers to dry hydrogel film immersion into a drug solution for a certain period
of time. In both cases, after drug incorporation, the hydrogel is in a dried state and confers
protection. In addition, cross-linkers are the essential factors in controlling the release
of high- or low-molecular-weight therapeutic agents, and in most cases the degradable
cross-linkers are preferred [75].

The inherent properties of hydrogels allow for the damaged tissue to heal by supporting
a hydrated environment which has long been explored in wound management to aid in
autolytic debridement. However, chronic non-healing wounds require added therapeutic
features that can be achieved through the incorporation of biomolecules and supporting cells
to promote faster and better healing outcomes. In recent decades, numerous hydrogels have
been developed and modified to match the time scale for distinct stages of wound healing.

Hydrogels can be used to deliver bioactive molecules known to accelerate wound
healing, or support and maximize the therapeutic potential of skin or stem cells to promote
angiogenesis and re-epithelialization, as well as new extracellular matrix (ECM) production
and maturation [76].
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For example, Xiang et al. 2023 developed a hydrogel wound dressing loaded with
melanin nanoparticles in a polysaccharide matrix (biguanide chitosan and oxidized β-
glucan) for efficient healing of bacterially infected diabetic wounds. This hydrogel has
a three-dimensional network structure that dramatically enhances cell proliferation, mi-
gration, and angiogenesis by creating favorable ecological conditions for cell survival.
Melanin nanoparticles have a polyphenolic structure on their surface, giving them good
ROS scavenging ability. The novelty of this work is that together with near-infrared (NIR)
photothermal therapy, melanin nanoparticles can effectively kill bacteria and regulate the
oxidative stress state, relieving the inflammatory response and promoting the transition of
diabetic wounds from the inflammatory stage to the proliferative stage [77].

Related to hydrogels for immunomodulation, Table 2 summarizes biomaterials that
themselves have the ability to promote macrophage polarization. As mentioned before,
there are natural polymers with excellent effective properties in wound healing. One of the
most used is hyaluronic acid (HA), a major glycosaminoglycan of the extracellular matrix.
Its importance is given by the role it plays in cell adhesion, inflammation and the interaction
between cells [78–80]. High molecular weight HA (HHA) has been reported to promote the
change of macrophage phenotypes from M1 to M2 through several mechanisms [30]. One of
them is the reduction in the expression of toll-like receptor 4 (TLR-4) in the cells stimulated
with LPS through the inhibition of NF-kB activation, which may explain the promotion of
the phenotype of macrophages M2. For these reasons, Liu and his colleagues used electro-
spun thioether-grafted hyaluronic acid nanofibers for the modulation of macrophages
and accelerating wound healing [29]. In vivo studies demonstrated that they promoted
wound regeneration in a chronic wound model. Furthermore, these materials modulate
the microenvironment of wound inflammation through ROS scavenging, regulation of
macrophage phenotype, and change of chemoattractant gradients [81,82].

Table 2. Polymer promoters of macrophage modulation in wound healing.

Polymer Type of Biomaterial Main Alterations of
Macrophages Phenotype Effects on Wound Healing References

Thioether grafted
hyaluronic acid Electro-spun nanofibers

Promotes the transformation
of macrophages from a

pro-inflammatory M1 to a
reparative M2 phenotype.

Accelerates the healing
phase transition from

inflammation to proliferation
and remodeling.

[29,80]

Sulfated chitosan
(SCS)-doped collagen

type I (Col I/SCS).

Porous hydrogel
scaffolds

Reduces the polarization of
M1-like macrophages.

Increases collagen
deposition,

re-epithelialization and
neovascularization.

Reduces the production of
pro-inflammatory

interleukin (IL)-6 and
increases the production of

anti-inflammatory cytokines,
including IL-4 and

transforming growth
factor-beta 1 (TGF-β1).

[25]

Equine pericardial
collagen matrix Wound dressing

Change in macrophage
polarization toward the M2

phenotype.

Accelerates wound
re-epithelialization.

Increases collagen deposition
and maturation.

[25,30,83]

Sulfated poly
(sulfobetaine
methacrylate)

Wound dressing
hydrogel

The polarization of
macrophages from M1 to M2

through enhanced
anti-inflammatory proteins.

Facilitates cell proliferation,
granulation formation,
collagen aggregation,
chondrogenic ECM

deposition, and
neovascularization.

[84]
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In the meantime, Shen and colleagues investigated the synthesis of a hydrogel com-
posed of sulfated chitosan and type I collagen [25]. The study showed that the production
of pro-inflammatory cytokines was reduced, while the production of anti-inflammatory
cytokines increased because of the attenuation of M1 macrophages. Similarly, Masry and
colleagues have focused on an equine pericardial collagen matrix (sPCM) that is capable of
scaffolding functionality during the course of wound healing [24,25,30,83]. This wound
dressing promotes the change in macrophage polarization toward the M2 phenotype and
improves wound healing by increasing collagen deposition and maturation. Previously,
it was reported that patients with diabetic foot wounds were treated with equine peri-
cardium. Briefly, 32 wounds in 22 patients were prospectively available for evaluation. On
enrollment, the median wound size was 299 mm2. When the equine material was removed
(mean, 2.9 weeks), 30 of the wounds (94%) had improved, with a median size of 115 mm2

and an average reduction in size of 44.3% (p < 0.0001). At 4 weeks, the average decrease
in wound size was 52.3% (p < 0.0001). At 12 weeks, 15 wounds (47%) had healed. Thus
the technology represents an interesting option to improve healing and accelerate wound
closure time [83].

On the other hand, there are some polymers mentioned as zwitterionic capable of
maintaining stable hydration through electrostatic interactions between zwitter ions and
water molecules [31,84]. These were the ones that He and his colleagues made based on
zwitterionic hydrogels (polySBMA) [31]. The researchers built on earlier investigations that
stimulated cell proliferation, upregulated the secretion of growth factors, such as TGF-β1,
and activated macrophage polarization from M1 to M2. With these results, it was assured
that softer and more viscoelastic hydrogels promote the polarization of macrophages,
providing more oxygen and nutrients in such a way that they promoted cell proliferation
and migration [84].

The progress of biomaterials and tissue engineering has led to significant advances in
wound healing, but there are still many challenges to be solved and improvements to be im-
plemented. Further progress in unveiling new drugs and polymers that could promote the
M1 to M2 polarization will help us design novel immunoregulatory hydrogels. In this con-
text, well-designed and fabricated materials that can promote inflammatory cell infiltration
and the secretion of anti-inflammatory cytokines will promote tissue regeneration.

The correlation between biomaterials and the immune response reported in the lit-
erature has prompted us to suggest new approaches to create microenvironments that
promote wound healing, as discussed in the next sections.

4. Biomaterials and Macrophage Immunomodulation: A New Perspective for
Wound Healing

Wound healing is a complex process involving the sequential activation of local and
systemic cells. In addition, it requires enzymatic pathways for the repair and recovery of
injured tissue [85].

The inflammatory phase begins at the onset of the injury and typically lasts for around
2–3 days, although in some cases it can last up to 5 days. During this phase, white blood
cells, such as neutrophils and macrophages, are recruited to the wound site.

The proliferative phase can last up to 21 days and is characterized by the migration
of fibroblasts and other cells to the wound site. These cells produce substances, such as
collagen [86], that are necessary for the formation of new tissue and the closure of the
wound. Interruptions in any of the phases of wound healing can result in poor healing.
For example, if the inflammatory phase is disrupted, the wound may be more susceptible
to infection. Similarly, if the proliferative phase is disrupted, there may be a delay in the
formation of new tissue and the closure of the wound [87].

In chronic wounds, there is often a persistent pro-inflammatory environment that
can lead to an overabundance of M1 macrophages and a delay in the transition to the M2
phenotype. This imbalance can impair the healing process and lead to the formation of
non-healing or slow-healing chronic wounds. Therefore, promoting a shift toward M2
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macrophage polarization in chronic wounds appears as a promising therapeutic strategy to
accelerate the healing process [1].

The idea of proposing a synergy between a biomaterial with immunomodulatory
properties and a molecule with the same properties is innovative and challenging.

Previous reports have proposed biomaterials that provided properties such as balance
or the support of molecules that themselves exerted an immunomodulatory action on
macrophages. However, a current tendency in biomaterials research is that the biomaterial
(carrier) itself could exert an immunomodulatory action as well.

In order to consider the improvement of the wound healing process and propose
suitable combinations of biomaterials and bioactive compounds, Table 3 summaries several
materials and molecules which have been proposed in the literature, giving an overview
on both biomaterials and bioactive compounds regarding their capacity to induce the
differentiation of macrophages, either inhibiting M1 (shown as M1−), promoting M2
(shown as M2+) or showing an additive effect (shown as M1−− or M2++), including also
their associated wound closure times studied in mouse animal models.

Table 3. The suggested combinations of polymers and immunomodulators that could work synergis-
tically to promote wound healing and their potential impact on M1 and M2 profiles.

Biomaterials

Equine Pericardial
Collagen [25]

Hyaluronic
Acid [31]

Sulfated
Chitosan [26]

Sulfobetaine
Methacrylate [78]

Immunomodulator Wound Closure
Period (Days) 13–15 13–15 16–18 19–21

Metformin [63] 10–12 M1
M2++

M1
M2++

M1
M2++

M1
M2++

Melatonin [56] 13–15 M1−
M2++

M1−−
M2++

M1−
M2++

M1−
M2++

Quercetin [54] 13–15 M1−
M2++

M1−−
M2++

M1−
M2++

M1−
M2++

IL-33 [55] 16–18 M1
M2++

M1−
M2++

M1
M2++

M1
M2++

High glucose pus
insulin [24] ND M1

M2++
M1−
M2++

M1
M2++

M1
M2++

Rapamycin [70] 19–21 M1
M2++

M1−
M2++

M1
M2++

M1
M2++

The notation "M1−" is used to indicate the ability of a material or compound to inhibit macrophage polarization
toward the M1 phenotype. The notation "M2+" is used to indicate the ability of a material or compound to
promote polarization of macrophages towards the M2 phenotype. While "M1−−" indicates the additive effect of
a material and a compound having the ability to inhibit macrophages toward the M1 phenotype; and "M2++"
indicates the additive effect of a mate-rial and a compound having the ability to promote macrophages toward
the M2 phenotype.

For example, equine pericardial collagen and hyaluronic acid can achieve wound closure
in a short period of time within the range of thirteen to fifteen days [23], followed by sulfated
chitosan, which is in the range of sixteen to eighteen days, whereas sulfobetaine methacrylate
takes between nineteen and twenty-one days to achieve the closure of a wound. Therefore,
equine pericardial collagen and hyaluronic acid could be considered promising base materials
that could promote wound closure in a short period of time. Thioether grafted hyaluronic is
one of the promising materials in terms of macrophage modulation as well, promoting the
M2 phenotype, and at the same time, inhibiting the M1 phenotype [29]. In contrast, other
biomaterials could only promote the M2 phenotype [24,25,31,84].

Related to immunomodulators, melatonin and quercetin promote the M2 phenotype
and inhibit the M1 phenotype. However, the metformin compound achieves faster wound
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closure within the range of ten to twelve days. IL-33 takes the longest period to promote
wound closure, between sixteen and eighteen days.

Table 3 gives an overview of which type of material and immunomodulator is the
most suitable option to be chosen according to the analyzed literature and the potential
synergistic effect that could be achieved.

The previous analysis, focusing on how each component of the materials and bioactive
compounds proposed would affect the immunomodulatory activity of macrophages in
the wound healing process, was the basis to propose four hydrogel/immunomodulator
combinations as potential innovative biomedical hydrogels for chronic wounds treatment.

First, the combination of hyaluronic acid as a carrier material, along with melatonin
and quercetin, has the potential to enhance wound repair through a synergistic effect on
the immunomodulatory activity of macrophages. Hyaluronic acid acts as an excellent
polymeric support that can enhance the regulatory capacity of quercetin over M1, while
melatonin provides a strong stimulus over M2 profile induction. As mentioned before,
quercetin is known to have anti-inflammatory properties and can reduce oxidative stress,
while melatonin can promote angiogenesis and collagen synthesis. These properties can
help accelerate the wound healing process. Furthermore, hyaluronic acid is a well-known
biomaterial used in wound healing due to its ability to promote cell migration and prolifer-
ation. By combining hyaluronic acid with melatonin and quercetin, the resulting hydrogel
has the potential to improve wound closure, reduce inflammation, and promote tissue
regeneration. Therefore, the combination of hyaluronic acid, melatonin, and quercetin have
promising results in wound repair due to their potential to enhance the immunomodulatory
activity of macrophages and promote tissue regeneration.

As a second proposal, a combination of collagen with metformin and quercetin can
be suggested. Collagen is a well-known biomaterial used in wound healing due to its
ability to promote cell proliferation, migration, and angiogenesis. It provides a scaffold for
tissue repair and is essential for wound closure. Metformin is an anti-diabetic drug that
has been found to have beneficial effects in wound healing. It has been shown to promote
angiogenesis and reduce inflammation, which are essential for tissue repair. As previously
mentioned, quercetin has anti-inflammatory properties and can reduce oxidative stress,
which can help accelerate wound healing. The combination of these three components
may provide a synergistic effect that enhances their individual properties and promotes
wound repair. Collagen hydrogel provides selective and rapid wound closure times, and
the action of metformin, combined with the effects of quercetin, could result in an excellent
biomaterial for treating chronic wounds.

A third proposal would be the combination of sulfated chitosan with metformin and
melatonin to promote wound repair through its immunomodulatory properties. Chitosan
is a biopolymer that has been widely studied for its potential in wound healing. It has
been shown to have antimicrobial, anti-inflammatory, and antioxidant properties. Sulfated
chitosan is a modified form of chitosan that has improved biological properties, including
enhanced wound healing activity. It has been shown to stimulate the migration and
proliferation of cells involved in wound healing, such as fibroblasts and endothelial cells.
Metformin, as previously mentioned, has beneficial effects in wound healing due to its
anti-inflammatory and pro-angiogenic properties. Melatonin, on the other hand, has
antioxidant and anti-inflammatory properties that can reduce tissue damage and promote
tissue repair. The combination of these three components may provide a synergistic effect
that enhances their individual properties and promotes wound repair. Sulfated chitosan
with metformin and melatonin has the capability to regulate the proinflammatory pathways
of M1 macrophages and stimulate the conversion of macrophages to the anti-inflammatory
phenotype M2. This could help reduce inflammation and promote tissue regeneration,
leading to faster wound healing.

Finally, our fourth proposal suggests combining sulfobetaine methacrylate with met-
formin and melatonin for wound healing. Although there is limited research on this specific
combination, the individual properties of these components suggest that their combination
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could have potential benefits in promoting wound repair. Sulfobetaine methacrylate is a syn-
thetic polymer known for its biocompatibility, hemocompatibility, and anti-inflammatory
properties, which could aid in the wound healing process. Metformin and melatonin, as
previously discussed, have an anti-inflammatory and immunomodulation capacity over
macrophage phenotype, antioxidant, and pro-angiogenic properties that promote wound
healing. Combining these three components may enhance their individual properties and
have a synergistic effect on promoting wound repair.

Overall, all the proposed combinations promise interesting results in wound repair due
to their immunomodulatory properties. However, further research is needed to determine
the optimal combination of these components, and the appropriate dosage and duration of
treatment to achieve the best outcomes in wound healing. Clinical trials are also necessary
to validate the efficacy of this combination in treating chronic wounds.

As mentioned previously, a critical analysis of the reported outcomes was carried out,
leading to the selection of the proposed biomaterial combinations. This analysis involved
determining how the main signaling molecules of the M1 and M2 pathways could be
affected. The M1–M2 macrophage differentiation process implies complex pathways that
are mostly already characterized. The developed survey focusing on how such pathways
could be affected by the respective polymer–bioactive compound provides insights on how
the differentiation process occurs, and most importantly, how it could be manipulated to
obtain the desirable results. In Figure 2, the results of this analysis are shown, indicating
how the polymer–bioactive compounds could modify the different signals implied in the
M1–M2 polarization process.
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Figure 2. Macrophage phenotypes induced during the phase of the wound healing process and the
phenotype expected through the modulation action of materials and immunomodulators. Repertoire of re-
ceptors, cytokines, and chemokines of the (1) M1 phenotype and (2) M2 phenotype. Repertoire of receptors,
cytokines, and chemokines expected of (A) hyaluronic acid with melatonin and quercetin. (B) Collagen
with metformin and quercetin. (C) Sulfate chitosan with metformin and melatonin. (D) Sulfobetaine
methacrylate with metformin and melatonin. Up arrow: increment in the amount of this molecule. Down
arrow: decrease in the amount of this molecule. In the same color are indicated bioactive molecule or
biomaterial and its impact (increment o decrease) on the receptors, cytokines, and chemokines.
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The analysis provides useful information because the molecules analyzed are involved
in other metabolic pathways as well. For example, quercetin acts in the down-regulation of
the activity of NF-kB and IRF-5, reducing the synthesis and release of key inflammatory
factors for the M1 pathway activation. The melatonin effect works by inhibiting the
activation of the PI3K/AKT pathway, promoting the expression of PTEN and suppressing
the inflammatory response, this results in a favoring the M2 profile. Metformin, medication
of choice for the treatment of type 2 diabetes has good anti-hyperglycemic effectiveness,
but it is interesting also in wound healing approaches for having anti-inflammatory effects
by regulating the AMPK/mTOR signaling pathway to inhibit the NLRP3 inflammasome
activation and favoring M2 polarization. In this way, through the analysis of the potential
behaviors of these key molecules, other biological processes could be activated as well.

5. Conclusions

Studies have shown that specific combinations of hydrogels and bioactive molecules can
regulate either innate or adaptive immune cell responses at various stages of wound healing.
Investigating the interactions between immune cells and various types of natural/ synthetic
hydrogels and bioactive compounds leads to critical mechanistic insights. However, the
clinical translation of these structures requires more analysis on in vivo responses. Moreover,
hydrogels can be designed for immunomodulatory therapy of chronic wounds via the delivery
of bioactive molecules, including immunomodulatory components, or they can themselves
intrinsically regulate either the innate or adaptive immune cell response (Figure 1).

One of the most promising treatments is focused on macrophages, as they are involved
in key wound healing phases. In the inflammation phase, macrophages act by releasing
molecules that help the process; however, once this process is finished, another spectrum
of macrophages appears that release endless molecules to help resolve the inflammation.
Consequently, the stimulation of the proliferation of other types of cells is required to
promote wound healing.

The level of inflammation in wounds is dynamic, and the phenotype of macrophages
varies according to the wound microenvironment. Macrophages display different phe-
notypes to perform various roles during the wound healing process. They exhibit a
proinflammatory M1 phenotype in the early inflammatory stages and an anti-inflammatory
M2 phenotype in the repair stages. A phenotypic continuum may exist during the process,
with some cells sharing the phenotypic characteristics of the M1 and M2 macrophages.
The phenotypic regulation of macrophages is a sophisticated process. Insufficient M1
macrophages in the early stages may lead to severe infection or delayed wound healing,
whereas excessive M2 macrophages in the later stages may result in scar formation.

There are different strategies that promote the polarization of M2 and/or inhibition of M1 dis-
cussed in this manuscript, which shows the potential synergy of polymers/bioactive compounds
as immunomodulators. This synergy of treatments where a biomaterial with favorable properties
is proposed in terms of its actions toward macrophages, in combination with immunomodulatory
compounds with the same properties, could shorten the wound healing times.

After conducting a survey of the latest reported polymers/bioactive compounds with
wound healing activity promoted through immunomodulation, specifically with M1–M2
transformation effect, we propose four alternative combinations not previously reported
that could accelerate the wound closure times: hyaluronic acid/melatonin and quercetin,
collagen/metformin and quercetin, sulfobetaine methacrylate/metformin and melatonin,
and sulfated chitosan/metformin and melatonin.

The current dressings lack the ability to precisely modulate the phenotype of macrophages
to achieve ideal results. In addition, few studies on hydrogels have uncovered the molecular
mechanisms of macrophage polarization, which is of great significance for the precise regula-
tion of macrophage activity in wound healing. Therefore, while clearly more research is needed
to solve this major issue, we propose these four functional hydrogel–immunomodulator com-
binations as promising biomaterials that could help in healing skin pathologies such as the
ones suffered by diabetic patients.
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