First karyological report in Larnax and Deprea (Solanaceae)

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Australian Journal of Botany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>BT14041.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Deanna, Rocío; Instituto Multidisciplinario de Biología Vegetal, Barboza, Gloria; Instituto Multidisciplinario de Biología Vegetal, ; Facultad de Ciencias Químicas (UNC), Scaldaverro, Marisel; Instituto Multidisciplinario de Biología Vegetal, ; Facultad de Ciencias Exactas, Físicas y Naturales (UNC),</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Karyotype analysis, Solanaceae, Systematics</td>
</tr>
</tbody>
</table>
First karyological report in *Larnax* and *Deprea* (Solanaceae)

Rocío Deanna^{AB}, Gloria E. Barboza^{AB}, Marisel A. Scaldaferr^{AC}

¹ Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina.

² rociodeanna@gmail.com

^B Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Córdoba, Argentina.

^C Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, CP 5000, Córdoba, Argentina.

Abstract

Somatic chromosomes of 12 samples belonging to seven *Larnax* Miers species and three *Deprea* Raf. species are studied. Chromosome number and karyotype analysis of both genera are reported for the first time. All taxa have 2n = 24. The most frequent haploid karyotype formula (8/12 samples) is 9 metacentric (m) + 3 submetacentric (sm) chromosomes, whereas *L. glabra* (Standl.) N.W. Sawyer and *Larnax* sp. display 10 m + 2 sm. Karyotypes of *L. nieva* S. Leiva & N.W. Sawyer and *D. cuyacensis* (N.W. Sawyer}
S. Leiva & Lezama are remarkable for the highest number of sm chromosome pairs, with 7 m + 5 sm and 5 m + 7 sm, respectively, presenting the highest intrachromosomal asymmetry index (A₁), whereas Larnax sp. and L. glabra show the lowest A₁. Most samples (9/12) examined have only one pair of chromosomes with nucleolar organizer regions (NORs), whereas L. glabra, Larnax sp., and D. cuycacensis possess two pairs of NORs. Systematic considerations about the monophyly of Larnax and Deprea are provided. The different karyotype parameters obtained, together with morphological characters, are discussed to single out the species.

Key words: AgNOR - cytogenetics - Feulgen - monophyly - South America

Introduction

Larnax Miers and Deprea Raf. are two neotropical genera placed in the tribe Physalideae, with 36 species (Deanna et al. 2014) and 10 species (Cueva and Treviño 2012; Barboza et al. 2013), respectively. From a phylogenetic perspective, Larnax and Deprea are currently positioned as sisters to Withaninae and Iochrominae clades, but remain isolated in a small unnamed subclade (Olmstead et al. 2008; Särkinen et al. 2013). Both genera occur in South America, from Costa Rica to Bolivia (Sawyer 2005; Leiva González S., Deanna R., Barboza, G.E., unpubl. data), inhabiting cloud pre-montane and montane forests. Furthermore, many species are of pharmacological interest as a source of withanolides, which can have leishmanicidal activity (e.g., L. glabra (Standl.) N.W. Sawyer; Cardona et al. 2005) or potential cancer chemopreventive activity (L. substriflora (Ruiz & Pav.) Miers [sub nom. Deprea substriflora]; Su et al. 2003; Misico et al. 2011).

Historically, the taxonomy of Larnax and Deprea has been confusing, since several authors (Dunal 1852; Hemsley 1882; Zahlbruckner 1892; D’Arcy 1973, 1993) adopted different criteria to transfer species between these genera or to other genera (Physalis, Withania Pauquy, or Athenaea Sedtn.). Furthermore, differentiation between Larnax and Deprea has been unclear and has varied according to different taxonomic opinions. The most recent morphological cladistic work (Sawyer 2005) attempted to demonstrate the monophyly of Deprea and Larnax using corolla, stamen, and pollen characters,
although ambiguous results were obtained using DNA sequence data in cladistic analysis. Moreover, the most recent phylogenetic analysis including both genera showed them as polyphyletic (Särkinen et al. 2013).

In the Physalideae tribe most of the available cytological information is restricted to reports of chromosome number or meiotic studies. This tribe has \(x = 12 \) (Badr et al. 1997; Rego et al. 2009; Barboza et al. 2010; Chiarini et al. 2010), except for Quincula Raf., with \(x = 11 \) (Menzel 1950). Many tribe members have a meiotic chromosome number of \(n = 12 \) (e.g. Moscone 1992; Bohs 2000; Sousa-Peña 2001), whereas Withania, Nothocestrum A. Gray, Tubocapsicum (Wettst.) Makino, and some species of Chaemasesaracha Dammer and Physalis have \(n = 24 \) or \(n = 36 \) (Menzel 1950, 1951; Averett 1973; Carr 1985). The karyotypes are variable among the genera related to Larnax and Deprea, and are generally composed of metacentric (m) and submetacentric (sm) chromosomes of small size (1 to 4 µm; Badr et al. 1997; Rego et al. 2009; Barboza et al. 2010; Chiarini et al. 2010); whereas, chromosomes range from 0.8 to 14 µm within Solanaceae (Bohs 1994, Badr et al. 1997; Chiarini et al. 2010; Moyetta et al. 2013).

Although many cytogenetic works have been conducted in genera belonging to the Physalideae tribe, Larnax and Deprea have still not been karyologically studied. As part of a broad taxonomic, molecular, and karyosystematic study, karyotype measurements have been performed in 10 Larnax and Deprea species. The aims of this work are to: (1) determine the chromosome number for both genera, (2) provide a cytological characterization of their species, and (3) contribute to understand the evolutionary and systematic relationships of the genera examined.

Materials and Methods

The provenance of the plant material analyzed is presented in Table 1. The respective voucher specimens were identified by G. E. Barboza, S. Leiva González and R. Deanna, and are deposited at the herbarium of the Botanical Museum of Córdoba, Argentina (CORD).
Mitotic chromosomes were examined in root tip squashes obtained from germinated seeds. When it was difficult to obtain germinated seeds, 200-500 ppm gibberellic acid (GA₃) was applied to break dormancy (Ellis et al. 1985). Root tips were pretreated either with para-dichlorobenzene-saturated solution at room temperature in darkness for 2 h or with 2 mM 8-hydroxyquinoline at room temperature for 2 h and at 6°C for 3 h, then fixed in 3:1 ethanol: acetic acid mixture, and maintained at 4°C for the first 24 h and at 20°C thereafter. Different pre-treatment methods showed same results in species where both techniques were applied.

Feulgen staining. To prepare the slides, root tips were hydrolyzed with 5N HCl at room temperature for 45 min, stained with Schiff reagent for 2 h (Jong 1997) and squashed in a drop of 2% acetic carmine. Slides were made permanent by freezing with liquid CO₂ (Bowen 1956), removing the coverslip.

Karyotype measurements. A total of 97 individuals from 12 samples were analyzed (Table 1). Between 7 and 104 cells per species were examined under a Leica DMLB microscope and photographed with a Leica DC 250 digital camera. Two to 16 metaphase plates from 2-12 individuals of each species were used to take measurements for each chromosome pair: s (short arm length), l (long arm length), and c (total chromosome length). The arm ratio (r = l/s) was calculated to classify the chromosomes following Levan et al. (1964): m - metacentric (r = 1.00-1.69), sm - submetacentric (r = 1.70-2.99), st - subtelo-centric (r = 3.00-6.99), and t - telocentric (r = 7.00 and up). Satellites were classified according to Battaglia’s (1955) terminology. In addition, the following measurements were calculated: haploid karyotype length (HKL), based on the mean chromosome length for each species, average chromosome length (C), average arm ratio (r), and ratio between the longest and the shortest chromosome of the complement (R) (Table 2). Idiograms were based on the mean values for each species. Chromosomes were arranged first into groups according to increasing arm ratio, and then according to decreasing length within each group. As certain chromosomes showed great similarity, they were grouped in the idiograms. Karyotype asymmetry was estimated using the intrachromosomal and the interchromosomal asymmetry indices (A₁ and A₂, respectively; Romero Zarco 1986), and Stebbins’ (1971) karyotype asymmetry categories.
AgNOR banding. Root tips were washed in 0.01 M citrate buffer and macerated according to Schwarzacher et al. (1980) using an enzymatic solution of 2% cellulase (w/v) plus 2% pectinase (v/v) at 37º C for 30 minutes. Meristems were squashed in a drop of 45% acetic acid and, after removal of the coverslip, slides were air dried, aged for 1-2 days at room temperature and stored at -20º C until use. AgNOR banding was performed according Bloom and Goodpasture (1976) with the modifications of Kodama et al. (1980). The ordering number of NOR (nucleolar organizer region) bearing chromosomes and types were calculated and reported (Table 2).

Results

Karyotype measurements

The Larnax and Deprea species studied are diploid, with 2n = 24 in all examined cells. The most frequent haploid karyotype formula is 9 m + 3 sm (in L. pomacochaense, L. subtriflora, L. toledoana, L. sachapapa, D. bitteriana, and D. zamorae), whereas L. glabra and Larnax sp. display 10 m + 2 sm. In addition, karyotype of L. nieva and D. cuyacensis are remarkable for the highest number of sm chromosomes, with 7 m + 5 sm and 5 m + 7 sm, respectively. Haploid karyotype length (HKL) for individual species ranges from 31.67 µm in L. nieva to 46.26 µm in L. pomacochaense (Table 2). The shortest chromosome pair measured is no. 12 in L. glabra (1.86 µm) and the longest one is no. 1 in L. pomacochaense (4.60 µm) (Table 2).

With Feulgen staining, most of the satellites attached to NOR-carrying chromosomes are observed in both members of the respective chromosome pair (Fig. 1), but in some individuals they appear in a single homologue. Most of the species exhibits macrosatellites of constant size (Figs. 1, 2), whereas microsatellites are observed in L. glabra, L. nieva, Larnax sp., and D. cuyacensis (Figs. 1 A, B, G, K; 2). Moreover, the heteromorphic condition is frequent in these cases (L. glabra, L. nieva, and Larnax sp.), with one homologous chromosome bearing a microsatellite and the other one carrying a macrosatellite (Figs. 1 A, B, G; 2). Furthermore, the satellites usually show slight variation in size between individuals, or between cells from the same plant.

In general, karyotypes are symmetrical, considering both centromere position and chromosome size (Table 2, Fig. 3). Larnax nieva and D. cuyacensis have the karyotypes...
with the highest intrachromosomal asymmetry index ($A_1 = 0.36$ and 0.42, respectively), whereas *Larnax* sp. and *L. glabra* show the lowest one ($A_1 = 0.22$ and 0.23; Fig. 3). Moreover, *L. glabra* shows the highest interchromosomal asymmetry index ($A_2 = 0.24$) and the highest R index (2.34). Conversely, a population of *L. sahapapa* (2) and *L. nieva*, with the lowest R (1.43 and 1.42, respectively) and A_2 (0.11) index values, display all chromosomes of similar size. According to Stebbins’ karyotype asymmetry classification, all of the species fall into 2A category, except *L. glabra*, which falls into 2B category (Table 2). No association between karyotype length and asymmetry can be established (Table 2).

AgNOR banding

AgNOR banding performed in 12 samples showed that the NORs usually have attached satellites that are not always differentially stained with silver staining (Fig. 4). In some cases, NORs appeared terminal after silver staining (Fig. 4 A-D, F, H-J).

In most of the samples (9/12) examined, all individuals have only one pair of chromosomes with AgNORs, with a maximum of two nucleoli in interphase nuclei impregnated with silver (Fig. 5 B-E, I, K, M), although 80-90% cells have only one (Fig. 5 F, J). NOR-bearing chromosomes in metaphase are always two. NORs are located on the short arm on the shortest m chromosome pair, usually having attached macrosatellites (no. 9; Figs. 2; 4 C-E, G-J). The exception is *L. nieva* with one homologous chromosome bearing a microsatellite and the other one carrying a macrosatellite (Figs. 2, 4 B).

On the other hand, *L. glabra* and *Larnax* sp. possess two pairs of NORs. The maximum number of silver-stained nucleoli found is always four in both species (Fig. 5 A, G); however, one is the most frequent number (70-75% cells). In these species, metaphases always show four AgNORs (Fig. 4 A, F), one pair is always located on the short arm of a median m chromosome (no. 5), and the other one is located on the short arm of the shortest sm chromosome (no. 12; Fig. 2). Moreover, both species have particular characteristics: *L. glabra* has a m chromosome pair with a microsatellite attached and the shortest sm chromosome pair with one homologous chromosome bearing a microsatellite and the other one carrying a macrosatellite (Figs. 1 A, 2, 4 A),
whereas *Larnax sp.* exhibits this heteromorphic condition in both chromosome pairs (Figs. 1 G, 2, 4 F).

In *D. cuyacensis*, all individuals examined have two pairs of chromosomes with NORs. The maximum number of silver-stained nucleoli found is four (Fig. 5 L); however, the most frequent number is one (81%). It was not possible to observe the metaphases with silver staining; hence, the NOR-bearing pairs were identified by Feulgen staining. One pair of NORs is located on the short arm of a *m* chromosome (no. 4) with a microsatellite attached, and the other one is located on the short arm of a *sm* chromosome with a macrosatellite attached (no. 9; Figs. 1 K, 2).

Discussion

General karyotype features

All *Larnax* and *Deprea* species are diploid with *x* = 12, certainly the most common basic number in the family, being present in more than half of the species studied until now (Hunziker 2001; Chiarini et al. 2010). In general, *Larnax* and *Deprea* species have small chromosomes, as their related taxa within the Physalidae tribe: *Schraderanthus viscosus* (Schrad.) Averett (*sub nom.* *Leucophysalis viscosa* Schrad.), *Witheringia solanacea* L'Hér. (Chiarini et al. 2010), *Aureliana sellowiana* (Sendtn.) Barboza & Stehmann (Barboza et al. 2010), and *Vassobia breviflora* (Sendtn.) Hunz. (Rego et al. 2009). In addition, the karyotypes analyzed are rather homogeneous in size, with a maximum difference in the average chromosome length of only 1.46-fold among species.

In Solanaceae, most chromosomes are *m* or *sm* (e.g. Badr et al. 1997; Chiarini et al. 2010; Scaldaferro et al. 2013). The present study shows that most of the species exhibit a karyotype with predominance of *m* chromosomes and a low interchromosomal asymmetry index. This is in agreement with previous findings in the most related taxa, such as *W. solanacea*, *S. viscosus*, *Saracha punctata* Ruiz & Pav. (Chiarini et al. 2010) and *V. breviflora* (Rego et al. 2009). According to the rule in the family, the low asymmetry is also supported by the fact that all the examined species fall into category 2A of Stebbins’ karyotype asymmetry classification (1971) for possessing mainly *m* chromosomes of homogeneous size, except *L. glabra*, which falls into category 2B for having a higher interchromosomal asymmetry. Unfortunately, there are only a few
chromosome studies available for Withaninae and Iochrominae clades (Madhavadian 1967; Moscone 1992; Badr et al. 1997; Rego et al. 2009; Chiarini et al. 2010), where Larnax and Deprea are currently positioned (Olmstead et al. 2008; Särkinen et al. 2013); hence, additional data are needed for comparative purposes.

The analysis of karyotype variables shows that *D. cuyacensis*, *L. glabra*, *L. nieva*, and *Larnax* sp. are the most different species. They differ in the asymmetry, in the number and location of NORs, and in the haploid karyotype formula. One dissimilar species is *L. glabra*, whereas *L. nieva* and *D. cuyacensis* are grouped according to the higher number of sm chromosomes and, as a consequence, a higher intrachromosomal asymmetry index.

Nucleolar activity

AgNOR banding was used to reveal active rDNA sites, whose number allowed us to classify the species into two groups: a group with only one NOR and a smaller group composed of three species with two NORs. In the former group the constancy in the location of the NOR is remarkable, since it is always in the short arm of the smallest m chromosome. Within the family, satellites are usually attached to short arms of m or sm chromosomes (e.g. Menzel 1950; Stiefkens and Bernardello 2006; Acosta et al. 2005; Bernardello et al. 2008; Rego et al. 2009; Chiarini et al. 2010; Moyetta et al. 2013; Scaldaferro et al. 2013), as it is also observed in the taxa analyzed in this work.

Another feature noticed in this study and previously recorded in other Solanaceae is the polymorphism in the size of AgNORs among individuals, cells, and even homologous NOR-bearing chromosomes of a single cell (L. nieva and D. bitteriana; Moscone 1989; Moscone et al. 1995). This may be caused by several factors, such as the ribosomal gene repeats, the transcription level, or the effect of pretreatment with spindle inhibitors and the state of chromatin condensation in the NORs (Suda 1975; Jiménez et al. 1988; Zurita et al. 1999). Structural rearrangements including somatic chromosome mutations that affect satellites could be the mechanisms responsible for such polymorphism (cf. Sato 1981). In addition, the observation of a lower number of nucleoli in all interphase nuclei might be due to their fusion (Nicoloff et al. 1977; Sato et al. 1981; Lacadena et al. 1984), but it could also be a consequence of nucleolar
interchromosomic dominance, where NORs of different chromosomes compete to form the nucleoli (Flavell and O’Dell 1979; Nicoloff et al. 1979).

In some cases, NORs appear to be terminal after silver staining, probably because microsatellites are no longer recognizable after applying this banding method because of their small size, a phenomenon that has been observed in Capsicum and Solanum (Moscone et al. 1995, Miguel et al. 2012).

Karyotype data and systematic considerations

Up to now, there were no evidence of cytogenetic data for Larnax and Deprea species and the kind of morphological characters that are informative enough to group these species is still unclear. Previous studies suggested the fruiting calyx, either tightly or loosely enveloping the berry, as a primary character to cluster species in Larnax (Sawyer 2001). Among the species analyzed, D. bitteriana, D. cuyacensis, D. zamorae, L. pomacochaense, L. subtriflora, and L. toledoana have the fruiting calyx tightly enveloping the berry (Fig. 6 A-M), but, according to the cytogenetic variables analyzed here, they are mixed with species having a loose fruiting calyx (Figs. 3, 6 N-T).

According to the results presented in this work, karyotype features allow individual species to be distinguished from one another. Larnax glabra is one of the most different species of the group considering both morphological and karyological characters. This species has an entirely deep purple corolla, a glabrescent indumentum with scattered short glandular trichomes, and a persistent calyx loosely enveloping the orange berry (Fig. 6 N); all these traits, together with the species’ haploid karyotype formula, number and position of satellites, and asymmetry indices, allow us to distinguish it easily from the remaining species. Larnax sp. and L. glabra share the number and position of satellites and the lower intrachromosomal asymmetry, but they differ especially in the satellite size and the interchromosomal asymmetry. Morphologically, they also differ in several traits (Fig. 6 N, O), such as the length calyx lobes (> 1 mm long in Larnax sp., < 1 mm long in L. glabra), the indumentum (pubescent to sericeous in Larnax sp., glabrescent in L. glabra), and the berry color (creamy white in Larnax sp., orange in L. glabra).

Two other cytogenetically very different species are D. cuyacensis and L. nieva, both with numerous cytogenetic and morphological peculiarities. They have a higher
intrachromosomal asymmetry and a higher number of small chromosomes than the other species analyzed. *Deprea cuyacensis* and *L. nieva* differ in the number, position and size of satellites; in addition, they do not share any morphological trait: *L. nieva* is a very tall shrub (2.5-3 m vs. 1.2-1.8 in *D. cuyacensis*), having a creamy green corolla without a ring of trichomes inside (vs. pale purple with a ring of trichomes inside, Fig. 6 C, P), heterodynamous stamens (vs. homodynamous), mucronate anthers (vs. non-mucronate), and a green berry (vs. orange berry in *D. cuyacensis*, Fig. 6 C, Q). Both species are endemic and restricted to small areas in Peru (Sawyer 2001; Leiva González and Lezama Asencio 2003), being part of stable and strongly isolated islands, as occurs in the seasonally dry tropical forests of the Andes and the more mesic mid-elevation montane forests (Särkinen et al. 2012). Consequently, they have reached a high intrachromosomal asymmetry probably by parallel evolution.

Larnax sachapapa and *L. subtriflora* are species with two populations analyzed because they are more widely distributed than the remaining species (Sawyer 1999; Leiva González S., Deanna R., Barboza, G.E., unpubl. data). On the one hand, samples of *L. sachapapa* belong to two conspicuous and nearby Ecuadorian populations which differ from the remaining populations of this species by some characters (corolla 10-14 mm long vs. 17-22 mm long; anthers longer than filaments vs. anthers shorter than filaments; fruiting calyx loosely enveloping the berry vs. tightly enveloping the berry, and leaves 20-32 cm long vs. 2.5-16.5 cm long). Both populations studied also have some morphological differences which are reflected in the karyological variability observed, especially in the interchromosomal asymmetry index (Fig. 3). On the other hand, samples of *L. subtriflora* were taken from the distribution extremes: northern Peru (sub 1, Fig. 6 H, I) and Bolivian Yungas (sub 2, Fig. 6 J, K). These populations do not significantly differ in the karyological variables analyzed or in morphological characters, with the exception that the Bolivian population has a trichome ring inside the corolla and an abundant glandular indumentum, whereas the Peruvian population lacks the trichome ring and has poorly developed glandular pubescence.

Lastly, there is a group composed of seven species (*D. bitteriana, D. zamorae, L. pomacochaense, L. sachapapa, L. subtriflora*, and *L. toledoana*) that have the same haploid karyotype formula, similar asymmetry, and an equal number and position of satellites. Differences among them involve other characters, such as haploid karyotype
length or satellite size. However, these species do not share any morphological characters; the group includes species with anthocyanins in their infundibular to campanulate corolla (D. bitteriana and D. zamorae, Fig. 6 A, D), and others with stellate or slightly campanulate corolla without anthocyanins (L. pomacochaense, L. sachapapa, and L. subtriflora, Fig. 6 F, H, J, S); a species with mucronate anthers, very long calyx lobes, and yellowish green berry (L. sachapapa, Fig. 6 R-T) and others with non-mucronate anthers, short calyx lobes, and orange berry (D. bitteriana, D. zamorae, L. subtriflora and L. toledoana, Fig. 6 A, B, D, E, H-M); and species with a fruiting calyx tightly or loosely enveloping the berry (D. zamorae, D. bitteriana, L. pomacochaense, L. subtriflora, and L. toledoana vs. L. sachapapa, respectively).

Hence, Larnax and Deprea cannot be karyologically differentiated as two different groups considering all the variables here analyzed, especially through asymmetry indices (Fig. 3), consistent with previous phylogenetic results (Särkinen et al. 2013). Larnax and Deprea have been controversial genera since some species have been transferred from one genus to another (Withania Pauquy, Athenaea Sendtn., Deprea Raf.) by different authors (Dunal 1852; Hemsley 1882; Zahlbruckner 1892; D’Arcy 1973, 1993). Despite this, Hunziker (1977) and Sawyer (2005) defined and differentiated Larnax from Deprea, its most closely related genus, based on several synapomorphies (Deanna et al. 2014). Recently, however, the limits between both genera have become confusing due to the continuous description of species with intermediate features of both genera (cf. Sawyer 2001; Leiva González and Rodríguez 2006; Leiva González et al. 2008). According to the recent molecular phylogenetic tree of Särkinen et al. (2013), Larnax and Deprea are placed in an unnamed clade closer to the Withaninae subtribe. However, previous phylogenetic analysis, although poorly supported, placed Larnax closer to the Iochrominae clade (cf. Olmead et al. 2008); therefore, Larnax and Deprea are now in an unclear position. In addition, Larnax and Deprea could be a monophyletic clade as a whole, but they are not monophyletic clades independently (cf. Särkinen et al. 2013).

Karyological studies using conventional and AgNOR stains in species of Larnax and Deprea support their position within Physalideae tribe; however, no association with any of its three subtribes (Physalidineae, Withaninae and Iochrominae) can be proposed.
because detailed cytogenetic information (as here presented) is restricted to isolated
genera of each subtribe (Rego et al. 2009; Barboza et al. 2010; Chiarini et al. 2010).

In several plant groups, the appearance of macrosatellites instead of microsatellites
are associated with advanced taxa (Stebbins 1971; Moscone 1989) and, in this work, we
postulate it as a synapomorphic condition according to the molecular phylogenetic tree
of Särkinen et al. (2013). Presence of macrosatellites is remarkable in most of Larnax
and Deprea species compared with species of other related genera, such as A.
sellowiana and W. solanacea, which have one pair of microsatellites (Barboza et al.
2010; Chiarini et al. 2010) and belong to Withaninae and Physalidinae clades,
respectively (Särkinen et al. 2013). As a consequence, the appearance of macrosatellites
could be a synapomorphic trait for the Larnax and Deprea group, but more karyological
studies of tribe Physalideae members are needed to confirm this. Besides, the haploid
karyotype formula 9 m + 3 sm is found in A. sellowiana (subtribe Withaninae; Barboza
et al., 2010), W. solanacea (subtribe Physalidinae; Chiarini et al. 2010), V. breviflora
(subtribe lochrominae; Rego et al. 2009), and in an important group of Larnax and
Deprea species; therefore, we consider this haploid karyotype formula as a
plesiomorphic trait.

As it was demonstrated, the different karyotype parameters obtained, especially
karyotype asymmetry indices and number, size, position and heteromorphic condition of
satellites, are useful to single out the studied species. At present, an integral treatment of
both genera is being accomplished in an attempt to identify new morphological
characters which, together with additional cytogenetic traits (heterochromatin amount,
position and type, and number and position of rDNA sites) allow us to group species
according to our ongoing phylogenetic studies.

Additional karyotype analyses in a higher number of members of the Physalideae
tribe are desirable to enhance the knowledge about possible karyoevolutionary trends in
the studied genera and in genera belonging to the subtribes Physalidinae, Withaninae
and lochrominae.

Acknowledgements
We are indebted to Mg. Sc. S. Leiva González, for helping with plant collection and identification of voucher specimens, and to the reviewers for valuable suggestions and comments on the manuscript. We also thank the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET, PIP 00552), Fondo para la Investigación Científica y Tecnológica (FONCYT, PICT 2775), SECYT-UNC, Ministerio de Ciencia y Tecnología de Córdoba, from Argentina, for funding this study. The first author is especially thankful to FONCYT for the scholarship provided for conducting her doctoral studies.

References

Hunziker AT (1977) Estudios sobre Solanaceae. VIII. Novedades varias sobre tribus, géneros, secciones y especies de Sud América [Studies in Solanaceae VIII.
Novelties about tribes, genera, sections, and species from South America. *Kurtziana* 10, 7-50.

Hunziker AT (2001) 'Genera Solanacearum.' (K-G Ruggell: ARG Gantner Verlag)

Jong J (1997) 'Laboratory manual of plant cytological techniques.' (Royal Botanical Garden: Edinburgh)

Leiva González S, Rodríguez Rodríguez EF (2006) Tres nuevas especies de *Larnax* (Miers) Hunziker (Solanaceae) del Departamento Amazonas, Perú [Three new species of *Larnax* (Miers) Hunziker (Solanaceae) from Amazonas Department, Peru]. *Arnaldoa* 13, 290-304.

Figure Legends

FIGURE 2. Idiograms of *Larnax* and *Deprea* species. Chromosomes showing high similarity were grouped. Scale bar = 5 µm.

FIGURE 3. Diagram showing the intrachromosomal asymmetry index (A₁) plotted against the interchromosomal asymmetry index (A₂). Species codes are given in Table 1. Solid circles (●) and empty squares (□) indicate species with a fruiting calyx loosely or tightly enveloping the berry, respectively.

Table 1. List of *Larnax* and *Deprea* species, samples studied, code, voucher specimen and provenance.

<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>Voucher specimen</th>
<th>Provenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. glabra (Standl.) N.W. Sawyer (9, 31)</td>
<td>gla</td>
<td>Orozco C. I. et al. 3812 (COL, CORD, QCA).</td>
<td>COLOMBIA. Cauca Dept., El Tambo Munic., Munchique Natural National Park</td>
</tr>
<tr>
<td>L. nieva S. Leiva & N.W. Sawyer (9, 65)</td>
<td>nie</td>
<td>Deanna R. & Leiva S. 43 (CORD, HAO).</td>
<td>PERU. Amazonas Dept., Bongará Prov., km 384, Nueva Cajamarca – Pomacochas (Florida) roadsides.</td>
</tr>
<tr>
<td>L. sachapapa 2 (8, 104)</td>
<td>sac2</td>
<td>Deanna R., Leiva S. & Cerón C. 142 (CORD, HAO, QUSF).</td>
<td>ECUADOR. Pichincha Prov., Quito, km 45, Calacali-Nanegalito road.</td>
</tr>
<tr>
<td>L. subtriflora (Ruiz & Pav.) Miers 1 (2, 7)</td>
<td>sub1</td>
<td>Deanna R. & Leiva S. 71 (CORD, HAO).</td>
<td>PERU. Cajamarca Dept., Cutervo Prov., km 1542-1543, Cutervo - La Capilla roadsides.</td>
</tr>
<tr>
<td>L. toledoana Barboza & S. Leiva (11, 28)</td>
<td>tol</td>
<td>Orozco C. I. et al. 3949 (COL, CORD, QCA).</td>
<td>ECUADOR. Loja Prov., Cerro Toledo.</td>
</tr>
<tr>
<td>Species</td>
<td>Abbreviation</td>
<td>Collection Code</td>
<td>Location Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>D. bitteriana</td>
<td>bit</td>
<td>Orozco C. I. et al. 3871 (COL, CORD)</td>
<td>COLOMBIA. Cundinamarca Dept., Subachoque, El Tablazo moorland.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. zamorae</td>
<td>zam</td>
<td>Orozco C. I. et al. 3926 (COL, CORD, HAO, QCA)</td>
<td>ECUADOR. Zamora-Chinchipe Prov., boundaries of Podocarpus National Park.</td>
</tr>
</tbody>
</table>

A In parentheses, number of seedlings and somatic metaphases analyzed per species with Feulgen staining, in this order.

B Abbreviations: Prov. = province, Dept. = department, Munic. = municipality (town).
Table 2. Karyotype features of eight species of *Larnax* and three species of *Deprea*, all of them with 2n = 24.

Species are listed following the order in Table 1. Abbreviations: HKF = haploid karyotype formula; m = metacentric; sm = submetacentric; NOR = nucleolus organizing region; chr-NOR = ordering number of the NOR-bearing chromosome and type; HKL = haploid karyotype length in µm, - mean (sd); sd = standard deviation; c = mean chromosome length; chr-l = range of chromosome length; r = mean arm ratio; R = ratio between the longest and the shortest chromosome pair; A₁ = intrachromosomal asymmetry index; A₂ = interchromosomal asymmetry index; AT = Stebbins’ karyotype asymmetry type.

<table>
<thead>
<tr>
<th>Species</th>
<th>HKF</th>
<th>chr-NOR</th>
<th>HKL</th>
<th>c (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. glabra</td>
<td>10 m + 2 sm</td>
<td>5 (m); 12 (sm)</td>
<td>37.77 (2.15)</td>
<td>3.15 (0.73)</td>
</tr>
<tr>
<td>L. nieva</td>
<td>7 m + 5 sm</td>
<td>7 (m)</td>
<td>31.67 (2.21)</td>
<td>2.64 (0.27)</td>
</tr>
<tr>
<td>L. pomacochaense</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>46.26 (4.71)</td>
<td>3.85 (0.54)</td>
</tr>
<tr>
<td>L. sachapapa 1</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>38.97 (7.61)</td>
<td>3.25 (0.52)</td>
</tr>
<tr>
<td>L. sachapapa 2</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>34.87 (4.94)</td>
<td>2.91 (0.31)</td>
</tr>
<tr>
<td>L. subtriflora 1</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>35.49 (3.40)</td>
<td>2.96 (0.36)</td>
</tr>
<tr>
<td>L. subtriflora 2</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>39.07 (5.57)</td>
<td>3.26 (0.40)</td>
</tr>
<tr>
<td>L. toledoana 1</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>32.88 (3.28)</td>
<td>2.74 (0.38)</td>
</tr>
<tr>
<td>Larnax sp.</td>
<td>10 m + 2 sm</td>
<td>5 (m); 12 (sm)</td>
<td>34.12 (6.67)</td>
<td>2.84 (0.40)</td>
</tr>
<tr>
<td>D. bitteriana</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>33.44 (3.69)</td>
<td>2.79 (0.36)</td>
</tr>
<tr>
<td>D. cuyacensis 5</td>
<td>5 m + 7 sm</td>
<td>4 (m); 9 (sm)</td>
<td>36.11 (5.72)</td>
<td>3.01 (0.40)</td>
</tr>
<tr>
<td>D. zamorae</td>
<td>9 m + 3 sm</td>
<td>9 (m)</td>
<td>35.45 (2.56)</td>
<td>2.95 (0.44)</td>
</tr>
</tbody>
</table>

http://www.publish.csiro.au/journals/ajb
Somatic metaphases of Larnax and Deprea species (2n = 24) after conventional staining (Feulgen). A, L. glabra; B, L. nieva; C, L. pomacochaense; D, L. subtriflora 1; E, L. subtriflora 2; F, L. toledoana; G, Larnax sp.; H, L. sachapapa 1; I, L. sachapapa 2; J, D. bitteriana; K, D. cuyacensis; L, D. zamorae. Arrows indicate satellites. Scale bar = 5 µm.

175x203mm (300 x 300 DPI)
Idiograms of Larnax and Deprea species. Chromosomes showing high similarity were grouped. Scale bar = 5 µm.

171x166mm (300 x 300 DPI)
Diagram showing the intrachromosomal asymmetry index (A_1) plotted against the interchromosomal asymmetry index (A_2). Species codes are given in Table 1. Solid circles (●) and empty squares (□) indicate species with a fruiting calyx loosely or tightly enveloping the berry, respectively.
Somatic metaphases of Larnax and Deprea species (2n = 24) after AgNOR banding. A, L. glabra; B, L. nieva; C, L. pomacochaense; D, L. subtriflora 2; E, L. toledoana; F, Larnax sp.; G, L. sachapapa 1; H, L. sachapapa 2; I, D. bitteriana; J, D. zamorae. Arrows indicate AgNORs. Scale bar = 5 µm.
Interphase nuclei of Larnax and Deprea species after AgNOR banding. A, L. glabra; B, L. nieva; C, L. pomacocharaense; D, L. subtriflora 1; E, L. subtriflora 2; F, L. toledoana; G, H, Larnax sp.; I, L. sachapapa 1; J, L. sachapapa 2; K, D. bitteriana; L, D. cuyacensis; M, D. zamorae. Scale bar = 10 µm.

175x216mm (300 x 300 DPI)