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Abstract. In retail operations, customer choices may be affected by stockout and pro-
motion events. Given panel data with the transaction history of customers, and product
availability and promotion data, our goal is to predict future individual purchases. We use
a general nonparametric framework in which we represent customers by partial orders of
preferences. In each store visit, each customer samples a full preference list of the products
consistent with her partial order, forms a consideration set, and then chooses to purchase
the most preferred product among the considered ones. Our approach involves: (a) defin-
ing behavioral models to build consideration sets as subsets of the products on offer,
(b) proposing a clustering algorithm for determining customer segments, and (c) deriving
marginal distributions for partial preferences under the multinomial logit model. Numer-
ical experiments on real-world panel data show that our approach allows more accurate,
fine-grained predictions for individual purchase behavior compared to state-of-the-art
alternative methods.
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1. Introduction
Demand estimates are key inputs for inventory con-
trol and price optimization models used in retail oper-
ations and revenue management (RM).1 In the last
decade, there has been a trend of switching from inde-
pendent demand models to choice-based models of
demand in both academia and industry practice. For
simplicity, the traditional approach assumed that each
product has its own independent stream of demand.
However, if products are substitutes and their availabil-
ities vary over time, then the demand for each product
will be a function of the set of alternatives available to
consumers when they make their purchase decisions,
so that ignoring stockout and substitution effects that
occur over time can introduce biases in the estimation
process.
The building block for estimating customer choice

is the specification of a choice model, either paramet-
ric or nonparametric. Most of the proposals in the
operations-related literature have been on the former
for both estimation and assortment optimization (e.g.,
Kök and Fisher 2007, Musalem et al. 2010). By para-
metric, we mean that the number of parameters that
describe the family of underlying distributions is fixed
and independent of the training data set volume.
The parameterized model structure relates product

attributes to the utility values or choice probabilities
of the different options. The greatest advantage of
parametric models is the ability to include covari-
ates, such as product features and price, that can
help explain consumer preferences for alternatives.
This also enables parametric models like the multino-
mial logit (MNL) or nested logit (NL) with linear-in-
parameters utilities to extrapolate choice predictions to
new alternatives that have not been observed in his-
torical data and to predict how changes in product
attributes such as price affect choice outcomes. Yet, the
drawback of any parametric model is that one must
make assumptions about the structure of preferences
and the relevant covariates that influence it, which
requires expert judgment and trial-and-error testing to
determine an appropriate specification.

Recently, with the rise of business analytics and
data-driven approaches, there has been a growing in-
terest in revenue predictions and demand estimation
derived from nonparametric choicemodels (e.g., Farias
et al. 2013, Haensel and Koole 2011, van Ryzin and
Vulcano 2014) that provide inputs for various optimiza-
tion problems (see discussion in Section 1.2). These
operations-related, nonparametric proposals specify
customer types defined by their rank ordering of all
alternatives (along with the no-purchase alternative).2

1

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
0.

19
5.

71
.1

89
] 

on
 2

4 
A

pr
il 

20
17

, a
t 1

7:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://pubsonline.informs.org/journal/mnsc/
mailto:sjagabat@stern.nyu.edu
mailto:gvulcano@stern.nyu.edu
https://doi.org/10.1287/mnsc.2016.2683


Jagabathula and Vulcano: Estimating Individual Customer Preferences from Panel Data
2 Management Science, Articles in Advance, pp. 1–20, ©2017 INFORMS

When faced with a choice from an offer set, a customer
is assumed to purchase the available product that ranks
highest in her preference list—or to quit without pur-
chasing. The flexibility of this nonparametric choice
model comes at a price: The potential number of pref-
erence lists (customer types) in this rank-based choice
model is factorial in the number of alternatives, which
challenges the estimation procedure.
The empirical evidence both in academia and indus-

try practices strongly sustains choice-based demand
models over the independent demand assumption
(e.g., Ratliff et al. 2008, Newman et al. 2014, Vulcano
et al. 2010) when the data source consists of product
availability and sales transaction data. Yet, these mod-
els overlook two important features: First, they ignore
the repeated interactions of a given customer with the
firm and treat every transaction as coming from a dif-
ferent individual; and second, they usually assume
that the items evaluated by a given customer in any
store visit are all of the available ones within a cate-
gory (or subcategory) of products, which likely over-
estimates the size of the true consideration set. The first
limitation can be addressed by keeping track of the
repeated interactions between a customer and the firm
by tagging transactions with customer id. This infor-
mation, popularly referred to as panel data, can be used
subsequently to learn the preferences of individual
customers. The canonical example is customers buy-
ing groceries on a weekly basis from a grocery retailer,
but more broadly the setting includes any application
in which customers exhibit loyalty through repeated
purchases be it apparel, hotel, airline, etc. These types
of data are very common in practical settings because
of the proliferation of loyalty cards and other market-
ing programs, and can later be used to customize the
offering (e.g., via personalized assortments and prices
(Clifford 2012) or personalized mobile phone coupons
(Danaher et al. 2015). The limitation on the unobserved
consideration set of the customer requires building a
behavioral model of choice that captures individual
bounded rationality.
In this paper, we contribute to the literature by pro-

posing a nonparametric, choice-based demand frame-
work that overcomes the two limitations discussed
above, and that incorporates both operations- andmar-
keting-related components. We infer individual cus-
tomer preferences from panel data in a setting where
(i) products are not always available (e.g., due to stock-
outs or deliberate scarcity introduced by the firm),
(ii) preferences may be altered by price or display pro-
motions, and (iii) customers exhibit bounded rational-
ity in the sense that they cannot evaluate all of the
products onoffer, and their consideration sets are unob-
servable. For the purpose of estimation, the framework
can accommodate both parametric and nonparametric
models.

1.1. Summary of Results
We propose a choice-based demand model that is
a generalization of the aforementioned rank-based
model, which typically associates each customer with
a fixed preference list that remains constant over time.
In our model, we focus on a fixed set of m customers
who visit a firm repeatedly and make purchases from
a particular category or subcategory of products (e.g.,
coffee or shampoo). The full assortment is defined by a
set of products, together with the no-purchase option.
Each customer belongs to a market segment and is
characterized by a set of partial preferences, repre-
sented by a directed acyclic graph (DAG)with products
as nodes. The DAG captures partial preferences of the
form “product a is preferred to product b” through a
directed edge from product a to product b but typi-
cally does not provide a full ranking of the products.
Upon each store visit, the customer samples a full rank-
ing consistent with her DAG according to a distribu-
tion specified for her particular market segment and
chooses the product within her consideration set that
ranks highest in her preference list. Of course, neither
the customer’s DAG nor her sampled preference list
nor her consideration set are observable. For each cus-
tomer id, the firm only observes a collection of revealed
preferences: the offered products at themoment of pur-
chase and the chosen product. As a consequence, our
estimation procedure involves three sequential phases:
(1) building the DAG for each customer, (2) clustering
the DAGs into a prespecified number of segments, and
(3) estimating distributions over preference lists that
best explain the purchasing patterns of the customers.

The first phase requires a key element of our work:
the modeling of behavioral biases of each individ-
ual customer. Existing literature has established sev-
eral behavioral biases that are common in customer
choice behavior. We focus on one such bias that is rele-
vant to the construction of consideration sets; namely,
inertia in choice. Inertia in choice—also referred to as
short-term brand loyalty by Jeuland (1979)—claims that
when facing frequently purchased consumer goods,
customers tend to stick to the same option rather than
evaluate all products on offer in each store visit. We
capture the effect of such inertia in choice by assum-
ing that customers tend to purchase what they bought
previously until there is a “trigger event” that forces
them to consider other products on offer. We distin-
guish two important trigger events: stockout of the
previously purchased product (which induces the cus-
tomer to reevaluate all products on offer) and exis-
tence of product promotions (in particular, display and
price promotions). Based on these behavioral assump-
tions, we define a set of behavioral rules that allow us
to dynamically build the customer’s DAG as we track
the sequence of her interactions with the firm and
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she reveals her preferences through her purchasing
patterns.
Next, to better capture customer heterogeneity, we

cluster the m DAGs into K classes, where K is a pre-
determined small number (e.g., K � 5). We formulate
this clustering problem as an integer program (IP) to
systematically capture the idea that the DAGs of indi-
vidual customers assigned to the same class are “close”
to each other (according to a distance metric).
Finally, in the estimation phase, we calibrate a MNL

model to assess probabilistic distributions over prefer-
ence lists consistent with the DAGs of the first phase
and the clustering of the second phase.

The predictive performance of our method is de-
monstrated through an exhaustive set of numerical
experiments using real-world panel data on the pur-
chase of 29 grocery categories across two big U.S. mar-
kets in year 2007. We divide our data set in two pieces.
On the first part (i.e., the training data), we perform
the three phases summarized above. Then, on the sec-
ond part (i.e., the holdout sample), we predict what
the customer would purchase when confronted with
the offer sets and products on promotion, and com-
pare with the recorded purchase. We observe that our
method with behavioral rules and clustering obtains
up to 40% improvement in prediction accuracy on stan-
dardmetrics over state-of-the-art benchmarks based on
variants of the MNL, commonly used in current indus-
try practice.

1.2. Positioning in the Literature
Our work has several connections to the literature in
both operations and marketing. While existing work
in operations has largely focused on using transaction
data aggregated over all customers to estimate choice
models, literature in marketing has extensively used
panel data to fit choice models. The latter extends back
to the seminal work of Guadagni and Little (1983),
in which they fit a MNL model to household panel
data on the purchases of regular ground coffee, and
which has paved the way for choice modeling in mar-
keting using scanner panel data3; see Chandukala et al.
(2008) and Wierenga (2008) for a detailed overview
of choice modeling using panel data in the area of
marketing. Much of this work focuses on understand-
ing how various panel covariates influence individ-
ual choice making. For that, a model is specified that
relates the panel covariates to a distribution over pref-
erence lists (induced, for instance, by the MNL model)
that describes the preferences of each customer. The
model is then estimated from choice data assuming
that different choices of the same customer are charac-
terized by independent draws of preference lists from
the same distribution.
Our work tightens this assumption by allowing cus-

tomers to be “partially consistent” in their preferences

across different choice instances, so that the draws of
preference lists are no longer fully independent but are
compatible with the customer’s DAG. This additional
structure allows our model to capture individual pref-
erences more accurately, especially when observations
are sparse.

In the context of the operations-related literature,
rank-based choice models of demand have been used
as inputs in retail operations proposals, pioneered by
the work of Mahajan and van Ryzin (2001), who ana-
lyze a single-period, stochastic inventory model in
which a sequence of customers described by prefer-
ence lists substitute among product variants within a
retail assortment while inventory is depleted. Other
recent retail operations papers dealing with variants of
rank-based choice models include Rusmevichientong
et al. (2006), Smith et al. (2009), Honhon et al. (2010,
2012), and Jagabathula and Rusmevichientong (2014).
Rank-basedmodels also reached the airline-related RM
literature (e.g., Zhang and Cooper 2005, Chen and
Homem-de Mello 2010, Chaneton and Vulcano 2011,
Kunnumkal 2014). All of these proposals assume that
data is obtained at the market level and do not account
for the repeated interaction of a customer with a firm.
Therefore, their applicability to making fine-grained,
individual level predictions of purchasing patterns is
unclear.

Finally, our work has rich methodological connec-
tions to the area that studies distributions over rank-
ings in statistics and machine learning. We discuss
these connections in Sections 3 and 5.

2. Model Description
We start this section with a description of the general
modeling framework, where we introduce basic nota-
tion and formally define the DAGs that represent the
customers. We continue with a discussion of the model
assumptions, where we position our framework with
respect to the traditional approaches toward customer
choice. Next, we describe the type of data needed by
our framework and finish with a detailed explanation
of the DAGs’ construction process.

2.1. General Modeling Framework
We model consumer preferences using a general
rank-based choice model of demand. The product
universe N consists of n products {a1 , a2 , . . . , an}. The
“no-purchase” or “outside” alternative is denoted by 0.
Preferences over the universe of products are captured
by an antireflexive, antisymmetric, and transitive rela-
tion �, which induces a total ordering or ranking over
all of the products in the universe, and we write a � b
to mean “a is preferred to b.” Preferences can also be
represented through rankings or permutations. Each
preference list σ specifies a rank ordering over the n+1
products in the universe N ∪ {0}, with σ(a) denoting
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the preference rank of product a. Lower ranks indicate
higher preference so that a customer described by σ
prefers product a to product b if and only if σ(a)< σ(b),
or equivalently, if a �σ b.
The population consists of m customers who make

purchases overT discrete time periods.We assume that
the set of customers and the set of products remain
constant over time. Each customer i is described by a
general partial order Di . A general partial order spec-
ifies a collection of pairwise preference relations, Di ⊂
{(a j , a j′): 0 ≤ j, j′ ≤ n , j , j′}, so that product a j is pre-
ferred to product a j′ for any (a j , a j′) ∈ Di . In addition,
the customer belongs to one of K segments in the mar-
ket, where segment k is characterized by a probability
distribution λk over preference lists. In every interac-
tion with the firm, the customer will sample a full rank-
ing consistent with Di according to the distribution λk .
We say that a preference list σ is consistent with partial
order Di if and only if σ(a j)< σ(a j′) for each (a j , a j′) ∈Di .
The partial order Di could be empty (i.e., have no arcs),
in which case the consistency requirement is vacuous.
To illustrate, suppose n � 3 and take a customer of

type k with partial order D � {(1, 2), (3, 2)}. For ease
of exposition, we ignore here the no-purchase alter-
native.4 There are two possible rankings consistent
with D in this case: 1 � 3 � 2 and 3 � 1 � 2. The distri-
bution λk specifies the point probabilities for each of
the six possible rankings. Now, since D � {(1, 2), (3, 2)},
the customer consistently prefers both 1 and 3 over 2
in every choice instance. Hence, conditioned on D, she
samples the preference list 1 � 3 � 2 or 3 � 1 � 2, say
with probabilities 0.6 and 0.4, respectively.
The choice process proceeds as follows. In each pur-

chase or choice instance, customer i of type k is offered
a subset S of products. She focuses on a consideration
set C ⊂ S∪{0}, samples a preference list σ according to
distribution λk from her collection of rankings consis-
tent with Di , and purchases from C the most preferred
product according to σ—i.e., argmina j∈C σ(a j). Differ-
ent choice instances for customer i are independent
but always consistent with her own collection of pref-
erence lists described by her partial order Di . Thus, in
the previous example, and assuming that the customer
considers all products on offer, if the subset S � {1, 2}
is offered, the customer chooses product 1 for sure. If
S � {1, 2, 3} is offered, then the customer purchases 1
with probability 0.6 (if 1 � 3 � 2 is sampled) and 3 with
probability 0.4 (if 3 � 1 � 2 is sampled).
The model described above is quite general and re-

quires further restrictions to be estimable from data.
The model is specified by the partial order Di for each
customer i, the number of customer classes K, the class
membership of each of the customers, and the distribu-
tion λk over preference lists for each class k. The par-
tial orders are built dynamically as we keep track of the
store visits of each customer recorded in the training

data set, as explained later inSection2.4. Their construc-
tion requires a behavioral model relating the observed
choices to underlying preferences. Next, for an input
parameter K, we determine the class membership of
each of the customers through a clustering technique
described in Section 4. Broadly speaking, the cluster-
ing technique clusters together customers with similar
partial preferences. The distributions λk can in princi-
ple be induced by any of the commonly used choice
models. In this paper, we focus on the most commonly
used model: the MNL model, which has been exten-
sively applied inoperations,marketing, economics, and
transportation science. As shown in Section 3, theMNL
model allows for tractable (or approximately tractable)
estimation from general partial orders.

2.2. Discussion of Model Assumptions
The inference of the customers’ partial orders assumes
that both the population of customers and the prod-
uct universe remain constant along the horizon T. Our
approach can be repeated from time to time (e.g., once
a year) to collect new data points and update both the
customer base and their preferences. In the meantime,
new items in the category could be considered within
the scope of an existing product, which is our mini-
mal level of aggregation in the analysis to establish
preferences.5
The potential benefit of the DAGs is the boost in

accuracy it could provide for fine-grained individual-
level predictions. These gains could be particularly
significant for cases in which only a small sample of
information is available for each customer, and cus-
tomers are endowed with consistent preferences, like
brand-loyal customers. In such cases, it is impractical
to fit a choice model separately to each customer. For
this reason, one must make distributional assumptions
relating the preferences of the different customers,
while retaining sufficient customer-level heterogene-
ity. A common approach is to assume that customers
belong to K classes/segments and all customers in
class k are homogeneous in the sense that they sample
preferences from the same distribution λk , though the
distributions are different across different classes. For
instance, all customers of class k may sample prefer-
ences from the same MNL distribution, but the MNL
parameters are different across different classes.

A challenge in implementing this approach is setting
the appropriate value for the number of segments K.
On the one hand, smaller values of K result in parsimo-
niousmodels that can be efficiently fit to available data.
On the other hand, larger values of K can better cap-
ture customer-level heterogeneity. Our model avoids
this difficulty by providing an additional lever to cap-
ture heterogeneity while retaining parsimony. Specif-
ically, even if customers are not segmented and are
assumed to sample preferences from the same distri-
bution (e.g., a single-class MNL), our model captures
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customer-level heterogeneity by allowing the partial
orders to differ across customers. When computing
the probability of customer i choosing a particular
option, we use the demand estimates but also condi-
tion on the customer being characterized by Di , which
imposes additional structure (and constraints) on the
utility drawn for the different products. The DAGs are
inferred from small sample data and typically require
significantly less computational effort than the estima-
tion of a multiclass demand model. Recall that our
model is quite general in the sense that if the DAGs
are empty (i.e., the nodes are isolated), no structure
is superimposed and we recover a standard, uncon-
strained, choice-based demand model (e.g., a typical,
single-class MNL).
On the other hand, we expect the gains to be sub-

dued or nonexistent for customers who are variety-
seeking and inconsistent in their preferences across
multiple purchase instances. Such customers are read-
ily identified with only a few observations (we would
quickly identify products a and b such that a is pur-
chased over b in one instance, and b is purchased over a
in another instance). These customers will be repre-
sented with empty DAGs, and traditional techniques
may be applied.
It is also worth pointing out that using the transitiv-

ity of the pair preferences captured by arcs in the DAGs
(e.g., a � b and b � c) allows us to infer a richer set of
preferences not directly revealed (e.g., a � c) and that
are not explicitly subsumed in traditional models.
Finally, note that our model for customer choice

behavior is consistent with the random utility maxi-
mization (RUM) class of models. These models assume
that each customer samples utilities for each of the con-
sidered products and chooses to purchase the product
with the maximum utility. A particular model specifi-
cation consists of a definition of the distribution from
which utilities are drawn. Since each realization of
utilities induces a preference list with higher utility
products preferred to lower utility products, the RUM
model can be equivalently specified through a distri-
bution over preference lists (e.g., see Strauss 1979 and
section 2 of Mahajan and van Ryzin 2001 for further
discussion). In a similar fashion, our model assumes
that in each choice instance, a customer samples a pref-
erence list according to a distribution over preference
lists (conditioned on her DAG) and chooses the most
preferred product. Consequently, our model descrip-
tion of customer choice behavior is consistent with that
of a RUM class.

2.3. Data Model
We assume access to panel data with the panel consist-
ing of m customers purchasing over T periods. In par-
ticular, the purchases of customer i are tracked over Ti
discrete time periods for a given category of products.

To simplify notation, we relabel the periods on a per-
customer basis: t � 1 corresponds to his first visit to
the store, t � 2 corresponds to his second visit to the
store, and Ti corresponds to the last one in the training
data set. For each customer i, the basic data consist of
purchases of the customer over time, denoted by tuples
(a jit , Sit) for t � 1, 2, . . . ,Ti , where Sit ⊂ N denotes the
subset of products on offer in period t and a jit ∈ Sit
denotes the product purchased in period t.
In addition, the data set includes information about

the products Pit ⊂ Sit that were on promotion in
period t. A product may be on display promotion
(prominently displayed on the store shelves) or on
price promotion (offered at a discounted price). In
either case, the product exhibits a distinctive feature
that makes it stand out from the others on offer, poten-
tially impacting the purchase behavior of the customer
(more on this below). To simplify the analysis, we con-
sider the promotion feature as a binary attribute of a
product. However, ourmodel could be extended to dis-
tinguish a finite number of price discount depths and
display formats.

2.4. Building the Customers’ Partial Orders
We dynamically build customers’ partial orders from
the panel data by keeping track of the sequences
of interactions between the customers and the firm.
Specifically, for each customer i, we start with the
empty DAG Di (i.e., a DAG with isolated nodes) and
sequentially add preference arcs (pairwise compar-
isons) inferred from the sequence of purchase observa-
tions of the customer.

To explain how we infer the preference arcs, con-
sider the store visit corresponding to the purchase ob-
servation (transaction) (a j , S) of a customer, in which
product a j was purchased from the subset S ∪ {0}.
Let σ denote the preference list used by the customer
for this purchase instance. The classical assumption is
that the customer considers all of the offered prod-
ucts and decides to purchase the most preferred one.
In other words, when offered subset S, the customer
purchases argminal∈S∪{0} σ(al). This classical assump-
tion then implies that since a j is the observed pur-
chase, the underlying preference list σ is such that a j �

argminal∈S∪{0} σ(al), so that σ(a j) < σ(al) for all al ∈
S∪{0}, l , j. But customers are rationally bounded and
may not consider all of the products on offer. A typical
supermarket carries tens (or even hundreds) of prod-
ucts under each category. Further, the customer may
not adopt a complex purchase process for frequently
purchased products. Given this, it is unreasonable to
expect the customer to evaluate all of the products
offered on the shelves. As a result, we assume that cus-
tomers evaluate only a subset of the offered products,
often called the consideration set. Existing literature pro-
vides evidence for various behavioral heuristics that
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customers use to construct consideration sets (e.g., see
the recent survey by Hauser 2014).
Now, if customers only evaluate the products in

a consideration set, the purchased product a j would
belong to and only be preferred to all other products in
the consideration set. Let C ⊂ S ∪ {0} denote the con-
sideration set. We must then have that σ(a j) < σ(al) for
all al ∈ C\{a j}, and therefore we would add the arcs:
D← D ∪ {(a j , al): al ∈ C\{a j}}. Note that ignoring the
consideration set results in inferring spurious compar-
isons of the form σ(a j) < σ(al), for al ∈ (S∪ {0})\C.
Unfortunately, the consideration set in each store

visit is unobservable. As a result, we must infer it
from the observed transaction in a sequential basis.
We face the following challenge: on the one hand,
incorrectly assuming a large consideration set (say
C � S∪ {0}) increases both the number of correct and
spurious comparisons, but on the other hand, conser-
vatively assuming a small consideration set decreases
both types of comparisons. Hence, wemust balance the
requirement of maximizing the number of correct pair-
wise comparisons (to obtain a more accurate estimate
of the underlying preference distribution) and mini-
mizing the number of spurious pairwise comparisons
(which introduce biases in the estimates). To address
this challenge, we focus on the three consideration set
definitions below. In all of them, during the DAGbuild-
ing process, as soon as the addition of arcs from a ji , t
to Cit implies the creation of a cycle in Di , then we stop,
delete all of the arcs, and keep Di as the empty DAG.
1. Standard model, where the consideration set is the

same as the offer set. More precisely, for customer i
in period t, we define the consideration set Cit �

Sit ∪ {0}—i.e., the customer evaluates all of the prod-
ucts on offer, even ignoring the effect of promotions.
This assumption is reasonable for product categories
in which the number of offered products is relatively
small, or for a customer who goes through an exhaus-
tive purchase process beforemaking the purchase deci-
sion. Stores with selective offerings and high-priced
product categories are good examples.

2. Inertial model, designed to capture the inertia of
choice or short-term brand loyalty. The key intuition be-
hind this model is that customers will continue to pur-
chase the same product unless there is a “trigger event”
that forces them to consider other products. Starting
from Ci1 � Si1 ∪ {0}, for t � 2, . . . ,Ti , we do: given the
previous product purchased by customer i, a ji , t−1

, and
given the set of promoted products in period t, Pit ⊂ Sit ,
her consideration set in period t is

Cit �


{a ji , t−1

}∪Pit∪{0} if a ji ,t−1
,a ji ,t and a ji , t <Pit ,

Sit∪{0} if a ji , t−1
<Sit and a ji , t <Pit ,

Pit if a ji , t ∈Pit .

(1)

In words, we are modeling two trigger events: promo-
tions and stockouts. We first assume that if the pre-
vious purchase is in stock and the current purchase
is not on promotion, then the customer is expected to
stick to the previous purchase—i.e., it is expected that
a ji , t � a ji , t−1

. In this case, the customer considers only the
previously purchased product in addition to any other
products that are on promotion. In the second case, if
the previously purchased product is stocked out, then
the customer is forced to evaluate all products on offer
to determine the “new” best product. Finally, the cus-
tomer buys a product on promotion—despite the fact
that the previous purchase is in stock—which is con-
sistent with existing work that notes that promotions
induce trials from customers (e.g., Gupta 1988, Chinta-
gunta 1993).

In any case, the inertial model attempts to explain
any “switches” (current purchase is different from pre-
vious purchase) due to either a stockout or promo-
tion. The customer will set the last purchase (either
on promotion or not) as her sticky product for the next
purchase. This model is reasonable for frequently pur-
chased products in instances in which customers tend
to repeat their selection.

Similar to the case of adding a cycle to Di , under
the inertial model it could happen that the observed
transaction is not consistent with any of the three cases
in (1). In that situation, we stop, delete all of the arcs,
and keep Di as the empty DAG.

3. Censored model, which extends the inertial model
by allowing customers to randomly deviate from
it. Thus, the censored model can capture customers
whose “switches” are not explained either by a stock-
out or a promotion but rather by idiosyncratic rea-
sons—i.e., a jit , a ji , t−1

, but a ji , t−1
∈ Sit and a jit <Pit . In such

cases, the consideration set cannot be inferred from
the inertial principles, and we set Cit � {a jit }. In other
words, the model is a relaxed version of the inertial
definition and does not infer any pairwise comparisons
in time period t when the choice instance cannot be
explained by the consideration set definition in (1).

Figure 1 illustrates the construction of a DAG Di
under the standard and inertial models for the same
sequence of transactions of a given customer. The hori-
zon has Ti � 3 periods, and there are n � 6 products in
the category. For the standard model, Cit � Sit ∪ {0},
for all t. For the inertial model, the consideration set
captures the sticky principle which is only altered by
stockout or promotion events. We always start from
the empty DAG and proceed similarly to the standard
model when t � 1 (second case of (1)). When t � 2, the
promotion effect prevails according to the third case
in (1). Finally, when t � 3, the sticky principle domi-
nates, illustrating the first case in (1). The customer’s
preferences are then described by the final DAG in the
corresponding sequence (either standard or inertial).
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Figure 1. (Color online) Construction of a DAG for a Given Customer Under the Standard and Inertial Models, with Ti � 3
and n � 6

Notes. The first column describes the offer set Sit , the promotion set Pit , and the observed purchase a ji , t
of each choice instance. The second

and third columns show the evolution of the construction of the DAGs under the standard and inertial models, respectively.

Figure 2 illustrates a DAG construction under the
censored model in a case where the inertial model can-
not explain the purchasing behavior of a given cus-
tomer. In the second period, the customer is expected
to buy either 2 (her sticky product) or 1 (which is on pro-
motion). However, the customer chooses 4. This is set
as the new sticky product for the customer, and with-
out adding any arc to the DAG, we proceed to the next
period.
Note that our procedure to build the DAGs under

each of the consideration set definitions is designed
so that at the end of the process, for each arc that is
present, there is evidence in the data to include it and,
at the same time, no evidence to exclude it. Overall,
this cautious approach tends to maximize the number
of meaningful edges in each DAG.

Finally, we point out that the aforementioned con-
sideration set definitions are only three plausible ones
among many others that the modeler can propose to
better explain the purchasing pattern of the customers
and predict future transactions. For instance, in the
extreme case where we only assess that Cit � {a ji , t }, all
DAGswill be empty, which brings us back to the typical

unconstrained, choice-based demand model (e.g., the
single-class MNL).

3. Analysis: Partial-Order-Based
MNL Likelihoods

In what follows, we derive the probabilities of certain
classes of partial orders under theMNL/Plackett–Luce
model, which specifies distributions over complete
orderings. We will use these results later in Section 5
for the estimation of parameters using the maximum
likelihood criterion.

To streamline our discussion, in this section, we
ignore the no-purchase option labeled 0 and without
loss of generality focus on the standard consideration
set definition where Cit � Sit .

Different probability distributions can be defined
over the set of rankings (e.g., seeMarden 1995). Specifi-
cally, we consider probabilities under the MNL model.
Let λ(σ) denote the probability assigned to a full rank-
ing σ. We can then extend the calculation of proba-
bilities to partial orders defined on the same set of
productsN. More specifically, we can interpret any par-
tial order D as a censored observation of an underlying
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Figure 2. (Color online) Construction of a DAG for a Given Customer Under the Inertial and Censored Models, with
Ti � 3 and n � 4

0 

2 

3 1 

Inference

Inference

The inertial model cannot
explain this purchase behavior.

arcs are deleted and process stops. 

0 

2 

3 1 

Inference

4 

0 

2 

3 1 

0 

2 

3 1 

4 

0 

2 

3 1 

4 

4 4 

Ci1 = {1, 2, 3, 0}

Choice instance Standard model Inertial model

t = 1

Offer set Si1 = {1, 2, 3}
Promotion set Pi1 = {3}
Purchase a1i1 = 2 

t = 2 Offer set Si2 = {1, 2, 4}
Promotion set Pi2 = {1}
Purchase a2i2 = 4  

t = 3 Offer set Si3 = {1, 3, 4}
Promotion set Pi3 = {3}
Purchase a3i3 = 4 

Ci1 = {1, 2, 3, 0}

Ci2 = {4}

Ci3 = {3, 4, 0}

Notes. When t � 2, the inertial model cannot explain the purchase behavior, the building process stops, and the customer is represented with
the empty DAG.

full ranking σ sampled by a customer according to the
distribution over the total orders. Hence, if we define
SD � {σ: σ(a) < σ(b) whenever (a , b) ∈ D} as the col-
lection of full rankings consistent with D, then we can
compute the probability

λ(D)�
∑
σ∈SD

λ(σ).

From this expression, it follows that computing the
likelihood of a general partial order D is #P-hard
because counting the number of full rankings consis-
tent with D is indeed #P-hard (Brightwell and Winkler
1991). Given this, we will restrict our attention to a
particular class of partial orders (specified below) and
derive computationally tractable, closed-form expres-
sions for its likelihood.

3.1. MNL/Plackett–Luce Model
The Plackett–Luce model (e.g., see Marden 1995) is a
distribution over rankings defined on the universe of
items N with parameter va > 0 for item a. For a given
ranking σ, the likelihood of σ under this model is

λ(σ)�
n∏

r�1

vσr∑n
j�r vσ j

.

For a given indexing of the products, we also use v j to
denote the parameter associated with product a j .

We highlight here that the Plackett–Luce model is
defined by a distribution over rankings that leads to
choice probabilities consistent with the MNL choice
probabilities. Online Appendix A1 provides a self-
contained collection of preliminary results that serve
as building block for the next ones. Here, we start from
a corollary that states the probability of choosing a par-
ticular product from a subset S ⊂ N.
Corollary 3.1. For a given subset S ⊂ N, the choice proba-
bility for ai ∈ S under the Plackett–Luce model is

�(ai | S)�
vi∑

a j∈S v j
.

As proved in the online appendix, Corollary 3.1 fol-
lows from the results of Propositions A1.2 and A1.3
therein. This result specifies the probability of an im-
portant special class of DAG: the star graph. The choice
probability corresponds to the probability that a partic-
ular product is top-ranked among a subset S of prod-
ucts. The partial preference that prefers product a to
all other products in set S can be represented as a star
graph with directed edges from node a to all of the
other nodes in S\{a}. The expression for the proba-
bility of a star graph under the Plackett–Luce model
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is the well-known choice probability expression under
the MNL model (see Ben-Akiva and Lerman 1994).
While traditionally, the choice probability under the
MNL model is derived using the random utility spec-
ification of the model, our development here presents
an alternate proof starting from the primitive of the
distribution of a specific ranking.
We now consider a class of DAGs that can be repre-

sented as a forest of directed trees6 with unique roots.
To aid our development, we introduce the concept of
reachability of an acyclic directed graph. Any DAG D
can be equivalently represented by its reachability
function Ψ that specifies all of the nodes that can be
reached from each node in the graph. More precisely,
Ψ(a) � {b: there is a directed path from a to b in D}.
We implicitly assume that a node is reachable from
itself so that a ∈ Ψ(a) for all a. Hence, Ψ(a) is never
empty and is a singleton set if the out-degree of a
node is zero. Further, we assume that for a given
DAG D, we have already computed its unique transi-
tive reduction—i.e., a graphwith as few edges as possi-
ble that has the same reachability relation as D (e.g., see
Aho et al. 1972).
Now, we will focus on the class of connected DAGs

that are directed trees. In particular, we will constrain
to directed trees with exactly one node that has no
incoming arc. We call that node the root of the tree.
Equivalently, a directed tree can be described as a hier-
archical tree, where each level k is defined by the nodes
that are at distance k from the root. The probability of
a given directed tree D under the MNL/Plackett–Luce
model is provided in the next proposition.

Proposition 3.1. Consider a directed tree D with a unique
root defined over elements in S ⊂ N. Then, under the
Plackett–Luce model, the likelihood of D is given by

λ(D)�
∏
a∈N

va∑
a′∈Ψ(a) va′

.

The above result can be extended to a forest of
directed trees, each with a unique root, by invoking the
result of Corollary A1.1 in the online appendix. Specif-
ically, we have the following new result.

Proposition 3.2. Consider a forest D of directed trees,
each with a unique root defined over elements in S ⊂ N.
Then, under the Plackett–Luce model, the likelihood of D is
given by

λ(D)�
∏
a∈N

va∑
a′∈Ψ(a) va′

.

Finally, we derive the expression for the probabil-
ity that a customer chooses a specific product from
an offer set S conditioned on the partial order that
describes the preferences of the customer. We use this
expression to make individual-level purchase predic-
tions once we infer the underlying partial orders of

each of the customers.More precisely, we are interested
in the probability that product a j from set S will be
chosen given that the sampled preference list is consis-
tent with DAG D. For that, let C(a j , S) denote the star
graph with root a j . Then, our goal is to compute the
probability

f (a j , S,D) , Pr(SC(a j ,S) | SD)�
Pr(SD ∩ SC(a j , S))

Pr(SD)
,

where the second equality above follows from a
straightforward application of Bayes rule. The next
result computes the conditional choice probability
when D and S satisfy some conditions, for which we
need to define hD(S) ⊂ S as the subset of “heads” (i.e.,
the set of nodes without parents) in the subgraph of D
restricted to S.

Proposition 3.3. Suppose we are given a DAG D that is
a forest of directed trees, each with a unique root. Let S be
a collection of products, and further assume that all nodes
in hD(S) are also roots in D. Then, under the Plackett–Luce
model, the probability of choosing product a j from offer set S
conditioned on the fact that the sampled preference list is
consistent with DAG D is given by

f (a j , S,D) �
Pr(SC(a j , S) ∩ SD)

Pr(SD)

�


vΨ(a j )∑

al∈hD (S) vΨ(al )
if a j ∈ hD(S),

0 otherwise,

whereΨ is the reachability function of D, and vA ,
∑

a∈A va
for any subset A of products.

The proposition above states that, given a DAG D,
the customer will only purchase products in hD(S)
when offered subset S. In principle, the customer may
choose any product in hD(S), and Proposition 3.3 spec-
ifies the conditional probability of the customer choos-
ing each of the products there. The expression for
the probability has an intuitive form that is consis-
tent with the unconditional choice probability given
in Corollary 3.1, with the “weight” va of each prod-
uct replaced by the “weight” vΨ(a) of the entire subtree
“hanging” from node a.

4. Clustering Individuals
We now discuss how to account for heterogeneity in
customer preferences. If we had sufficient data for each
customer, then we can fit a model separately for each
customer. However, in practice, data are sparse, and
we typically have only a few observations for each cus-
tomer. We overcome the data sparsity issue by assum-
ing that customers—represented by their respective
DAGs—belong to a small, predetermined number of
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classes, where customers belonging to the same class k
are “close” to a full preference list σk . In this sec-
tion, we formulate an IP that segments the DAGs
into K classes and compute the corresponding central
orders σk , k � 1, . . . ,K. In a follow-up step (Section 5),
we will further estimate a separate distribution λk over
preference lists for each cluster.
As a preprocessing step, given a collection of DAGs

where customer c is represented by DAG Dc , we aug-
ment the arcs in each DAG by taking its transitive clo-
sure: we add edge (a j , a j′) whenever there is a directed
path from node a j to a j′ in the original graph. The tran-
sitive closure of any directed graph with O(n) nodes
can be computed with O(n3) computational complex-
ity using the Floyd–Warshall algorithm. Given this, we
let Dc denote the graph obtained after completing the
transitive closure.
We measure similarity between DAGs using a dis-

tance function based on the level of conflict of each
customer assigned to cluster k with respect to the cen-
troid σk . For each DAG Dc , the preference of a j over a j′

described by an edge (a j , a j′) is either verified in the
total order σk or violated. Then, we define the dis-
tance between customer c and the centroid of the clus-
ter, σk , as

dist(c , σk) � (number of edges in Dc in disagreement)
− (number of edges in Dc in agreement).

Denoting |Ec | the total number of edges in Dc , and since
any edge is either in agreement or disagreement, we
can substitute above and get

dist(c , σk)
�2×(number of edges in Dc in disagreement)− |Ec |.

This distance measure penalizes the number of dis-
agreements between a customer assigned to cluster k
and σk and, at the same time, rewards the number of
agreements.7 Given the level of conflict of a customer,
the optimal clustering of the DAGs into K classes min-
imizes the aggregate level of conflict of all customers.
The IP is formulated as follows. Define binary lin-

ear ordering variables δh jk , which are equal to one if
product ah goes before a j in the sequence (i.e., prefer-
ence list) for cluster k and zero otherwise. In addition,
define binary variables Tck , which are equal to one if
customer c is assigned to cluster k and zero otherwise.
Finally, let wh jc be a binary indicator of disagreement
for edge (ah , a j) ∈Dc with respect to the total order that
characterizes the cluster to which the customer was
assigned. The IP is given by

min
m∑

c�1

∑
(h , j)∈Dc

(2wh jc−1)

s.t.:
K∑

k�1
Tck �1, ∀c ,

δh jk +δ jhk �1, ∀h< j, ∀k , (2)
δhrk +δr jk +δ jhk≤2, ∀h , r, j, j>h , j> r,h,r, ∀k ,
δ jhk +Tck−wh jc≤1, ∀(h , j)∈Dc , ∀k , c ,
δh jk , wh jc , Tck ∈{0,1}, ∀h , j, k , c.

Overall, there are O(n2(m + K) + mK) binary vari-
ables and O(n3K + n2mK) constraints. The first set of
equalities guarantees that any customer c is assigned
to exactly one cluster k. The second set of equalities
ensures that for any cluster k, either product ah goes
before product a j in the preference list or product a j
goes before product ah . The third set of constraints
ensure a linear ordering among three products. The
last set of constraints counts conflicts: when customer c
is assigned to cluster k, and product a j goes before
product ah in the total order associated with cluster k,
then edge (ah , a j) ∈ Dc must be counted as a conflict
(i.e., wh jc � 1). The objective is to minimize the aggre-
gate level of conflict across all clusters. The final posi-
tion of product a j in the total order σk , σk(a j), can be
determined from σk(a j)�

∑
i: i, j δi jk + 1.

We note that the development above can be formal-
ized using the maximum likelihood estimation (MLE)
framework when the underlying preferences of the
customers are described by a Mallows model.8

Solving the IP to optimality is challenging in gen-
eral. It has a very poor linear programming relaxation
where all variables wh jc take value zero and, in our ex-
perience, becomes very hard to solve to optimality. To
ease the computational process, we develop a heuristic
that provides a nontrivial initial solution. The heuris-
tic is of the greedy-type. It starts by sorting all of the
DAGs in decreasing order of number of edges. The
DAGwith the largest number of edges, D(1), is assigned
to cluster 1. Then, it picks the (K − 1) DAGs with the
most number of conflicts with D(1), and assigns them
to corresponding clusters k � 2, . . . ,K. Finally, it goes
sequentially over all of the remaining DAGs (following
the decreasing number of edges) and counts the total
number of conflicts between an unassigned DAG and
all of the DAGs of each cluster k � 1, . . . ,K. It assigns
the DAG to the cluster with least conflicts.

Clustering and centroid calculation heuristic
Input Given a collection of DAGs {D1 , . . . ,Dm} and a
number of clusters K, do:
Step 1 Sort the customers in decreasing order of num-
ber of edges |Ec |. Let (D(1) , . . . ,D(m)) be the new order.
Step 2 Pick D(1) and assign it to cluster 1. Mark D(1) as
an assigned customer.
Step 3 Count the number of conflicts between each
DAG in {D(2) , . . . ,D(m)} and D(1). Then, pick the (K − 1)
DAGs with the most number of conflicts and assign
each of them to the empty clusters k � 2, . . . ,K. Mark
the selected K − 1 customers as assigned.
Step 4 For c :� 1 to m do
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If customer D(c) was not assigned before, do:
Mark customer D(c) as assigned.
For k :� 1 to K do
Count the number of conflicted edges

between D(c) and all of the DAGS
already assigned to cluster k

Endfor
Assign D(c) to the cluster with minimum

number of conflicts
Endif

Step 5 For k :� 1 to K do:
Solve the IP (2) for cluster k (assuming K � 1)
and come up with a ranking σk .

Step 6 Stop.

For a single cluster, the problem is the generalization
of the Kemeny optimization problem—defined for total
orders—to partial orders (e.g., see Ali and Meliǎ 2012).

5. Case Study on the IRI Academic
Data Set

In this section, we present the results from a case study
using the IRI Academic data set (Bronnenberg et al.
2008), which consists of real-world purchase transac-
tions from grocery and drug stores. Our computations
were carried out on a computer with Intel Core i7
(4th Gen), 2 GHz processor, and 8 Gb of RAM.

The purpose of the case study is twofold: (1) to
demonstrate the application of our predictive method
to a real-world setting and determine the accuracy of
the assessments, and (2) to pit our framework in a horse
race against three popular benchmarks which are vari-
ations of the MNL model. We start with the latent-
classMNL (LC-MNL) and the randomparameters logit
(RPL) models,9 followed by the MNL model of brand
choice proposed by Guadagni and Little (1983). We
tested all of the approaches on the accuracy of two pre-
diction measures on holdout data and find that our
methods outperform the benchmarks in most of the
categories analyzed.

5.1. Data Analysis
We considered one year (calendar year 2007) of data on
the sales of consumer packaged goods (CPG) for chains
of grocery stores in the two largest Behavior Scan mar-
kets. We focused on a total of 29 categories, listed in
Table 1. Thedata consist of 1.2Mrecords ofweekly sales
transactions from 84 K customers spanning 52 weeks.10
For each purchase transaction, we have the week and
the store id of the purchase, the Universal Product
Code (UPC) of the purchased item, the panel id of
the purchasing customer, the quantity purchased, the
price paid, and an indicator of whether the purchased
item is on price/display promotion. Because there is
no explicit information about the assortment faced by

each consumer upon her visit, the offer set is “approx-
imately built” by aggregating all of the transactions
within a given category observed from the same store
during a particular week.

We split the transaction data into the training set—
consisting of the first 26 weeks of transactions—and
the test/hold-out set—consisting of the last 26 weeks
of transactions. We focused on customers with at least
two purchases over the training period. This resulted
in a total of 64 K customers and 1.1 M transactions. To
address data sparsity, we aggregated the sales data by
vendor as follows. Each purchased item in the data is
identified by its collapsedUPC code,which is a 13-digit
code. We aggregated all of the items with the same
vendor code (comprising digits three through seven)
into a single “product.” A detailed summary of the
data is provided in Table 1.

We note from Table 1 that we observed nonempty
DAGs for 31.2% of the customers under the standard,
38.5% under the inertial, and 71.4% under the censored
consideration set definitions. The DAGs for the remain-
ing customers were empty because of the appearance
of directed cycles during the construction of their
DAGs, or deviations from the assumptions in the case
of the inertial model.

These numbers confirmour discussion in Section 2.4:
The standard consideration set appears to be restric-
tive in the sense of imposing a heavy computational
burden on the customer side by assuming that a trans-
action implies the evaluation of all products on offer,
potentially adding several spurious arcs to the DAGs
(as verified in the “Dens. st.” column), and result-
ing in directed cycles for the majority of the indi-
viduals. Consequently, we infer nonempty DAGs that
are denser but for only a minor fraction of the cus-
tomers. The inertial model reduces the consideration
set cardinality (and hence, the customer’s evaluation
burden and the associated DAG density) by support-
ing the “stickiness principle,” being able to define
meaningful arcs in more customers. Overall, the iner-
tial model increases the number of customers with
nonempty DAGs but decreases the average DAG den-
sity by being conservative. The censored model, which
relaxes the inertial model by ignoring switches that
cannot be explained through stockouts or promotions,
increases both the number of customers for whom we
infer nonempty DAGs and the associated DAG density
significantly.

This preliminary analysis of the data suggests that
the censored model provides a good compromise
between the number of customers described with
nonempty DAGs and the richness of the arcs included
(in the sense that the associated DAGs are denser and
more meaningful).

Our benchmarking study focuses on the customers
with nonempty DAGs to assess the additional benefit
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Table 1. Summary of the Data

Category Customers Nonempty DAGs

Shorthand Expanded name Vendors Total ≥ 2 sales Avg. trans. # St. Dens. st. # Iner. Dens. iner. # Cens. Dens. cens.

beer Beer 67 1,796 1,154 7.11 420 52.39 475 24.66 978 43.18
blades Blades 9 703 243 3.07 121 4.62 134 3.11 220 4.29
carbbev Carbonated beverages 46 4,677 4,387 17.63 618 20.29 643 7.64 1,700 16.29
cigets Cigarettes 13 452 307 10.39 231 8.27 232 6.81 303 7.55
coffee Coffee 59 3,101 2,255 5.59 810 26.21 1,071 16.19 1,886 22.27
coldcer Cold cereal 39 4,438 3,998 10.94 534 22.14 699 12.18 1,948 19.36
deod Deodorant 32 1,345 653 3.47 275 17.92 321 11.32 581 15.39
diapers Diapers 4 337 173 5.09 88 3.59 93 2.52 152 3.44
factiss Facial tissue 10 2,967 2,063 4.96 903 5.47 1,005 3.60 1,843 4.82
fzdinent Frozen dinners/Entrees 77 3,707 3,288 13.46 700 41.35 927 23.41 1,799 40.05
fzpizza Frozen pizza 38 3,460 2,946 7.83 866 17.92 1,170 11.67 1,859 17.75
hhclean Household cleaners 68 2,725 1,699 4.14 250 42.85 346 28.32 1,536 34.77
hotdog Hot dogs 41 3,318 2,187 3.82 813 21.49 1,110 13.12 2,015 18.45
laundet Laundry detergent 18 3,196 2,181 4.04 1,008 12.60 1,339 7.23 1,940 11.70
margbutr Margarine/Butter 16 3,474 2,750 5.65 1,170 11.51 1,385 8.64 2,468 10.80
mayo Mayonnaise 14 3,761 2,386 3.28 1,662 8.49 1,709 4.26 2,291 6.97
milk Milk 33 4,851 4,652 14.90 1,540 17.84 1,660 9.55 3,349 15.23
mustketc Mustard 52 3,728 2,515 3.66 480 22.35 872 12.60 2,234 18.56
paptowl Paper towels 11 3,072 2,051 5.20 671 7.76 1,002 6.24 1,792 7.78
peanbutr Peanut butter 19 3,153 1,923 3.89 1,041 9.98 1,181 5.83 1,825 9.07
saltsnck Salt snacks 95 4,727 4,446 15.09 546 38.05 622 20.67 1,857 33.40
shamp Shampoo 41 1,466 738 3.73 270 24.86 338 14.61 614 21.42
soup Soup 90 4,636 4,322 12.02 724 41.93 967 17.85 2,397 37.18
spagsauc Spaghetti/Italian sauce 52 3,473 2,698 5.46 1,026 22.92 1,352 12.57 2,185 20.04
sugarsub Sugar substitutes 10 750 308 3.30 246 6.22 250 4.64 303 5.24
toitisu Toilet tissue 11 3,760 2,817 5.10 1,144 8.54 1,547 6.42 2,460 8.30
toothbr Toothbrushes 36 1,115 499 3.06 189 18.84 239 12.58 459 17.18
toothpa Toothpaste 25 2,110 1,186 3.58 610 14.69 686 7.35 1,051 12.53
yogurt Yogurt 26 3,766 3,491 19.81 1,136 11.39 1,376 6.89 1,903 10.84

Notes. The column “Vendors” reports the number of products in training data after aggregating different UPCs by vendor. Focusing on the
training data, for customers buying from each category, we report: the original total number of them, the number of customers with at least
two transactions, and among the latter, the average number of transactions per customer. Then, for each consideration set model, we report
the number of customers with nonempty DAGs in the training data set and the average DAG density (defined as the average number of arcs
in the nonempty DAGs).

that can be obtained from the DAG structure. When a
customer has an empty DAG, our model reduces to a
classical RUMmodel; therefore, customers with empty
DAGs can be analyzed with well-established methods
(e.g., MNL and LC-MNL).

5.2. Models Compared
First, we pitted our partial-order MNL (PO-MNL)
method against two popular benchmarks based on the
MNL model: the LC-MNL and the RPL models. All
three models belong to the general RUM model class,
which assumes that a customer samples product utili-
ties in each purchase instance and chooses the product
giving the highest one. The difference is that in our
model, the draws are independent but conditioned on
being consistent with the customer partial order across
different purchase instances.
Within the RUM class, the single-class MNL model

is the most popular member, with several other sophis-
ticated models being extensions of it. The MNL model
assumes that customers assign utility U j � u j + ε j to

product j and choose the product with the maximum
utility. The error terms ε j are Gumbel distributed with
location parameter 0 and scale parameter 1. The nom-
inal utility u j for product j is usually assumed to
depend on covariates x jl in a linear-in-parameter form:
u j � β0 +

∑
l βl x jl . However, because we train and test

on the same universe of products, we directly esti-
mate the nominal utilities u j from transactions without
requiring attribute selection. This approach is common
in operations-related applications, where the product
universe is fixed and attribute selection is nontrivial.11
Nevertheless, we emphasize that like in the case of the
benchmarks, our PO-MNLmethod allows the incorpo-
ration of covariates. Next, we briefly describe how we
fit each of the models to data.

5.2.1. Model Fit According to Our Method. Once we
infer the DAGs according to the consideration sets
models described in Section 2, we have two different
treatments: (i) the whole population as a single class of
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customers and (ii) the case where we cluster the indi-
viduals. To cluster the DAGs, we solve the IP described
in (2) with a time limit of five minutes on MATLAB
combined with ILOG CPLEX callable library (v12.4).
We tried K � 1, . . . , 5, classes, and retain the solutions
attaining the largest objective function value in (2).
The output of the clustering is used to estimate

a K latent-class PO-MNL in which we assume that
each customer belongs to one of the K (latent) classes,
with K � 1 for treatment (i). A customer belonging
to class h samples her DAG according to an MNL
model with parameters βh . A priori, a customer has
a probability γh of belonging to class h, where γh ≥ 0
and ∑K

h�1 γh � 1. We approximate the likelihood of a
DAG under a single-class PO-MNL with the expres-
sion described in Proposition 3.2, which becomes exact
when the DAG is a forest of directed trees. After
marginalizing the likelihood of the DAG over all pos-
sible latent classes, the regularized maximum likelihood
estimation problem that we need to solve can be writ-
ten as

max
β, γ

{ m∑
i�1

log
[ K∑

h�1
γh

n∏
j�1

exp(βh j)∑
al∈Ψi (a j ) exp(βhl)

]
− α

K∑
h�1
‖βh ‖1

}
,

where Ψi(a j) denotes the set of nodes that can be
reached from a j in DAG Di (recall, always includ-
ing a j).12 Note that the estimation relies only on the
DAGs of individual customers and not on their detailed
purchase transactions.
The above estimation problem can be shown to be

nonconcave for K > 1, even for a fixed value of α. To
overcome the complexity of directly solving it, we used
the EM algorithm. As part of the EM initialization, we
used the output from the clustering in Section 4 as
our starting point. More precisely, the clustering yields
subsets D1 ,D2 , . . . ,DK , which form a partition of the
collection of all of the customer DAGs. To get a param-
eter vector β(0)h , we fit a PO-MNL model to each subset
of DAGs Dh by solving the following single-class PO-
MNL maximum likelihood estimation problem:

max
βh

{∑
i∈Dh

n∑
j�1

[
βh j − log

( ∑
al∈Ψi (a j )

exp(βhl)
)]
−α‖βh ‖1

}
.

(3)
We tuned the value of α by fivefold cross-validation, as
described in Online Appendix A2.1. We also set γ(0)h �

|Dh |/(
∑K

l�1 |Dl |). Then, using {γ(0) , (β(0)h )Kh�1} as the start-
ing point, we carried out EM iterations. Further details
are provided in Online Appendix A2.1.2.
Prediction. Given the parameter estimates, we make
predictions as follows. For a customer i with DAG Di ,
and defining vh j � exp(βh j), we estimate the posterior

membership probabilities γ̂ih , for each h, at the begin-
ning of the holdout sample horizon, and make the
prediction:

fi(a j , S)�
K∑

h�1
γ̂ih fh(a j , S,Di),

where γ̂ih �
γh

∏n
j�1 vh j/(1+

∑
l∈Ψi (a j ) vhl)∑K

d�1 γd
∏n

j�1 vdj/(1+
∑

l∈Ψi (a j ) vdl)
,

where fh(a j , S,Di) is the approximation from Propo-
sition 3.3 for predicting the choice probability for an
individual described by parameters vh . Similar to esti-
mation, the prediction relies only on the DAG struc-
ture of customer i and not on detailed transaction
information.
5.2.2. Benchmark Models Fit According to the Clas-
sical Approach. The two MNL-based benchmarks
are briefly described here, with further details in
Online Appendix A2.1. The first model is the k-latent-
class MNL (LC-MNL) model,13 where each customer
belongs to one of k unobservable classes, k � 1, . . . , 10,
and remains there during the whole horizon. We
keep track of the customer id in the panel data to
estimate the nominal utilities, and we treat transac-
tions as independent realizations. This model makes
individual-level predictions by averaging the predic-
tions from k single-class models, weighted by the
posterior probability of class membership. We fit the
model with k classes, and for each performance met-
ric (to be introduced in Section 5.3), we report the best
out-of-sample performance from these 10 models.14 In
our case, the estimation requires assessing the value of
kn parameters.
The second model is the RPL model, which cap-

tures heterogeneity in customer preferences by assum-
ing that each customer samples the β parameters of
the utilities according to some distribution and makes
choices according to a single-class MNL model with
parameter vector β. The key distinction from the LC-
MNL model is that the distribution describing the
parameter vector β may be continuous and not just
discrete with finite support. In our case, we assume
that β is sampled according to N(µ,Σ), which denotes
the multivariate normal distribution with mean µ and
variance–covariance matrix Σ, where Σ is a diagonal
matrix with the jth diagonal entry equal to σ2

j . RPL
requires the estimation of 2n parameters within a com-
putationally intensive sample-average approximation
approach.

For both benchmarks, and following the common
practice, we use the standard consideration set defi-
nition. Given the parameter estimates, we make indi-
vidual-level predictions by updating the class mem-
bership probabilities at the beginning of the holdout
sample horizon.
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5.3. Experimental Setup
We test the predictive power of the models on a
one-step-ahead prediction experiment in each category
under two different metrics: chi-square and miss rates.
Here, the periods are labeled over the holdout horizon
as t � 1, 2, . . . ,T. For each customer i, the objective is
to predict the product she will purchase in period t + 1
when given the last purchase of the customer up to
period t and offer set St+1 and promoted products Pt+1
she faces in period t + 1.
For each (category, consideration set definition) com-

bination, there is a specific subset of customers de-
scribedwith nonempty DAGs (see Table 1), and for that
specific subset, we calibrate the two benchmarks and
our PO-MNL model.

Both metrics considered rely on the definition of the
indicator function yi(a j , t), taking the value one if cus-
tomer i makes a purchase in period t and product a j
has the highest predicted choice probability, and zero
otherwise—i.e.,

yi(a j , t) � I{customer i makes a purchase in period t
and fi(a j , St) ≥ fi(al , St) ∀ l ∈ St}.

The first metric computes the following “chi-square”
score:

X2 score �
1

|N | |U |
∑

i∈U, a j∈N

(ni j − n̂i j)2

0.5+ n̂i j
,

where n̂i j �

T∑
t�1

yi(a j , t), (4)

where U is the set of all individuals and ni j is the
observed number of times individual i purchased
product a j during the horizon of length T. The term n̂i j
denotes the aggregate predicted number of purchases
of product a j by individual i.

To make the prediction, each model combination
defined as the pair (choice model, consideration set
definition) is given the offer set St+1; promoted prod-
ucts Pt+1; the set of individuals Ut+1 who purchase in
period t + 1; and all of the purchase transactions of all
of the individuals, offer sets, and promoted products
up to time period t. Using this information, eachmodel
combination provides choice probabilities for each of
the offered products.
The score in (4) is similar to the popular chi-square

measure of goodness-of-fit of the form (O − E)2/E,
where O refers to the observed value and E refers to
the expected value. The use of this score in our set-
ting is justified by considering the observed counts ni j
as the realization of the sum of independent (but not
identically distributed) Bernoulli random variables.15
We add 0.5 to the denominator to smooth the score and
deal with undefined instances.16 The score measures

the ability of the model combinations to predict aggre-
gate market shares, with lower scores indicating better
predictive accuracy.

We also measure the miss-rate of the model combi-
nations, defined as

miss rate �
1
|U | |T |

∑
i∈U

T∑
t�1

I{customer i makes a

purchase in period t and yi(a jit , t)�0}, (5)

where I[A] is the indicator function taking the value
one if A is true and zero otherwise. Recall that a jit
denotes the product purchased by individual i in
period t. Again, lower miss rates are better. Note that
themiss-ratemeasure is very stringent, since it rewards
or penalizes the assessment of the right customer pur-
chase on a per-period basis (rather than aggregating
over the whole horizon as in the X2 case).

The above experimental setup is reflective of the
practical prediction problem that a firm faces. Both
measures are computed conditioning on a purchase
event. Predicting the set of customers who will pur-
chase in a given period t can be done separately using
classical time-series models that capture any periodic-
ity and seasonality in customer store visits.

5.4. Results and Discussion
We compare the predictive performance of the two
benchmark models (LC-MNL and RPL under the stan-
dard consideration set definition) with three variants
of our model class: PO-MNL (also labeled just PO from
here onward) under the standard, inertial, and cen-
sored consideration set definitions.

Figure 3 presents scatterplots of the X2 scores of
LC-MNL and RPL (under the standard model) ver-
sus the X2 scores of the three combinations of PO and
the consideration set definitions, across the 29 product
categories, including both single-class and clustering
cases. We observe that our PO method dominates
both (LC-MNL, standard) and (RPL, standard) bench-
marks across the board. The charts allow to isolate
three concurrent effects that favor our proposal. First,
when considering the left column in Figure 3, we
are focusing on the standard consideration set def-
inition and comparing our PO versus both bench-
marks. For the no-clustering case, the X2 score from
PO exhibits an average improvement of 8.24% over
LC-MNL and 4.02% over RPL. This improvement can
be attributed to the effectiveness of the DAGs cap-
turing partial preferences of the customers, which
is remarkable because both benchmark models have
more parameters and explicitly account for customer-
level heterogeneity. It takes only around 10 seconds to
fit the PO model as opposed to 67 minutes to fit the
RPL model (which in turn dominates LC-MNL). The
key reason for the superior performance of PO is that
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Figure 3. (Color online) Scatterplot of the X2 Scores of All 29 Categories Under the PO and the (LC-MNL, Standard) and
(RPL, Standard) Benchmarks for Both Single-Class and Clustering Cases

PO + Standard PO + Inertial

Impr. clustering = 8.85%
Impr. no clustering = 8.24%

Impr. clustering = 4.68%
Impr. no clustering = 4.02%

Impr. clustering = 36.73%
Impr. no clustering = 35.2%

Impr. clustering = 34.71%
Impr. no clustering = 33.11%

Impr. clustering = 41.46%
Impr. no clustering = 40.19%

Impr. clustering = 38.3%
Impr. no clustering = 37.02%
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Note. Lower is better; therefore, we outperform the benchmark for points above the 45◦ line.

even without explicit clustering, the model accounts
for heterogeneous customer preferences through their
partial orders, making more efficient use of the limited
data.
The second effect stems from the behavioral biases

captured by nonstandard consideration set definitions:
the (PO, inertial) combination allows to boost the X2
score performance to the range 33%–35%, and the (PO,
censored) pair pushes it further to 40%. This outstand-
ing improvement reveals the significant explanatory
power displayed by partial preferences (represented
by DAGs) jointly with the behavioral biases that deter-
mine the construction of such DAGs.

The third effect is captured by the clustering IP in
Section 4 that groups together users with similar pref-
erences. It can further boost the performance by 0.6
percentage points (pp) under the standard model, to
around 1.4 pp under the behavioral (i.e., inertial and
censored) models. Our results indicate that identifying
similar customers has a more significant impact under
the behavioral models, where DAGs are more informa-
tive since they are built on fewer spurious edges. Thus,
at the expense of some additional computational effort,
clustering into only a few classes can further boost our
performance.

In Figure 4, we report the loyalty score of each cat-
egory computed on the training data (left panel) and
explore possible correlations between X2 scores and
loyalty scores (right panel). To compute the loyalty

score of a category, we calculate the fraction of the total
purchases coming from the most frequently purchased
product (i.e., vendor) of each customer buying from
that category and take the average of those fractions
across customers purchasing from the category. There
is a clear positive correlation between X2 scores and
loyalty scores. That is, the X2 performance leveraged by
the DAGs (versus themost competitive benchmark; i.e.,
(RPL, standard)) is further emphasized for high-brand-
loyalty categories, and it is even more emphasized
under behavioral models that highlight the stickiness
principle (i.e., both inertial and censored models show
a higher slope). This observation is further investigated
in Online Appendix A2.2 (see Figure A2 therein). For
categories with high loyalty indices, we can obtain a
huge improvement in the X2 score by accounting for
individual partial preferences under the three consid-
eration set definitions.

Figure 5 presents scatterplots of the miss rates fol-
lowing a display format similar to Figure 3. Recall
that this is a more stringent predictive measure, since
it rewards or penalizes the sum of individual trans-
action assessments (see Definition (5)). We observe
that our model combinations obtain improvements of
between 2% and 6% over the benchmarks in four of
the six panels, when using the clustering procedure.
In the remaining two (lower right) panels, our per-
formance is similar to the benchmarks (most points
lie on the 45◦ line). The same three aforementioned
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Figure 4. (Color online) Loyalty Scores Across Categories, Sorted in Descending Order (Left), and Scatter Plot and
Linear Regression of Percentage Improvement of the X2 Score of PO Over (RPL, Standard), for Each Consideration
Set Definition (Right)

Figure 5. (Color online) Scatterplot of the Miss Rates of All 29 Categories Under the PO and the (LC-MNL, Standard) and
(RPL, Standard) Benchmarks for Both Single-Class and Clustering Cases

PO + Standard PO + Inertial PO + Censored

Impr. clustering = 5.99%
Impr. no clustering = 5.62%

Impr. clustering = 3.04%
Impr. no clustering = 2.65%

Impr. clustering = 2.01%
Impr. no clustering = 1.36%

Impr. clustering = 0.52%
Impr. no clustering = –0.13%

Impr. clustering = 4.49%
Impr. no clustering = 3.87%

Impr. clustering = 0.8%
Impr. no clustering = 0.13%
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effects play a role here (although the behavioral bias
effect is diminished when compared with (RPL, stan-
dard)). The charts in the left column reveal the value
delivered by capturing partial preferences under the
standard consideration set definition, providing gains
between 2.6% and 5.6%. Clustering still plays a role in
boosting performance, resulting in improvements close
to 1 pp in some cases. As noted, the behavioral models
are just as good as the (RPL, standard) model in terms
of the miss rates. This may be explained by noting that
the stickiness assumption can lead to double penaliza-
tion: missing first when the customer deviates from
purchasing the “loyal” brand, and missing again when
the customer returns to the “loyal” brand because the
sticky product is updated to the latest purchase. This
observation suggests that if the objective is to increase
accuracy of immediate predictions, it may be best to
increase the chances of a hit by expanding the con-
sideration set to the entire offer set as done on (PO,
standard), to account for possible deviations from the
inertial assumption.
We also investigated the correlation between per-

centage improvement of PO over (RPL, standard) with
respect to the miss rates (see Figure A3 in Online Ap-
pendix A2.2). Aswe said, themiss ratemeasure is quite
stringent, but better results are obtained under PO for
high loyalty categories, mainly under the standard but
also under the censored consideration set definitions.

Overall, the combination (PO-MNL, censored) seems
to provide the best performance under X2 scores, and a
better or comparable performance with respect to miss
rates, which is quite remarkable since, when building
individual DAGs under the censored consideration set
definition, we could describe the behavior of 71% of
the customer base with nonempty DAGs. The perfor-
mance is further boosted when we apply (PO-MNL,
censored) over categorieswith high loyalty score. How-
ever, if the focus is mainly on miss rates, the combina-
tion (PO-MNL, standard) appears to be the best option.

5.5. Comparison with the Guadagni–Little Model
The final benchmark study is to compare our method
with the proposal by Guadagni and Little (1983),
denoted GL onward. Guadagni and Little calibrated
an MNL model of brand choice, based on panel data,
over the “regular ground coffee” category. They formu-
lated a linear-in-parameters utility model that captures
covariates such as full price, indicator for brand pro-
motion, price cut for products on promotion, indicator
to keep track of the promotion status of the last two
purchases, and two additional covariates to capture
loyalty effects: in terms of coffee brand and packaging
size. For them, loyalty is taken to be the exponentially
weighted average of past purchases of the brand and
the packaging size, treated as 0–1 variables. However,
their loyalty scores do not reflect stockouts: the non-
purchase of a product because of a stockout is treated

as a regular switch to a different brand. For the pur-
poses of our study, we implemented a variation of the
GL model, adapted to the variables present in our data
set (for details, see Online Appendix A2.1).

Even though the GLmodel is tailored to capture loy-
alty, as our inertial and censored models are, there is a
fundamental difference between both approaches: GL
maintains a richer state via the utility function of their
MNL model, which is updated dynamically as promo-
tions arise, both in the training and holdout samples,
whereas we maintain a limited state via the consid-
eration set definition, also in both the training and
holdout samples (though in the holdout sample we
do not update the DAGs). More specifically, GL main-
tains the promotion status of the current and the previ-
ous two purchases and longer-term loyalty information
through an exponential smoothing reflecting recency
and frequency of purchases. Instead, the inertial and
censored models maintain the promotion status of cur-
rent purchase and only short-term loyalty information
in the form of the previous purchase. Therefore, the
comparison should be taken with caution.17

Guadagni and Little (1983) provide evidence for the
remarkable performance of their method in predict-
ing product market shares for “regular ground coffee.”
The X2 score captures the accuracy of a method in pre-
dicting these market shares. Figure 6 shows that GL
generally beats the performance of the standard model
(which is not aimed at capturing brand loyalty) but also
highlights the good performance that we achieve with
(PO, inertial) and (PO, censored), with our X2 scores
undercutting GL’s X2 scores by 9.7% and 17.6%, respec-
tively. In both cases, the clustering procedure boosts
the performance by extra 2 pp.

When evaluating miss rates (see Figure 7), our per-
formance is slightly better under (PO, standard), worse
by 3.8% under (PO, inertial), and better by 3.6% under
(PO, censored). Recall that miss rate is a very stringent
measure, where stockouts or promotions may affect a
specific prediction. The sharp contrast that we observe
between the inertial and censored performances may
be explained by the fact that the set of customers with
nonempty DAGs that are described by the censored
consideration set definition is a big superset of the iner-
tial customers with nonempty DAGs. The GL model is
less accurate in predicting the purchases of these addi-
tional customers because they are not as strongly loyal
as the inertial customers and are facing a changing
environment with promotions and stockouts.

6. Conclusions
Estimating individual customer preferences for the
purposes of making personalized demand predictions
is becoming an increasingly important problem given
the volume of fine-grained data that businesses are
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Figure 6. (Color online) Scatterplot of the X2 Scores of All 29 Categories Under the PO and the GL+Standard Benchmark for
Both Single-Class and Clustering Cases

PO + Standard PO + Inertial PO + Censored

Impr. clustering = –37.9%
Impr. no clustering = –38.89%

Impr. clustering = 11.74%
Impr. no clustering = 9.67%

Impr. clustering = 19.68%
Impr. no clustering = 17.57%0
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Note. Lower is better; therefore, we outperform the benchmark for points above the 45◦ line.

able to collect. We proposed a nonparametric frame-
work to estimate individual preferences from panel
data on the transaction history of customers. Our tech-
nique is data driven, accommodates both paramet-
ric and nonparametric choice models, and is aimed
at improving the accuracy of individual-level choice
predictions. It exhibits three distinguishing features:
(1) it allows each customer to have a general partial
order, with the customer’s preferences being always
consistent with her partial order rather than being
independent across choice instances; (2) it incorporates
a behavioral model of choice that captures individ-
ual bounded rationality to construct customized par-
tial orders from purchase records; and (3) it allows
for grouping customers by preference similarities. We
demonstrate on real-world data that accounting for

Figure 7. (Color online) Scatterplot of the Miss Rates of All 29 Categories Under the PO and the GL+Standard Benchmark for
Both Single-Class and Clustering Cases

PO + Standard PO + Inertial PO + Censored

Impr. clustering = 1.3%
Impr. no clustering = 0.89%

Impr. clustering = –3.82%
Impr. no clustering = –4.48%

Impr. clustering = 3.57%
Impr. no clustering = 2.96%
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partial-order and behavioral aspects of choice signifi-
cantly improves the accuracy of individual-level pre-
dictions over existing state-of-the-art methods.

Ourwork opens the door formany exciting future re-
search directions. A key theoretical contribution of our
work is deriving the likelihood expressions for general
classes of partial orders under theMNL/Plackett–Luce
model. Existing work has mainly considered classes
of partial orders (such as top-k rankings and parti-
tioned preferences) that commonly arise when data
are collected on the web. However, onsite transactions
often yield choice data, resulting in partial orders that
lack the types of structure already studied. Our work
has introduced a new class of partial orders—forest of
directed trees with unique roots—and has shown that
it affords closed-form expression for likelihood under

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
0.

19
5.

71
.1

89
] 

on
 2

4 
A

pr
il 

20
17

, a
t 1

7:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Jagabathula and Vulcano: Estimating Individual Customer Preferences from Panel Data
Management Science, Articles in Advance, pp. 1–20, ©2017 INFORMS 19

the MNL/Plackett–Luce model. Identifying other gen-
eral classes of partial orders for which likelihoods can
be computed in a tractable manner under different
popular choice models (such as variants of the MNL)
is an exciting future direction. In addition, investigat-
ing properties of the clustering IP to derive theoreti-
cal guarantees for general classes of partial orders can
result in significant contributions to this problem.
Finally, the comparison of the performance of our

method versus the classical Guadagni and Little (1983)
approach suggests that capturing state dependence
via a parameterized utility function could be a means
to further boost the potential of partial-order-based
preferences.
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Endnotes
1For instance, a field study in the airline RM practice suggests that
a 20% reduction of forecast error can translate into 1% additional
revenues (Pölt 1998).
2 In the rank-based choice model of demand, the modeler should
estimate a discrete probability mass function (pmf) on the set of cus-
tomer types. The number of parameters (i.e., the number of customer
types with nonzero probabilities) grows with the number of prod-
ucts and customers, and the volume of data; hence, the labeling as a
nonparametric model.
3 In fact, we use a variant of the model by Guadagni and Little (1983)
as one of our benchmarks in Section 5.
4This example could be used to model the preferences of a coffee
customer who always prefers decaf (product 1 and 3) to nondecaf
(product 2). One may readily construct other such examples.
5We explain later in Section 5 how we aggregate different Universal
Product Codes (UPCs) in the data set.
6A directed tree is a connected and directed graph which would still
be an acyclic graph if the directions on the edges were ignored.
7Even though we use the term distance, its interpretation should be
taken with caution because it could lead to negative values. This
measure is a linear transformation of the Kendall tau distance, which
counts the number of pairs of elements that are ranked opposite in
two total orders. See Stanley (2000).
8The Mallows model has been extensively used in machine learning
and directly specifies distributions over rankings. In particular, when
the underlying customer DAGs have a particular structure (denoted
partitioned preferences), maximizing the log-likelihood function of the
DAGs under the Mallows model is equivalent to solving our IP (2).
When the conditions above are not satisfied, our IP formulation can
be treated as performing approximate MLE. See Jagabathula and
Vulcano (2017) for further details.

9The RPL model is also referred to in the literature as the random
coefficients model (e.g., see Train 2009, Chap. 6.2).
10The data consist of 5 K unique customers/panelists whose pur-
chases span the 29 categories. Because we analyzed the categories
separately, we treat each customer-category combination as a “cus-
tomer.” There were two more categories in the data set, “photogra-
phy supplies” and “razors,” that we ignore due to data sparsity.
11For instance, Sabre Airline Solutions, one of the leading RM soft-
ware providers for airlines, with a tradition of high-quality R&D,
implemented a proprietary version of the procedure described in
Ratliff et al. (2008) for a single-class MNL model.
12The reachability function Ψi(·) may contain the no purchase
option, whose utility is normalized to be βh0 � 0 for all h.
13Here, we use k to refer to the number of latent classes, which could
be different from K—the number of clusters from Section 4.
14For this reason, the value of k for which the performance is
reported could be different for different metrics and different
categories.
15Since the offer sets change and predictions are conditioned on
them, there random variables are not identically distributed across
time.
16Our smoothing is similar to the popular add-1/2 smoothing that
is used to deal with zero counts when estimating a multinomial
distribution from a finite sample, where a pseudo count of 1/2 is
added to the count of each type (Falahatgar et al. 2016)
17The previous benchmarks LC-MNL and RPL, where we did not
consider covariates either, are more suitable for comparison. Those
results allowed us to show the value of building the DAGs over a
MNL model, allowing us to quantify the value of superimposing
such incremental structure.
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