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We construct generalized symmetries for linearized Einstein gravity in arbitrary dimensions. First-principle
considerations in quantum field theory force generalized symmetries to appear in dual pairs. Verifying this
prediction helps us find the full set of nontrivial conserved charges—associated, in equal parts, with 2-form
and (D − 2)-form currents. Their total number is DðDþ 1Þ. We compute the quantum commutators of pairs
of dual charges, showing that they are nonvanishing for regions whose boundaries are nontrivially linked with
each other and zero otherwise, as expected on general grounds. We also consider general linearized higher-
curvature gravities. These propagate, in addition to the usual graviton, a spin-0 mode as well as a massive
ghostlike spin-2 mode.When the latter is absent, the theory is unitary and the dual-pairs principle is respected.
In particular, we find that the number and types of charges remain the same as for Einstein gravity, and that
they correspond to continuous generalizations of the Einsteinian ones.
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The notion of generalized symmetry can be traced back
to ’t Hooft’s seminal paper [1], but it has been recently put
on a broader and firmer ground by Gaiotto et al. [2]. The
idea is that symmetry operators can live in codimension-
one, two, … hypersurfaces. Dually, the charged operators
can be local, line, … operators. In this context the Landau
paradigm gets extended to include a far larger zoo of
theories, most importantly gauge theories. Recent reviews
include [3–5].
It is then important to inquire about the interplay

between generalized symmetries and gravity. A conservative
starting point is to consider gravitons (spin-2 fields) on
Minkoswki spacetime [6]. The simplest case corresponds
to the Einstein—or Fierz-Pauli—graviton. The generalized
symmetries of this theory were studied recently in [7–9],
mostly in D ¼ 4 spacetime dimensions. An insightful out-
come is that generalized symmetries are charged under
spacetime symmetries, shedding important new light on
the theorems of Noether and of Weinberg-Witten [8], and
providing intriguing relations between the gravitational
interaction and the physics of fractons [7,9,10]. The next-
to-simplest scenario is to go beyond D ¼ 4 and consider
general theories of linearized gravity, dubbed here theories of
“generalized gravitons.” Characterizing the generalized sym-
metries of these theories is the main goal of this Letter.

There are several motivations for this analysis. First,
the study of conserved charges in gravity theories has
been a key area in the field, one of its highlights being the
Wald formalism [11–13]. If new conserved charges exist, it
is important to find them. Second, as we review below,
generalized symmetries in quantum field theory (QFT)
always come in dual pairs [5,14,15]. This principle has
important implications. In the holographic context, it
provides an argument against the existence of higher-form
symmetries in quantum gravity [5]. It also lies behind
the proof of the universal charged density of states in
QFT [16–18]. In certain scenarios, such as the ones
considered in this Letter, it might predict the existence
of new, otherwise unexpected, charges. Conversely, it
might suggest that certain naive charges do not generate
new symmetries. Third, the principle of the completeness
of the spectrum in quantum gravity [19,20] has recently
been connected to the absence of generalized symmetries
[5,14,21–23]. Studying the generalized symmetries of
generalized gravitons we are advancing toward under-
standing what kind of matter is required to break these
symmetries. In fact, for the Einstein graviton, Ref. [7]
showed that conventional ways of breaking the generalized
symmetries lead to the breaking of Poincaré invariance.
One last motivation comes from condensed matter physics
and the connection between gravity and fractons [24]. The
zoo of theories considered here enlarges the space of
potential fractonic systems as well as the one of tensor
gauge theories [25].
Generalized symmetries, algebras, and conserved cur-

rents.—In D-dimensional flat space, a p-form symmetry
current J is a p-form which satisfies the conservation
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property d ⋆ J ¼ 0, where ⋆ J is the (D − p)-form defined
by the Hodge dual of J and d is the exterior derivative.
Conserved currents like J define conserved higher-form
charges Q by integrating ⋆ J over closed (D − p) surfaces
ΣðD−pÞ embedded in RD, namely [2],

Φ ¼
Z
ΣðD−pÞ

⋆ J: ð1Þ

Given Φ, the operator that implements the generalized
symmetry reads Ug ¼ eigΦ. To have a true symmetry, we
need Φ ≠ 0, and this implies ⋆ J ≠ dG, where G is a
physical field of the theory. The paradigmatic example is
the free Maxwell field, which has two conserved currents F
and ⋆ F, where F is the field strength. Although F ¼ dA
and ⋆ F ¼ dÃ, neither A nor Ã are physical fields.
An algebraic approach to the notion of generalized

symmetry appeared in [5,14]. A QFT naturally assigns
von Neumann algebras AðRÞ to spacetime regions R. A
minimal assignation corresponds to the “additive algebra”
AaddðRÞ, i.e., the algebra generated by local operators in R.
Causality forces

AaddðRÞ ⊆ ½AaddðR0Þ�0; ð2Þ

where R0 is the set of points spatially separated from R, and
A0 is the algebra of operators that commute with A. If the
inclusion (2) is not saturated for certain R, there is a
larger algebra associated with R—the “maximal algebra,”
AmaxðRÞ≡ ½AaddðR0Þ�0—which necessarily contains a set
fag of nonlocally generated operators in region R such that

AmaxðRÞ ¼ AaddðRÞ∨fag: ð3Þ

For example, in free Maxwell theory, magnetic fluxes over
open surfaces are, in this sense, nonlocal operators asso-
ciated with ringlike regions. Wilson loops are particular
examples. Given this algebraic structure, one can define
classes of operators [a] by making the quotient of the
maximal algebra by the additive algebra. A class is defined
by a certain representative a and all operators that arise
from it by adding products of local operators in R.
A nontrivial conclusion follows. The inclusion (2) forces

a “dual” inclusion in the complementary region R0. This
follows from von Neumann’s double commutant theorem,
see [5,14], and implies the existence of nonlocal operators
fbg associated with the R0:

AmaxðR0Þ ¼ AaddðR0Þ∨fbg: ð4Þ

Hence, nonlocal operator algebras come in dual pairs—a
novel realization of this principle for generalized Maxwell
fields can be found in the Supplemental Material [26],
which includes [27–39]. The “size” of these dual algebras

is precisely the same, measured by the so-called Jones
index [40–42]; see [15,43,44] for simpler introductions and
specific computations in this context.
There are two further consequences from this approach.

Consider a QFT with an additive algebra charged under a
global symmetry group G. The question is whether this
action can change the nonlocal classes of a given region R.
The first consequence is that this can only happen in a
pointlike manner [8], namely, UðgÞ½a�UðgÞ−1 ¼ ½b�. If [b]
is different from [a] for certain [a] and certain UðgÞ, we
say the classes are charged under the global symmetry.
For continuous symmetry groups this implies the non-
local classes for R must form a continuum. The second
consequence is that if the nonlocal classes of R are
charged under the symmetry, the nonlocal classes
of R0 must be charged too [8], forming another continuum
of classes.
Going back to the discussion of conserved p-form

currents, consider now integrating ⋆ J over an open sur-
face, whose boundary ∂ΣD−p is a closed ðD − p − 1Þ
manifold. The corresponding flux operator Φ—defined
as in (1)—only depends on the boundary ∂ΣD−p, and
therefore commutes with local operators outside ∂ΣD−p.
Since ⋆ J ≠ dG with G a physical field, Φ cannot be
written as a circulation over the boundary of a physical
field. Considering a region R enclosing the boundary
∂ΣD−p and with the same topology, this region will contain
operators—namely, Φ and all operators arising from
multiplying it with local operators in R—that commute
with all local operators in R0, but cannot be locally
generated in R, showing that AaddðRÞ ⊊ AmaxðRÞ.
This forces an analogous strict inclusion in R0. Further, if

the original classes of R are charged under a continuum
symmetry group, the dual classes in R0 form also a
continuum, and are generated by a dual conserved
(D − p)-form current J̃ (assuming a generalized version
of Noether’s theorem). Hence, in certain scenarios, such as
the one of linearized gravities, the existence of a conserved
p-form current predicts the existence of a dual conserved
(D − p)-form current.
Generalized symmetries for linearized Einstein gravity.—

A small perturbation hμν on top of Minkowski spacetime is
defined by

gμν ¼ ημν þ hμν; khμνk ≪ 1; hμν ¼ hνμ: ð5Þ

The Einstein-Hilbert action reduces, at quadratic order in the
perturbation, to the Fierz-Pauli one,

SFP ¼
Z

dDx

�
1

2
∂λhμν∂νhμλ −

1

2
∂μh∂νhμν

þ 1

4
∂μh∂μh −

1

4
∂
λhμν∂λhμν

�
: ð6Þ
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This action has a gaugelike symmetry under linearized
diffeomorphisms,

hμν → hμν þ ∂μξν þ ∂νξμ; ð7Þ

and its variation with respect to hμν yields the linearized
Einstein equations,

Rð1Þ
μν ¼ 0: ð8Þ

The p-form conserved currents must be gauge invariant with
respect to (7). They must be written in terms of the linearized
Riemann tensorRμνρσ—or, equivalently, theWeyl—which is
the generator of the physical local algebra of the theory
[7,45]. Naturally, we are also free to use ημν as well as the
Levi-Civita symbol εμ1…μD to build currents. In fact, it is
convenient to use the dual of the Riemann tensor [46,47]:

R�
μ1…μD−2αβ

≡ 1

2
εμ1…μD−2λσR

λσ
αβ: ð9Þ

Four dimensions.—Let us consider the D ¼ 4 case
first. One finds the following four families of conserved
2-forms [7–9]:

Aμν ≡ Rð1Þ
μναβa

αβ; ð10Þ

Bμν ≡ Rð1Þ
μναβðxαbβ − xβbαÞ; ð11Þ

Cμν ≡ Rð1Þ
μναβc

αβγxγ; ð12Þ

Dμν ≡ Rð1Þ
μναβ

�
xαdβγxγ − xβdαγxγ þ 1

2
dαβx2

�
: ð13Þ

Here, aαβ, bα, cαβγ , and dαβ are real skew-symmetric
free parameters which label each of the 20 independent
2-forms [48]. The charges satisfy the appropriate conser-
vation equations:

d ⋆ A ¼ d ⋆ B ¼ d ⋆ C ¼ d ⋆ D ¼ 0: ð14Þ

The conservation of A uses the fact that the Riemann tensor
is itself a conserved current on shell. The conservation of B
relies on the Einstein equation. For C, the first Bianchi
identity is used. For D we need the Einstein equation and
the first Bianchi identity.
Similar conserved currents fÃ; B̃; C̃; D̃g can be con-

structed from the dual curvature, by simply replacing Rð1Þ
μνρσ

by Rð1Þ�
μνρσ and faαβ; bα; cαβγ; dαβg by a new set of constant

arrays fãαβ; b̃α; c̃αβγ; d̃αβg. However, in D ¼ 4 we have a
U(1) duality symmetry rotating the Riemann and its dual:

�
R

R�

�
→

�
cos θ − sin θ

sin θ cos θ

��
R

R�

�
: ð15Þ

This means the algebra generated by fA;B;C;Dg is the
same as the one generated by fÃ; B̃; C̃; D̃g.
In four dimensions, the fact that symmetries come in dual

pairs might appear trivial at first sight since for a ringlike
region the complement is also a ring. Still, it is no
coincidence that the total number of them is even—namely,
20—and they can be organized in dual pairs when
computing commutators [8]. Note that the currents should
come in dual pairs since the conserved 2-form currents (10)
are charged under spacetime symmetries.
General dimensions.—We now move to D > 4 dimen-

sions, where the complementary of a ringlike region is no
longer a ring. Charges and dual charges then correspond
to regions with different topologies. At first sight,
following [9], the families A, B, C, D described above
are still conserved in general dimensions, giving rise to
DðDþ 1ÞðDþ 2Þ=6 candidates to generate generalized
symmetries associated with rings. The principle that
generalized symmetries come in dual pairs predicts an
equal number of dual conserved (D − 2)-forms. Natural
candidates appear by considering the obvious extension of
the families Ã, B̃, C̃, D̃ to higher dimensions. However, for
D > 4 we only recover DðDþ 1Þ=2 conserved (D − 2)-
forms in this way. These are the two families Ã, B̃
constructed as

Ãμ1μ2…μD−2
≡ Rð1Þ�

μ1μ2…μD−2αβ
ãαβ; ð16Þ

B̃μ1μ2…μD−2
≡ Rð1Þ�

μ1μ2…μD−2αβ
ðxαb̃β − xβb̃αÞ: ð17Þ

The problem is that in D > 4 we cannot build conserved
currents of the C̃μν and D̃μν type since the Bianchi identity
of the dual Riemann tensor with only three indices
contracted does not hold:

εμ1…μD−3αβγRð1Þ�
ν1…νD−3αβγ

¼ 1

2
ηβγμ1…μD−3
αδν1…νD−3

Rð1Þδα
βγ : ð18Þ

While in D ¼ 4 this reduces to a combination of Ricci
tensors which vanishes by virtue of the Einstein equation,
this is no longer true in D > 4.
This mismatch between the number of conserved

charges associated with generalized symmetries in com-
plementary regions has two possible origins. The first is
that we might be missing charges arising from new
conserved (D − 2)-forms. In this case, the charges have
to be of the C̃ and D̃ types, because potential nonvanishing
commutators with the A’s and B’s should be dimensionless
(a c number)—see below. We argue these charges do not
exist in the Supplemental Material [26]. The second
possibility is that some of the conserved A, B, C, D
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currents become exact in D > 4. Although counterintuitive
at first sight, this turns out to be the case. Define

Aμνρ ≡ −
R�
μνρα1…αD−3

ðD − 4Þ! ãα1…αD−3σxσ; ð19Þ

Cμνρ ≡ R�
μνρα1…αD−3

ðD − 5Þ!ðD − 2Þ
�
1

2
c̃α1…αD−3x2

þ ηα1…αD−3
β1…βD−3

ðD − 4Þ! c
β1…βD−4σxβD−3xσ

�
; ð20Þ

where ãα1…αD−2 ≡ 1
2
ϵα1…αD−2μνaμν and c̃α1…αD−3 ≡

1
3!
ϵα1…αD−3μνρcμνρ. By direct computation, we find the

corresponding divergences to be given by A and C,
respectively; i.e., ∂

ρAμνρ ¼ Aμν and ∂
ρCμνρ ¼ Cμν.

Equivalently,

d ⋆ A ∝ ⋆ A; d ⋆ C ∝ ⋆ C: ð21Þ

Hence,⋆ A and ⋆ C are exact in the physical algebra of the
theory in D > 4. Fluxes constructed from them belong to
the additive algebra of the ring and do not generate
generalized symmetries. Note that (19) and (20) do not
correspond to skew-symmetric differential forms in D ¼ 4.
One could try to antisymmetrize the free indices, but
such a procedure results in both Aμνρ and Cμνρ vanishing
identically.
Summarizing, for D > 4 we find two families of con-

served 2-forms generating generalized symmetries: the B’s
and the D’s; see (11) and (13). They generate a total of
DðDþ 1Þ=2 conserved charges. In the complementary
regions we also find two families of conserved (D − 2)-
forms generating generalized symmetries. These are the Ã’s
and the B̃’s; see (16) and (17). They generate an equal
number of DðDþ 1Þ=2 conserved charges. The two sets
contain the same number of charges and have the right
dimensions to produce nonvanishing commutators. Starting
from the ADM formalism [49], we have evaluated such
commutators explicitly in the Supplemental Material [26].
They read

�Z
ΣðD−2Þ

ð⋆ Bþ ⋆ DÞ;
Z
Σ2

ð⋆ B̃þ ⋆ ÃÞ
�

¼ iðD − 3Þ
�
2ημνbμb̃

ν þ ημνηρσdμρãνσ
�
; ð22Þ

for regions whose boundaries have nontrivial linkings. This
verifies the B’s are paired with the B̃’s and the D’s are
paired with the Ã’s, in agreement with the four-dimensional
results of [8].
An interesting question is if in D ≥ 6 one can find

conserved p-forms with p ≠ 2 and p ≠ ðD − 2Þ. This is the

case, but all the ones we found were always exact forms,
and do not generate new symmetries.
Generalized symmetries for linearized higher-curvature

gravities.—We consider now a general gravity action built
from the Riemann tensor and the metric

S ¼ 1

16πG

Z
dDx

ffiffiffiffiffi
jgj

p
Lðgαβ; Rρ

σμνÞ: ð23Þ

As shown in the Supplemental Material (which also
includes [50–55]) [26], the most general theory of this
form contributing to the linearized equations of motion on
Minkowski space is quadratic in the Riemann tensor,

L ¼ Rþ α1R2 þ α2RμνRμν þ α3RμνλσRμνλσ; ð24Þ

where α1;2;3 are arbitrary dimensionful constants.
Following [56], we write α1 and α2 in terms of two new
parameters, ms and mg:

α1 ≡ ðD − 2Þm2
g þDm2

s

4ðD − 1Þm2
sm2

g
þ α3; α2 ≡ −1

m2
g
− 4α3: ð25Þ

The equations read now

Eð1Þ
μν ≡

�
1 −

∂
2

m2
g

�
Rð1Þ
μν − ΔμνRð1Þ ¼ 0; ð26Þ

where

Δμν ≡ ημν
2

�
1 −

∂
2

m2
g

�
þ ðD − 2Þðm2

g −m2
sÞ

2ðD − 1Þm2
sm2

g
½∂μ∂ν − ημν∂

2�:

ð27Þ

Equation (26) reduces to the Einstein one for m2
g; m2

s → ∞.
As explained, e.g., in [56], m2

g and m2
s correspond to the

squared masses of two—spin-0 and spin-2, respectively—
extra modes which appear in the spectrum.
Since the gauge symmetry (7) remains the same, the

Riemann tensor is still the generator of gauge-invariant
operators. However, the Ricci tensor does not vanish on

shell anymore and, consequently, Rð1Þ
μνρσ is no longer a

conserved current. On the other hand, the properties of the
dual Riemann tensor do not change. Hence, we obtain the
very same set of DðDþ 1Þ=2 independent (D − 2)-form
conserved currents corresponding to the families Ã and B̃
as for Einstein gravity; see (16) and (17).
Since these currents are charged under spacetime sym-

metries, the dual-pairs principle should imply the existence
of an equal number of DðDþ 1Þ=2 dual 2-form conserved
currents. Equivalently, this suggests the existence of a
generalized tensor playing the role of the Riemann. A
candidate is given by
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Wμναβ ≡Rμναβ þ
2

ðD − 2Þ
�
ην½αRβ�μ − ημ½αRβ�ν

�

þ 2

ðD − 2ÞðD − 1Þ ημ½αηβ�νR; ð28Þ

where we defined

Rμναβ ≡
�
1 −

∂
2

m2
g

�
Rð1Þ
μναβ þ 2Δμ½βR

ð1Þ
α�ν þ 2Δν½αjR

ð1Þ
β�μ: ð29Þ

The tensor Wμναβ is traceless and satisfies its own Bianchi
identity, ημαWμναβ ¼ 0, εμ1…μD−3αβγWαβγν ¼ 0. One can
show that it is a conserved current on shell and that the
second Bianchi identity holds only in two cases: (i) when
the additional spin-2 mode is absent from the spectrum
(m2

g → ∞) and (ii) when m2
s ¼ m2

g. In those situations
∂
μWμναβ ¼ 0 and εμ1…μD−3αβγ∂αWβγμν ¼ 0. In the first
case, the quadratic part of the action reduces to a single
R2 term. In the second, we are left with a single Weyl2 term.
In both situations, it follows thatWμναβ generates nontrivial
charges of the B and D classes identical to the Einstein
gravity ones—see (11) and (13)—by simply replacing

Rð1Þ
μνρσ with Wμνρσ. Analogously, one can show that the

putative A and C ones are exact in a similar way to (19)
and (20). Note that Rμναβ does not define additional
charges. Similarly, one might define Ã and B̃ charges
using the dual of Wμναβ. However, one can show that such
charges produce the same nonlocal classes as the ones
defined in (16) and (17). All these claims are proven in the
Supplemental Material [26].
Summarizing, in the absence of the additional spin-2

mode, we find that the higher-curvature theories possess
DðDþ 1Þ conserved currents, organized in two equal-size
dual sets fÃ; B̃g and fB;Dg. The currents are continuous
deformations of the Einsteinian ones.
When m2

g is finite and m2
s ≠ m2

g, this construction fails
and we find a violation of the dual-pairs principle. This is
likely related to the fact that the additional spin-2 mode is a
ghost [56,57], whose presence renders the theory nonuni-
tary [58,59]. It is reasonable to expect generalized sym-
metries and the dual-pairs principle to be sensitive to such
issue. Nonetheless, it is also a logical possibility that a more
elusive set of charges exists in this case and ends up saving
the day for these theories.
On the other hand, the case m2

g ¼ m2
s has similar

unitarity problems [59]. The fact that this does not violate
the dual-pairs principle suggests that consistent theories
will always respect such principle, but that the opposite
implication will not be true in general.
Conclusions and future work.—In this Letter we have

found DðDþ 1Þ generalized symmetries for linearized
Einstein gravity as well as for higher-curvature gravities
propagating an additional spin-0 mode in general

dimensions. Half of the symmetries are generated by
2-form currents and the other half by (D − 2)-form cur-
rents, which verifies the QFT principle that generalized
symmetries always come in dual pairs. In the case of
higher-curvature gravities propagating an additional mas-
sive spin-2 mode, the theory is nonunitarity, and the dual-
pairs principle seems to be violated.
An interesting outcome is that generalized gravitons can

be defined by their generalized symmetries, supporting the
perspective of [9]; see the Supplemental Material [26],
which also includes [60]. More precisely, linearized gravity
is a theory of symmetry, characterized by the conservation
of its closed-form currents. This parallels the case of the
Maxwell field. It is also reminiscent of AdS=CFT [61,62],
where gravity is dual to the dynamics of the CFT stress
tensor, constrained by its conservation, tracelessness and
associated Ward identities.
Further interesting outcomes are that the graviton gen-

eralized symmetries are charged under spacetime sym-
metries. Following [8] this implies the Weinberg-Witten
theorem [63] for these theories. It also implies that these
theories enlarge the space of so-called tensor gauge theories
[25], providing further examples of the proposed connec-
tion between gravity and fractonic systems [8–10,64–67].
There are several venues for future work. First, our

analysis could be extended to linearized theories of gravity
whose Lagrangian is also a functional of the covariant
derivative, theories with explicit mass terms in the action,
and more general backgrounds. A more difficult question is
whether the existence of a nontrivial space of low-energy
gravity theories—defined in terms of the spectrum of
generalized symmetries—implies the existence of a similar
space of UV completions. One expects this not to be the
case, and that the absence of generalized symmetries in
quantum gravity [19,20] should lead to a unified theory in
the UV, where all these different phases are smoothly
connected to each other.
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Inst. Henri Poincaré 208, 2555 (2019).
[46] C. M. Hull, J. High Energy Phys. 09 (2001) 027.
[47] M. Henneaux, V. Lekeu, and A. Leonard, J. Phys. A 53,

014002 (2020).
[48] Although charged under spacetime symmetries, these labels

do not transform as Lorentz tensors [8].
[49] R. Arnowitt, S. Deser, and C.W. Misner, Phys. Rev. 116,

1322 (1959).
[50] T. C. Sisman, I. Gullu, and B. Tekin, Classical Quantum

Gravity 28, 195004 (2011).
[51] H. Lu and C. N. Pope, Phys. Rev. Lett. 106, 181302

(2011).
[52] P. Bueno and P. A. Cano, Phys. Rev. D 94, 104005

(2016).
[53] A. Salvio, Front. Phys. 6, 77 (2018).
[54] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[55] T. Padmanabhan and D. Kothawala, Phys. Rep. 531, 115

(2013).
[56] P. Bueno, P. A. Cano, V. S. Min, and M. R. Visser, Phys.

Rev. D 95, 044010 (2017).
[57] L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst, and

A. Riotto, Fortschr. Phys. 64, 176 (2016).
[58] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[59] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[60] L. D. Landau, Statistical Physics, 3rd ed. (Pergamon Press,

Oxford, 1980).
[61] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[62] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y.

Oz, Phys. Rep. 323, 183 (2000).
[63] S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980).
[64] M. Pretko, Phys. Rev. B 95, 115139 (2017).
[65] M. Pretko, Phys. Rev. B 96, 035119 (2017).
[66] A. Blasi and N. Maggiore, Phys. Lett. B 833, 137304

(2022).
[67] E. Bertolini, A. Blasi, A. Damonte, and N. Maggiore,

Symmetry 15, 945 (2023).

PHYSICAL REVIEW LETTERS 131, 111603 (2023)

111603-6

https://doi.org/10.1146/annurev-conmatphys-040721-021029
https://doi.org/10.1146/annurev-conmatphys-040721-021029
https://doi.org/10.1142/S0217732321300251
https://doi.org/10.1142/S0217732321300251
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1007/JHEP05(2022)045
https://doi.org/10.1007/JHEP05(2022)045
https://doi.org/10.1007/JHEP08(2022)304
https://doi.org/10.1007/JHEP08(2022)304
https://doi.org/10.1007/JHEP02(2023)151
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1063/1.528801
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/physrevd.50.846
https://doi.org/10.1007/JHEP04(2021)277
https://doi.org/10.1007/JHEP04(2021)277
https://doi.org/10.1103/PhysRevA.103.012211
https://doi.org/10.1103/PhysRevA.103.012211
https://doi.org/10.1007/JHEP02(2020)014
https://doi.org/10.1007/JHEP02(2020)014
https://doi.org/10.1007/JHEP12(2021)100
https://doi.org/10.1088/1361-6382/ac5db2
https://doi.org/10.1088/1361-6382/ac5db2
https://doi.org/10.1142/S0217751X0401866X
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1007/JHEP12(2020)172
https://doi.org/10.1007/JHEP12(2020)172
https://doi.org/10.1007/JHEP09(2021)203
https://doi.org/10.1007/JHEP09(2021)203
https://arXiv.org/abs/2303.02837
https://doi.org/10.1142/S0217751X20300033
https://doi.org/10.1142/S0217751X20300033
https://arXiv.org/abs/1601.08235
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.111603
https://doi.org/10.1007/JHEP01(2023)039
https://doi.org/10.1007/JHEP01(2023)039
https://doi.org/10.1007/JHEP06(2023)064
https://doi.org/10.1007/JHEP06(2023)064
https://doi.org/10.1007/JHEP06(2023)095
https://doi.org/10.1007/JHEP06(2023)095
https://doi.org/10.1007/JHEP08(2021)042
https://doi.org/10.1007/JHEP08(2021)042
https://doi.org/10.1103/PhysRevD.96.036008
https://doi.org/10.1002/prop.202200092
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1103/PhysRevD.102.121703
https://doi.org/10.1007/JHEP10(2021)031
https://doi.org/10.1016/j.physletb.2020.135840
https://doi.org/10.1007/s11433-019-1446-1
https://doi.org/10.1007/s11433-019-1446-1
https://doi.org/10.1103/PhysRevD.101.124041
https://doi.org/10.1103/PhysRevD.101.124041
https://doi.org/10.1007/JHEP01(2022)079
https://doi.org/10.1007/JHEP01(2022)079
https://doi.org/10.1007/BF01389127
https://doi.org/10.1016/0022-1236(86)90085-6
https://doi.org/10.1007/BF02125124
https://doi.org/10.2977/prims/1195168432
https://doi.org/10.1007/s00220-018-3266-x
https://doi.org/10.1007/s00220-018-3266-x
https://doi.org/10.1007/s00023-019-00820-4
https://doi.org/10.1007/s00023-019-00820-4
https://doi.org/10.1007/s00023-019-00820-4
https://doi.org/10.1088/1126-6708/2001/09/027
https://doi.org/10.1088/1751-8121/ab56ed
https://doi.org/10.1088/1751-8121/ab56ed
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1088/0264-9381/28/19/195004
https://doi.org/10.1088/0264-9381/28/19/195004
https://doi.org/10.1103/PhysRevLett.106.181302
https://doi.org/10.1103/PhysRevLett.106.181302
https://doi.org/10.1103/PhysRevD.94.104005
https://doi.org/10.1103/PhysRevD.94.104005
https://doi.org/10.3389/fphy.2018.00077
https://doi.org/10.1063/1.1665613
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1103/PhysRevD.95.044010
https://doi.org/10.1103/PhysRevD.95.044010
https://doi.org/10.1002/prop.201500100
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/BF00760427
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/0370-2693(80)90212-9
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1016/j.physletb.2022.137304
https://doi.org/10.1016/j.physletb.2022.137304
https://doi.org/10.3390/sym15040945

