- 1 Short title: Baltazar et al.: *Hydnum peroxydatum* belongs to *Hymenochaete*
- 2 Phylogenetic relationships of *Hydnum peroxydatum* support the synonymy of
- 3 *Hydnochaete* with *Hymenochaete* (Hymenochaetaceae, Agaricomycetes)
- 4 Juliano M. Baltazar<sup>1</sup>
- 5 Programa de Pós-Graduação em Botânica, Departamento de Botânica, Universidade
- 6 Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, CEP 91501-
- 7 970, Rio Grande do Sul, Brazil
- 8 María Belén Pildain
- 9 Sergio P. Gorjón
- 10 Centro Forestal CIEFAP, C.C. 14, 9200 Esquel, Chubut, Argentina
- 11 Rosa Mara B. da Silveira
- 12 Programa de Pós-Graduação em Botânica, Departamento de Botânica, Universidade
- 13 Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, CEP 91501-
- 14 970, Rio Grande do Sul, Brazil
- 15 Mario Rajchenberg
- 16 Centro Forestal CIEFAP, C.C. 14, 9200 Esquel, Chubut, Argentina
- 17 Abstract: A combined dataset of rDNA ITS and LSU sequences was used to infer the
- 18 phylogenetic relationships of *Hydnochaete peroxydata* ( $\equiv$  *Hydnum peroxydatum*), the
- 19 type species of *Hydnochaete*. The species was retrieved nested within the
- 20 Hymenochaete s. str. clade; therefore, Hydnochaete is regarded as a synonym of
- 21 *Hymenochaete*, and the new combination *Hymenochaete peroxydata* is proposed.
- 22 *Keywords:* Basidiomycota, corticioid fungi, *Cyclomyces*, Hymenochaetales, ITS
- and LSU rDNA, xanthochroic fungi
- 24 INTRODUCTION

| 1  | Bresadola (1896) described Hydnochaete Bres. with the new species Hydnochaete             |
|----|-------------------------------------------------------------------------------------------|
| 2  | badia Bres. as type species, based on collections from southern Brazil, and               |
| 3  | characterized by a hydnoid hymenophore and presence of setae. Later, Dennis (1970)        |
| 4  | regarded Hyd. badia as a synonym of Hydnum peroxydatum Berk. ex Cooke, a name             |
| 5  | based on a collection from Venezuela, and proposed the binomial Hydnochaete               |
| 6  | peroxydata (Berk. ex Cooke) Dennis.                                                       |
| 7  | Hydnochaete in its traditional sense now comprises ten species, mainly found in           |
| 8  | warm temperate, subtropical and tropical areas (Ryvarden 1982, Parmasto and Wu            |
| 9  | 2005, Dai and Li 2010). It has commonly been classified with genera of                    |
| 10 | hymenochaetoid fungi with smooth (e.g., Hymenochaete Lév.), poroid (e.g., Phellinus       |
| 11 | Quél. s. l.), and poroid to cyclolamellate (e.g., Cyclomyces Kunze ex Fr.)                |
| 12 | hymenophores, mainly based on the xanthochroic reaction and presence of setae in          |
| 13 | many species (Patouillard 1900, Corner 1948, 1991; Donk 1964, Jülich 1981, Ryvarden       |
| 14 | 2004).                                                                                    |
| 15 | Phylogenetic studies have shown that several Hydnochaete species belong to                |
| 16 | Hymenochaete s. str., a monophyletic genus which also includes some Cyclomyces taxa,      |
| 17 | including its type species Cyclomyces fuscus Kunze ex Fr. (Wagner and Fischer 2002,       |
| 18 | He and Dai 2012, He and Li 2013, Parmasto et al. 2013). Several studies also show that    |
| 19 | Hymenochaete tabacina (Sowerby : Fr.) Lév. and some other species of Cyclomyces,          |
| 20 | Hydnochaete, and Hymenochaete s. l. form a clade independent from Hymenochaete s.         |
| 21 | str. and are currently accepted in Pseudochaete T. Wagner & M. Fisch. (Wagner and         |
| 22 | Fischer 2002, He and Dai 2012, He and Li 2013, Parmasto et al. 2013). Here                |
| 23 | Hymenochaete s. str. refers to those species placed in the same clade of the type species |
| 24 | of Hymenochaete, i.e. Hymenochaete rubiginosa (Dicks. : Fr.) Lév., while                  |
| 25 | Hymenochaete s. l. also includes species of Pseudochaete.                                 |

Baltazar et al. 3

| 1  | The synonym of Cyclomyces with Hymenochaete would create an undesirable                 |
|----|-----------------------------------------------------------------------------------------|
| 2  | nomenclatural situation because Cyclomyces is an older name but has considerable        |
| 3  | fewer specific names than Hymenochaete (5 in Cyclomyces against ca. 110 in              |
| 4  | Hymenochaete). Thus, Fischer and Wagner (2001) proposed the rejection of                |
| 5  | Cyclomyces in favor of Hymenochaete, which later was approved by the 17th               |
| 6  | International Botanical Congress (McNeill et al. 2006). Wagner & Fischer (2002) also    |
| 7  | had to propose a new name for C. fuscus (type species of Cyclomyces) when combined      |
| 8  | in Hymenochaete, viz. Hymenochaete cyclolamellata T. Wagner & M. Fisch., because        |
| 9  | of the existence of the binomial Hymenochaete fusca P. Karst.                           |
| 10 | The phylogenetic analyses carried out by Wagner and Fischer (2002), He and              |
| 11 | Dai (2012), He and Li (2013) and Parmasto et al. (2013) sampled many species,           |
| 12 | including the type species of Cyclomyces, Hymenochaete and Pseudochaete. However,       |
| 13 | the phylogenetic placement of Hyd. peroxydata, type species of Hydnochaete, remained    |
| 14 | unknown. The assessment of its phylogenetic placement is required in order to verify    |
| 15 | the current taxonomic status of Hydnochaete. The aims of this study were to address the |
| 16 | phylogenetic relationships of Hyd. peroxydata based on the analysis of a two-gene data  |
| 17 | set containing nuc-LSU and ITS rDNA gene sequences, and to provide the necessary        |
| 18 | taxonomic treatment.                                                                    |
| 19 | MATERIALS AND METHODS                                                                   |
| 20 | Cultures and herbarium specimensCultures for DNA extraction were obtained from          |
| 21 | fresh spore prints and kept at the authors' institutional culture collections (CIEFAPcc |
| 22 | and Laboratório de Micologia/BOT/UFRGS). They were grown on malt extract agar           |
| 23 | (MEA) in the dark at 25 C and stored in sterile distilled water following Burdsall and  |
| 24 | Derworth (1004) Voucher appointing were deposited at Herberia ICN and Centre de         |

24 Dorworth (1994). Voucher specimens were deposited at Herbaria ICN and Centro de

| 1  | Investigación y Extensión Forestal Andino Patagónico (CIEFAP, Esquel, Argentina).          |
|----|--------------------------------------------------------------------------------------------|
| 2  | Data about vouchers are given in the taxonomic treatment.                                  |
| 3  | DNA extraction and PCR conditions.—For DNA extractions, strains were cultured in           |
| 4  | malt peptone broth with 10% (v/v) of malt extract (Merck) and 0.1 % (w/v) Bacto            |
| 5  | peptone (Difco), 2 mL medium in 15 mL tubes. The cultures were incubated at 25 C for       |
| 6  | 5 d in darkness. Total DNA was extracted with the UltraClean <sup>TM</sup> Microbial DNA   |
| 7  | Isolation Kit (MO BIO laboratories Inc., USA), according to the manufacturer's             |
| 8  | instructions. rDNA's ITS (including ITS1, 5.8S and ITS2) and nucLSU regions were           |
| 9  | amplified using the universal primers ITS5-LR21 and LR0R-LR5, respectively (R.             |
| 10 | Vilgalys lab webpage at http://www.botany.duke.edu/fungi/mycolab).                         |
| 11 | PCR reaction mixtures for amplification of both regions were modified from                 |
| 12 | Rajchenberg et al. (2011) in a final reaction volume of 50 $\mu$ L with 100–500 ng DNA.    |
| 13 | PCR reactions were performed in a thermal cycler (My Cycler <sup>™</sup> , BioRad) and the |
| 14 | thermal cycling program was the same described in Rajchenberg et al. (2011). The           |
| 15 | amplified fragments were purified and sequenced on an ABI 3700 automated sequencer         |
| 16 | (Perkin-Elmer, USA) at the DNA Synthesis and Sequencing Facility (Macrogen,                |
| 17 | Korea). The same primers were used for amplification and sequencing. Sequences             |
| 18 | generated in this study were submitted to GenBank and accession numbers are given in       |
| 19 | TABLE I.                                                                                   |
| 20 | Phylogenetic analyses.—DNA sequences generated in this study were manually edited          |
| 21 | with BioEdit 7.1.3.0 (Hall 1999), and additional sequences for the ingroup and             |
| 22 | outgroup, based on studies of Wagner and Fischer (2002) and He and Dai (2012), were        |
| 23 | retrieved from the GenBank nucleotide database. ITS sequences were not available for       |
| 24 | Hymenochaete acanthophysata J.C. Léger. Sequence alignments were automatically             |
| 25 | performed on MUSCLE v3.8.31 (Edgar 2004) and manually checked on MEGA v5.10                |

Baltazar et al. 5

1 (Tamura et al. 2011). Alignments are available from TreeBASE

| 2  | (http://purl.org/phylo/treebase/phylows/study/TB2:S14475). The two DNA regions                    |
|----|---------------------------------------------------------------------------------------------------|
| 3  | were first analyzed independently (data not shown), and since there were no major                 |
| 4  | topological conflicts the data were combined into a single matrix for subsequent                  |
| 5  | analyses. Phylogenetic analyses were conducted for the two loci combined dataset under            |
| 6  | maximum parsimony (MP) and Bayesian inference (BI) criteria. Fomitopsis pinicola                  |
| 7  | (Sw. : Fr.) P. Karst. and Trametes villosa (Sw. : Fr.) Kreisel were used as outgroup              |
| 8  | species.                                                                                          |
| 9  | MP analysis was performed in PAUP* v4.0b10 (Swofford 2002) with gaps                              |
| 10 | treated as missing characters, equal weighting of characters and transformations,                 |
| 11 | heuristic searches (TBR and MULTREES options on) with random addition of sequences                |
| 12 | (1000 replicates), and MAXTREES set to auto-increase. Nodal support was tested with               |
| 13 | bootstrap (BS) of 1000 replicates using the heuristic search option (TBR and MULTREES             |
| 14 | options on) and 10 random addition sequences.                                                     |
| 15 | Bayesian analysis was conducted in MrBayes v3.2.1 (Ronquist et al. 2012).                         |
| 16 | Models of evolution were identified for each dataset using jModelTest v2.1.2 (Darriba             |
| 17 | et al. 2012) under selection AIC, resulting in the model TPM2uf+I+G for ITS and                   |
| 18 | TIM3+I+G for LSU. BI posterior probabilities (PP) were estimated for 10 <sup>7</sup> generations, |
| 19 | by running four chains and sampling a tree each $10^5$ generations, and the first 5 % trees       |
| 20 | from each run were discarded as burn in. The burn in was determined using Tracer v1.5             |
| 21 | (http://tree.bio.ed.ac.uk/software/tracer/) to analyze MrBayes output files.                      |
| 22 | RESULTS                                                                                           |
| 23 | The combined dataset (ITS and LSU) included 21 taxa and a total of 1670 characters, of            |
| 24 | which 1067 were constant, 161 were variable and parsimony uninformative, and 442                  |
| 25 | were parsimony informative. MP analysis resulted in three equally most parsimonious               |

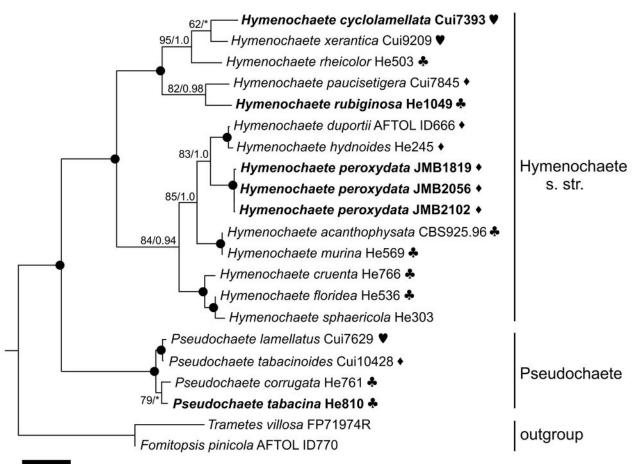
| 1  | trees (Tree length = 1229; $CI = 0.6373$ ; $RI = 0.7785$ ; $RC = 0.5384$ ), and one of them is |
|----|------------------------------------------------------------------------------------------------|
| 2  | presented in FIG. 1. Six new sequences were generated for this study (see TABLE I).            |
| 3  | The monophyly of the ingroup is fully supported with both MP and BI analyses                   |
| 4  | and only two topological incongruencies between the MP and BI analyses were                    |
| 5  | observed (FIG. 1, SUPP. FIG. 1). Those nodes are weakly supported with MP (BS $< 80$ )         |
| 6  | and not supported with BI analysis (PP $< 0.85$ ).                                             |
| 7  | The ingroup taxa pertained to two major strongly supported clades:                             |
| 8  | Hymenochaete s. str. (13 species), and Pseudochaete (four species). From a total of 17         |
| 9  | clades identified, ten were fully supported (BS 100/PP 1.0), five received moderate to         |
| 10 | high support (BS $>$ 80; PP $>$ 0.94), and two terminal clades were not supported (FIG. 1).    |
| 11 | The segregation of Cyclomyces and Hydnochaete as independent from                              |
| 12 | Hymenochaete was not supported by our analyses, since the type species of these three          |
| 13 | genera were placed in the same clade (Hymenochaete s. str.) with full support (FIG. 1).        |
| 14 | Furthermore, monophyletic groups of species with different hymenophoral types were             |
| 15 | observed — e.g., Hymenochaete rheicolor (Mont.) Lév. (smooth) with Hym.                        |
| 16 | cyclolamellata (concentrically lamellate to poroid) and Hym. xerantica (Berk.) S.H. He         |
| 17 | & Y.C. Dai (poroid); Hym. rubiginosa (smooth) with Hym. paucisetigera (Parmasto &              |
| 18 | Sheng H. Wu) S.H. He & Y.C. Dai (hydnoid). According to the results presented here             |
| 19 | Hymenochaete s. str. and Pseudochaete each include at least three hymenophoral types.          |
| 20 | The three Hyd. peroxydata specimens sampled clustered with full support with a                 |
| 21 | sister clade formed by Hym. duportii (Pat.) T. Wagner & M. Fisch. and Hym. hydnoides           |
| 22 | T. Wagner & M. Fisch. The whole group is nested in the Hymenochaete s. str. clade.             |
| 23 | TAXONOMY                                                                                       |
| 24 | Hymenochaete Lév., Ann. Sci. Nat., Bot. Ser. III 5:150, 1846, nom. cons., non                  |
|    |                                                                                                |

25 *Hymenochaeta* P. Beauv. ex T. Lestib. 1819 (Cyperaceae).

| 1  | = Cyclomyces Kunze ex Fr., Linnaea 5:512, 1830, nom. rej.                               |
|----|-----------------------------------------------------------------------------------------|
| 2  | = Hydnochaete Bres., Hedwigia 35(5):287, 1896, syn. nov., non Hydnochaete               |
| 3  | Peck 1897.                                                                              |
|    |                                                                                         |
| 4  | Hymenochaete peroxydata (Berk. ex Cooke) Baltazar, Gorjón & Rajchenb., comb.            |
| 5  | nov.                                                                                    |
| 6  | MycoBank MB 804370                                                                      |
| 7  | $\equiv$ <i>Hydnum peroxydatum</i> Berk. ex Cooke, Grevillea 20(93):1, 1891 (basionym). |
| 8  | <i>≡ Hydnochaete peroxydata</i> (Berk. ex Cooke) Dennis, Kew Bull. Addit. Ser.          |
| 9  | 3:105, 1970.                                                                            |
| 10 | = Hydnochaete badia Bres., Hedwigia 35:287, 1896.                                       |
| 11 | Specimens examined. BRAZIL. RIO GRANDE DO SUL: Riozinho. On dead                        |
| 12 | hardwood, 10 Apr 2010, J.M. Baltazar 1819 (ICN, CIEFAP); São Francisco de Paula,        |
| 13 | PROMATA-PUC. On dead hardwood, 26 Jun 2010, J.M. Baltazar 2056 (ICN,                    |
| 14 | CIEFAP); SANTA CATARINA: Blumenau. 1894, A. Möller nº 211 (S, lectotype of              |
| 15 | Hydnochaete badia); Blumenau. A. Möller nº 268 (S, paratype of Hydnochaete badia);      |
| 16 | A. Möller nº 801 (S, paratype of Hydnochaete badia); Blumenau, A. Möller (S);           |
| 17 | Florianópolis, Unidade de Conservação Ambiental Desterro (UCAD). On dead                |
| 18 | hardwood, 17 Sep 2010, J.M. Baltazar 2102 (ICN, CIEFAP).                                |
| 19 | A monograph of Hymenochaete by Léger (1998) presented a morphological treatment         |
| 20 | of species with smooth hymenophore. Ryvarden (1982) monographed Hydnochaete             |
| 21 | with descriptions and drawings of all the accepted taxa.                                |
| 22 | DISCUSSION                                                                              |
| 23 | Results of the present study are similar to those of Wagner and Fischer (2002), He and  |
| 24 | Dai (2012), He and Li (2013) and Parmasto et al. (2013).                                |
|    |                                                                                         |

| 1  | Sequences of two nuclear rDNA regions were used to infer the phylogenetic                       |
|----|-------------------------------------------------------------------------------------------------|
| 2  | placement of Hyd. peroxydata, the type species of Hydnochaete. Before the present               |
| 3  | study, the phylogenetic relationships of Hymenochaete and allied genera using a                 |
| 4  | combined dataset of ITS and LSU sequences were only investigated by He and Li                   |
| 5  | (2013).                                                                                         |
| 6  | Specimens of Hyd. peroxydata are nested within the Hymenochaete s. str. clade                   |
| 7  | with full support, and two other hydnoid species (Hym. duportii and Hym. hydnoides)             |
| 8  | form a sister group, but they are also closely related to species with a smooth                 |
| 9  | hymenophore such as Hym. acanthophysata and Hym. murina Bres.                                   |
| 10 | Hymenochaete is accepted as monophyletic and includes species with                              |
| 11 | resupinate, pileate sessile or stipitate basidiomes, with smooth, fissured or verrucose,        |
| 12 | hydnoid, poroid or concentrically lamellate hymenophores, monomitic hyphal system,              |
| 13 | simple septate hyphae, presence or absence of setae, and hyaline basidiospores.                 |
| 14 | Pseudochaete also includes species with smooth, hydnoid and poroid to                           |
| 15 | concentrically lamellate hymenophores, and there is no evident morphological feature to         |
| 16 | separate it from Hymenochaete s. str. Pseudochaete tabacina (Sowerby : Fr.) T. Wagner           |
| 17 | & M. Fisch., type species of the genus, presents a holocenocytic nuclear behavior               |
| 18 | (Wagner and Fischer 2002). However, data on the nuclear behavior of other species               |
| 19 | currently accepted in <i>Pseudochaete</i> and of most species of <i>Hymenochaete</i> s. str. is |
| 20 | lacking, and the importance of this feature to segregate these genera remains unknown.          |
| 21 | Since Hymenochaete s. str. and Pseudochaete can only be separated based on molecular            |
| 22 | data, the generic placement of 70-80 species of Hymenochaete s. l. not yet included in          |
| 23 | phylogenetic analyses remains unknown (Parmasto et al. 2013).                                   |
| 24 | Acknowledgements                                                                                |

| 1  | The authors are grateful to Olivier Chauveau and Larissa Trierveiler Pereira for       |
|----|----------------------------------------------------------------------------------------|
| 2  | contributions on a preliminary draft of the manuscript and suggestions on the          |
| 3  | phylogenetic analyses. Loreta Brandão de Freitas and Patrícia Valente da Silva also    |
| 4  | made suggestions for these analyses. JMB has Ph.D. scholarships from CNPq (GD          |
| 5  | 141495/2010-3) and CAPES (PDSE-proceeding 9715/11-8). CAPES (Brazil) and               |
| 6  | MINCyT (Argentina) are thanked by financial support (Bilateral cooperation             |
| 7  | CAPES/MINCyT Rede 003/11). MBP and MR are researchers of CONICET                       |
| 8  | (Argentina).                                                                           |
| 9  | LITERATURE CITED                                                                       |
| 10 | Bresadola G. 1896. Fungi Brasilienses lecti a cl. Dr. Alfredo Möller. Hedwigia 35:276- |
| 11 | 302.                                                                                   |
| 12 |                                                                                        |
| 13 | Burdsall HH, Dorworth EB. 1994. Preserving cultures of wood-decaying                   |
| 14 | Basidiomycotina using sterile distilled water in cryovials. Mycologia 86:275–280.      |
| 15 | doi:10.2307/3760650                                                                    |
| 16 |                                                                                        |
| 17 | Corner EJH. 1948. Asterodon, a clue to the morphology of fungus fruit-bodies: With     |
| 18 | notes on Asterostroma and Asterostromella. Trans Brit Mycol Soc 31:234–245.            |
| 19 | doi:10.1016/S0007-1536(48)80005-7                                                      |
| 20 |                                                                                        |
| 21 | ——. 1991. Ad Polyporaceas VII: The Xanthochroic Polypores. Beih Nova Hedwigia          |
| 22 | 101:1–175.                                                                             |
| 23 |                                                                                        |
| 24 | Dai Y-C, Li H-J. 2010. Notes on Hydnochaete (Hymenochaetales) with a seta-less new     |
| 25 | species discovered in China. Mycotaxon 111:481–487. doi:10.5248/111.481                |


| 1  |                                                                                     |
|----|-------------------------------------------------------------------------------------|
| 2  | Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new     |
| 3  | heuristics and parallel computing. Nature Methods 9:772-772. doi:10.1038/nmeth.2109 |
| 4  |                                                                                     |
| 5  | Dennis RWG. 1970. Fungus flora of Venezuela and adjacent countries. Kew Bull Addit  |
| 6  | Ser 3:1–531.                                                                        |
| 7  |                                                                                     |
| 8  | Donk MA. 1964. A conspectus of the families of Aphyllophorales. Persoonia 3:199-    |
| 9  | 324.                                                                                |
| 10 |                                                                                     |
| 11 | Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high     |
| 12 | throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340                  |
| 13 |                                                                                     |
| 14 | Fischer M, Wagner T. 2001. (1497) Proposal to conserve Hymenochaete Lév. nom.       |
| 15 | cons. (Hymenochaetales, Basidiomycetes), against an additional name, Cyclomyces Fr. |
| 16 | Taxon 50:1185–1186.                                                                 |
| 17 |                                                                                     |
| 18 | Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and    |
| 19 | analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.             |
| 20 |                                                                                     |
| 21 | He S-H, Dai Y-C. 2012. Taxonomy and phylogeny of Hymenochaete and allied genera     |
| 22 | of Hymenochaetaceae (Basidiomycota) in China. Fungal Divers 56:77-93.               |
| 23 | doi:10.1007/s13225-012-0174-9                                                       |
| 24 |                                                                                     |

- 2 (Hymenochaetales, Basidiomycota) from China based on morphological and molecular
- 3 characters. Mycol Progr 12:331–339. doi:10.1007/s11557-012-0838-6
- 4
- 5 Jülich W. 1981. Higher taxa of Basidiomycetes. Bibl Mycol 85:1–485.
- 6
- 7 Justo A, Hibbett DS. 2011. Phylogenetic classification of Trametes (Basidiomycota,
- 8 Polyporales) based on a five-marker dataset. Taxon 60:1567–1583.
- 9
- 10 Léger J-C. 1998. Le genre *Hymenochaete* Léveillé. Bibl Mycol 171:1–319.
- 11
- 12 McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson
- 13 DH, Prado J, Silva PC, Skog JE et al. 2006. International Code of Botanical
- 14 Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical
- 15 Congress Vienna, Austria, July 2005. Regnum Vegetabile 146:I–XVIII, 1–568.
- 16
- 17 Parmasto E, Saar I, Larsson E, Rummo S. 2013. Phylogenetic taxonomy of
- 18 *Hymenochaete* and related genera (Hymenochaetales). Mycol Progr (in press):1–10.
- 19 doi:10.1007/s11557-013-0891-9
- 20
- 21 \_\_\_\_\_, Wu S-H. 2005. Hydnochaete paucisetigera, a new species of
- 22 Hymenochaetales. Mycotaxon 91:461–463.
- 23
- 24 Patouillard NT. 1900. Essai taxonomique sur les familles et les genres des
- 25 Hyménomycètes. Lons-Le-Saunier, France: Lucien Declume. p. 184.

| 1  |                                                                                        |
|----|----------------------------------------------------------------------------------------|
| 2  | Rajchenberg M, Gorjón SP, Pildain MB. 2011. The phylogenetic disposition of            |
| 3  | Antrodia s.l. (Polyporales, Basidiomycota) from Patagonia, Argentina. Austral Syst Bot |
| 4  | 24:111-120. doi:10.1071/SB11003                                                        |
| 5  |                                                                                        |
| 6  | Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu    |
| 7  | L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic      |
| 8  | inference and model choice across a large model space. Syst Biol 61:539-42.            |
| 9  | doi:10.1093/sysbio/sys029                                                              |
| 10 |                                                                                        |
| 11 | Ryvarden L. 1982. The genus Hydnochaete Bres. (Hymenochaetaceae). Mycotaxon            |
| 12 | 15:425–447.                                                                            |
| 13 |                                                                                        |
| 14 | 2004. Neotropical Polypores Part 1. Introduction, Ganodermataceae &                    |
| 15 | Hymenochaetaceae. Synop Fungorum 19:1–229.                                             |
| 16 |                                                                                        |
| 17 | Swofford DL. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other            |
| 18 | Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates. p. 1-142.          |
| 19 |                                                                                        |
| 20 | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:              |
| 21 | molecular evolutionary genetics analysis using maximum likelihood, evolutionary        |
| 22 | distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739.                   |
| 23 | doi:10.1093/molbev/msr121                                                              |
| 24 |                                                                                        |

| 1  | Wagner T, Fischer M. 2002. Classification and phylogenetic relationships of                                     |
|----|-----------------------------------------------------------------------------------------------------------------|
| 2  | Hymenochaete and allied genera of the Hymenochaetales, inferred from rDNA                                       |
| 3  | sequence data and nuclear behaviour of vegetative mycelium. Mycol Progr 1:93-104.                               |
| 4  |                                                                                                                 |
| 5  | FIG. 1. Phylogenetic relationships of Hymenochaete s. l. inferred with a combined                               |
| 6  | dataset (rDNA ITS and LSU) under maximum parsimony (MB) and Bayesian inference                                  |
| 7  | (BI) analyses. Tree topology is based on one of the three equally most parsimonious                             |
| 8  | trees. Support values for internal nodes are given on the branches as bootstrap/posterior                       |
| 9  | probability (BS/PP). Fully supported nodes (BS 100/PP 1.0) are indicated by black                               |
| 10 | circles. Incongruous topologies between MP and BI analyses are indicated with an                                |
| 11 | asterisk instead of the PP value. Species names in boldface indicate the type species of                        |
| 12 | Cyclomyces (Hym. cyclolamellata), Hydnochaete (Hym. peroxydata), Hymenochaete                                   |
| 13 | (Hym. rubiginosa) and Pseudochaete (P. tabacina). Species names are followed by                                 |
| 14 | symbols indicating hymenophore types: $\clubsuit$ = smooth, $\blacklozenge$ = hydnoid, $\heartsuit$ = poroid to |
| 15 | cyclolamellate.                                                                                                 |
| 16 |                                                                                                                 |
|    |                                                                                                                 |

<sup>1</sup>Corresponding author, E-mail: baltazarjmb@gmail.com



100 changes

## TABLE I. Specimens presented in this study with GenBank accession numbers for the

ITS and LSU sequences (newly sequenced strains are indicated in boldface; -

information not available)

| Species                     | voucher/strain # | numbers  |          | Reference          |
|-----------------------------|------------------|----------|----------|--------------------|
|                             |                  | LSU      | ITS      |                    |
| Hymenochaete acanthophysata | CBS 925.26       | AF385144 | _        | Wagner and Fischer |
|                             |                  |          |          | (2002)             |
| Hymenochaete cruenta        | He766            | JQ279681 | JQ279595 | He and Dai (2012)  |
| Hymenochaete cyclolamellata | Cui7393          | JQ279629 | JQ279513 | He and Dai (2012)  |
| Hymenochaete duportii       | AFTOL-ID 666     | AY635770 | DQ404386 | _                  |
| Hymenochaete floridea       | He536            | JQ279683 | JQ279597 | He and Dai (2012)  |
| Hymenochaete hydnoides      | He245            | JQ279680 | JQ279590 | He and Dai (2012)  |
| Hymenochaete murina         | He569            | JQ716412 | JQ716406 | He and Li (2013)   |
| Hymenochaete paucisetigera  | Cui7845          | JQ279644 | JQ279560 | He and Dai (2012)  |
| Hymenochaete peroxydata     | J.M. Baltazar    | KF371647 | KF371644 |                    |
|                             | 1819             |          |          | this study         |
|                             | J.M. Baltazar    |          |          |                    |
| Hymenochaete peroxydata     | 2056,            | KF371648 | KF371645 | this study         |
|                             | CIEFAPcc 409     |          |          |                    |
|                             | J.M. Baltazar    |          |          |                    |
| Hymenochaete peroxydata     | 2102,            | KF371649 | KF371646 | this study         |
|                             | CIEFAPcc 411     |          |          |                    |
| Hymenochaete rheicolor      | He503            | JQ279632 | JQ279530 | He and Dai (2012)  |
| Hymenochaete rubiginosa     | He1049           | JQ279667 | JQ716407 | He and Li (2013)   |
| Hymenochaete sphaericola    | He303            | JQ279684 | JQ279599 | He and Dai (2012)  |
| Hymenochaete xerantica      | Cui9209          | JQ279635 | JQ279519 | He and Dai (2012)  |
| Pseudochaete corrugata      | He761            | JQ279621 | JQ279606 | He and Dai (2012)  |
| Pseudochaete lamellata      | Cui7629          | JQ279617 | JQ279603 | He and Dai (2012)  |

## Baltazar et al. 2

| Pseudochaete tabacina     | He810        | JQ279626 | JQ279611 | He and Dai (2012)           |
|---------------------------|--------------|----------|----------|-----------------------------|
| Pseudochaete tabacinoides | Cui10428     | JQ279618 | JQ279604 | He and Dai (2012)           |
| Outgroups                 |              |          |          |                             |
| Fomitopsis pinicola       | AFTOL-ID 770 | AY684164 | AY854083 | _                           |
| Trametes villosa          | FP71974R     | JN164810 | JN164969 | Justo and Hibbett<br>(2011) |