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a b s t r a c t

The topological derivative measures the sensitivity of a given shape functional with respect to an infin-
itesimal singular domain perturbation. According to the literature, the topological derivative has been
fully developed for a wide range of one single physical phenomenon modeled by partial differential equa-
tions. In addition, the topological asymptotic analysis associated to multi-physics problems has been
reported in the literature only on the level of mathematical analysis of singularly perturbed geometrical
domains. In this work, we present the topological derivative in its closed form for the total potential
mechanical energy associated to a thermo-mechanical semi-coupled system, when a small circular inclu-
sion is introduced at an arbitrary point of the domain. In particular, we consider the linear elasticity sys-
tem (modeled by the Navier equation) coupled with the steady-state heat conduction problem (modeled
by the Laplace equation). The mechanical coupling term comes out from the thermal stress induced by
the temperature field. Since this term is non-local, we introduce a non-standard adjoint state, which
allows to obtain a closed form for the topological derivative. Finally, we provide a full mathematical jus-
tification for the derived formulas and develop precise estimates for the remainders of the topological
asymptotic expansion.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The topological derivative represents a first order asymptotic
correction term of a given shape functional with respect to a singu-
lar domain perturbation (Sokołowski and _Zochowski, 1999). It has
been applied in topology design optimization (Amstutz et al.,
2012), inverse problems (Hintermüller et al., 2012), image process-
ing (Hintermüller and Laurain, 2009), multi-scale constitutive
modeling (Giusti et al., 2009), fracture mechanic sensitivity analy-
sis (Van Goethem and Novotny, 2010) and damage evolution mod-
eling (Allaire et al., 2011). See also the book by Novotny and
Sokołowski (2013) and references therein.

For the sake of completeness, we recall the basic concepts on
topological sensitivity analysis. Let us consider a bounded domain
X � R2, which is subject to a non-smooth perturbation confined in
a small region xeðx̂Þ ¼ x̂þ ex of size e, as shown in Fig. 1. Here, x̂ is
an arbitrary point of X and x is a fixed bounded domain of R2.
Associated to the domain X we introduce a characteristic function
x # vðxÞ, x 2 R2, namely v ¼ 1X. Also, for the topologically per-
turbed domain we can define a characteristic function of the form

x # veðx̂; xÞ. If the perturbation is given by a perforation, the char-
acteristic function can be written as veðx̂Þ ¼ 1X � 1xeðx̂Þ

and the per-
forated domain is obtained now as Xe ¼ X nxe. Now, by assuming
the following topological asymptotic expansion of a given shape
functional wðveðx̂ÞÞ, associated to the topologically perturbed
domain,

wðveðx̂ÞÞ ¼ wðvÞ þ f ðeÞDTwðx̂Þ þ oðf ðeÞÞ; ð1Þ

the function x̂ # DTwðx̂Þ is called the topological derivative of w at x̂.
In (1), wðvÞ is the shape functional associated to the original (unper-
turbed) domain and f ðeÞ is a positive function such that f ðeÞ ! 0,
when e! 0. After rearranging (1) we have

wðveðx̂ÞÞ � wðvÞ
f ðeÞ ¼ DTwðx̂Þ þ

oðf ðeÞÞ
f ðeÞ : ð2Þ

The limit passage e! 0 in the above expression leads to

DTwðx̂Þ ¼ lim
e!0

wðveðx̂ÞÞ � wðvÞ
f ðeÞ : ð3Þ

Since we are dealing with singular domain perturbations, the shape
functionals wðveðx̂ÞÞ and wðvÞ are associated to topologically differ-
ent domains. Therefore, the above limit is not trivial to be calcu-
lated. In particular, we need to perform an asymptotic analysis of
the shape functional wðveðx̂ÞÞ with respect to the small parameter
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e. In order to calculate the topological derivative, in this work we
will apply the approach fully developed in the book by Novotny
and Sokołowski (2013). The method is based on the following result,
whose rigorous mathematical justification can be found in the pa-
per by Nazarov and Sokołowski (2003):

DTwðx̂Þ ¼ lim
e!0

1
f 0ðeÞ

d
de

wðveðx̂ÞÞ: ð4Þ

The derivative of wðveðx̂ÞÞ with respect to e can be seen as the sen-
sitivity of wðveðx̂ÞÞ, in the classical sense of Delfour and Zolésio
(2001) and Sokołowski and Zolésio (1992), to the domain variation
produced by an uniform expansion of the perturbation xe.

According to the literature, the topological derivative has been
fully developed for a wide range of one single physical phenome-
non modeled by partial differential equations. In addition, only a
few works dealing with multi-physics problems have been re-
ported in the literature, and, in general, the derived formulas are
presented in their abstract forms (see, for instance, the paper by
Cardone et al. (2010) on topological derivatives for piezoelectric
materials). In this work, therefore, we derive the topological deriv-
ative in its closed form for the total potential mechanical energy
associated to a thermo-mechanical semi-coupled system, when a
small circular inclusion is introduced at an arbitrary point of the
domain. In particular, we consider the linear elasticity system
(modeled by the Navier equation) coupled with the steady-state
heat conduction problem (modeled by the Laplace equation). The
mechanical coupling term comes out from the thermal stress in-
duced by the temperature field. Since this term is non-local, we
introduce a non-standard adjoint state, which simplifies the anal-
ysis allowing to obtain a closed form for the topological derivative.
Finally, we provide a full mathematical justification for the derived
formula and develop precise estimates for the remainders of the
topological asymptotic expansion. We note that this result can be
applied in technological research areas such as multi-physic topol-
ogy design of structures under mechanical and/or thermal loads.

This paper is organized as follows. Section 2 describes the mod-
el associated to a thermo-mechanical semi-coupled problem. The
topological sensitivity analysis is presented in Section 3, where
the main result of this work is derived: the topological derivative
in its closed form for the total potential mechanical energy associ-
ated to a thermo-mechanical semi-coupled system. Also in this
section, a computational framework designed to the numerical val-
idation of the topological derivative formula is presented. The pa-
per ends in Section 4 where concluding remarks are presented.

2. Formulation of the problem

In this work the topological derivative of the total potential en-
ergy associated to the mechanical problem submitted to thermal
stresses is derived. The topologically perturbed domain is obtained
when a small hole is introduced inside the geometrical domain.
Then, the resulting void is filled by an inclusion with a contrast
on the elastic, thermal and thermal-expansion material properties.

Therefore, we need to formulate the problems associated to both
original and topologically perturbed domains.

2.1. Unperturbed problem

Consider an open and bounded domain X 2 R2 representing an
elastic solid body subject to a linear thermo-mechanical deforma-
tion process. Assuming small deformation and variations of tem-
peratures, the functional that represents the total potential
energy of the mechanical system for a given temperature field h
is written as:

J vðu; hÞ :¼ 1
2

Z
X
rðuÞ � rus �

Z
X

QðhÞ � rus �
Z

CNu

�t � u; ð5Þ

where u represents the displacement field and �t is a external trac-
tion acting on boundary CNu . The displacement field on the bound-
ary CDu satisfies ujCDu

¼ �u, being �u a prescribed displacement.
Moreover, note that CDu \ CNu ¼£ and CDu [ CNu ¼ @X. The Cauchy
stress tensor rðuÞ in (5) is defined as:

rðuÞ :¼ Crus; ð6Þ

where rus is used to denote the symmetric part of the gradient of
the displacement field u, i.e.

rus :¼ 1
2
ðruþ ðruÞ>Þ: ð7Þ

The induced thermal stress tensor QðhÞ in (5) is defined as:

QðhÞ :¼ CBh: ð8Þ

Therefore the total stress, i.e. the contribution of the mechanical
and thermal stresses, is defined as

Sðu; hÞ ¼ rðuÞ � QðhÞ: ð9Þ

In addition, C denotes the four-order elastic tensor and B de-
notes the second-order thermo-elastic tensor. In the case of isotro-
pic elastic body, theses tensors are given by:

C ¼ 2lII þ kðI � IÞ and B ¼ aI) CB ¼ 2aðkþ lÞI; ð10Þ

with l and k denoting the Lame’s coefficients, and a the thermal
expansion coefficient. In terms of the engineering constant E
(Young’s modulus) and m (Poisson’s ratio) the above constitutive re-
sponse can be written as:

C ¼ E
1� m2 ½ð1� mÞII þ mðI � IÞ� and CB ¼ aE

1� m
I: ð11Þ

Considering the previous definitions, we have that the field u is
the solution of the following variational problem: given the tem-
perature field h, find u 2 UM , such thatZ

X
rðuÞ � rgs ¼

Z
X

QðhÞ � rgs þ
Z

CNu

�t � g 8g 2 VM : ð12Þ

In the variational problem (12), the set UM and the space VM are
defined as

Fig. 1. The topological derivative concept.
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UM :¼ f/ 2 H1ðX; R2Þ : / ¼ �u on CDug; ð13Þ
VM :¼ f/ 2 H1ðX; R2Þ : / ¼ 0 on CDug: ð14Þ

Moreover, the temperature field h must satisfy the following
variational problem: find h 2 UT , such thatZ

X
qðhÞ � rg ¼

Z
CNh

�qg 8g 2 VT ; ð15Þ

where �q is a prescribed heat flux on the Neumann boundary CNh
. In

the Dirichlet boundary CDh
there is a prescribed temperature de-

noted as �h. Then, CDh
\ CNh

¼£ and CDh
[ CNh

¼ @X. The heat flux
operator qðhÞ is defined as

qðhÞ ¼ �Krh; ð16Þ

where K is an second order tensor representing the thermal conduc-
tivity of the medium. In the isotropic case, the tensor K can be writ-
ten as

K ¼ kI; ð17Þ

being k the thermal conductivity coefficient. In the variational prob-
lem (15), the set UT and the space VT are defined as:

UT :¼ f/ 2 H1ðXÞ : / ¼ �h on CDhg; ð18Þ
VT :¼ f/ 2 H1ðXÞ : / ¼ 0 on CDh

g: ð19Þ

Remark 1. In the case of a general thermo-elasticity model, the
strain rate induces a change in the temperature of the body,
leading to a fully coupled system. In our simplified setting, the
temperature is completely independent of the mechanical strains,
which leads to the so-called thermo-mechanical semi-coupled
system. For the mathematical analysis of a fully coupled piezo-
electric system in the context of singularly perturbed geometrical
domains, see Cardone et al. (2010).

Finally, in order to simplify further analysis, the following aux-
iliary problem is introduced: find u 2 VT , such that:Z

X
qðuÞ � rg ¼

Z
X

QðgÞ � rus 8g 2 VT : ð20Þ

Note that u can be seen as the adjoint state associated to the
thermal stress induced by the temperature h (see, for instance, So-
kołowski and Zolésio, 1992).

2.2. Perturbed problem

Considering the introduction of a circular inclusion, denoted as
xeðx̂Þ :¼ Beðx̂Þ, with radius eand centered at point x̂ in X, the total po-
tential energy functional associated to the perturbed domain of the
mechanical system for a given temperature field he can be written as:

J ve ðue; heÞ :¼ 1
2

Z
X
reðueÞ � rus

e �
Z

X
Q eðheÞ � rus

e �
Z

CNu

�t � ue; ð21Þ

where ue and he denotes, respectively, the displacement and tem-
perature fields, both associated to the perturbed system. In addi-
tion, reðueÞ and Q eðheÞ are used to denote the mechanical and the
induced thermal stresses tensors associated to the perturbed prob-
lem. These tensors are defined as:

reðueÞ :¼ cM
e Crus

e and Q eðheÞ :¼ cM
e cC

e CBhe; ð22Þ

and the corresponding total stress operator Seðue; heÞ associated to
the perturbed problem is given by

Seðue; heÞ ¼ reðueÞ � Q eðheÞ: ð23Þ

The contrast parameters in the material properties cM
e and cC

e
are defined as

cM
e :¼ 1 in X n Be

cM in Be

(
and cC

e :¼ 1 in X n Be

cC in Be

(
ð24Þ

with cM and cC used to denote the values of the contrast on the
Young modulus and thermal-expansion coefficient, respectively.
In the perturbed configuration, the displacement field satisfies the
variational problem: given the temperature field he, find ue 2 UM

e ,
such thatZ

X
reðueÞ � rgs ¼

Z
X

Q eðheÞ � rgs þ
Z

CNu

�t � g 8g 2 VM
e : ð25Þ

The set UM
e and the space VM

e in the variational problem (25) are
defined as

UM
e :¼ f/ 2 UM : s/t ¼ 0 on @Beg; ð26Þ
VM

e :¼ f/ 2 VM : s/t ¼ 0 on @Beg; ð27Þ

where the operator sð�Þt is introduced to denote the jump of ð�Þ
across the boundary of the perturbation.

In addition, the thermal equilibrium problem can be written in
the variational form as: find he 2 UT

e , such thatZ
X

qeðheÞ � rg ¼
Z

CNh

�qg 8g 2 VT
e ; ð28Þ

with the thermal flux in the perturbed domain being defined as:

qeðheÞ :¼ �cT
e Krhe; ð29Þ

where cT
e is the parameter that define the contrast between the

thermal (constitutive) properties of the matrix and the inclusion,
and is defined by:

cT
e :¼ 1 in X n Be

cT in Be

(
; ð30Þ

being cT the value of the contrast on the thermal conductivity coef-
ficient. In the variational problem (28) the set UT

e and the space VT
e

are defined as:

UT
e :¼ f/ 2 UT : s/t ¼ 0 on @Beg; ð31Þ
VT

e :¼ f/ 2 VT : s/t ¼ 0 on @Beg: ð32Þ

Finally, the auxiliary problem associated to the topologically
perturbed domain is written as: find ue 2 VT

e , such that:Z
X

qeðueÞ � rg ¼
Z

X
Q eðgÞ � rus 8g 2 VT

e ; ð33Þ

where ue can be interpreted as the adjoint state associated to the
thermal stress induced by the perturbed temperature he (see, for in-
stance, Sokołowski and Zolésio, 1992).

3. Topological sensitivity analysis

In order to proceed, it is convenient to introduce an analogy to
classical continuum mechanics (Gurtin, 1981) where by the shape
change velocity field V is identified with the classical velocity
field of a deforming continuum and e is identified as a time
parameter. Since we are dealing with an uniform expansion of
the inclusion Be, the shape velocity field V satisfies: V j@X ¼ 0
and V j@Be

¼ �n. Then, the shape derivative of the functional (21)
can be written as:

_J ve ðue; heÞ ¼
1
2

Z
X
reðueÞ � rus

e �
Z

X
Q eðheÞ � rus

e �
Z

CNu

�t � ue

 !�
¼ 1

2

Z
X
reðueÞ � rus

e

� ��
�

Z
X

Q eðheÞ � rus
e

� ��
�
Z

CNu

�t � _ue;

ð34Þ
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where we use both notations ð�Þ� and ð_�Þ to represent the total deriv-
ative with respect to the parameter e. Therefore, we can state the
following propositions:

Proposition 1. Let J ve
ðue; heÞ be the functional defined by (21).

Then, its derivative with respect to the small parameter e is given
by

_J ve ðue; heÞ ¼
Z

X
Re � rV �

Z
X

Q eð _heÞ � r ue � uð Þs; ð35Þ

where V is the shape change velocity field defined in X that satisfies
V j@X ¼ 0 and V j@Be

¼ �n; _he is the material derivative of the temper-
ature field and Re is a generalization of the classical Eshelby
momentum-energy tensor (Eshelby, 1975), given – for this particu-
lar case – by

Re :¼1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI � ðrueÞ>Seðue; heÞ þ ½ðqeðheÞ � rueÞI

� 2qeðheÞ�srue�; ð36Þ

with ue; he and ue denoting the solutions to (25), (28) and to the
auxiliary problem (33).

Proof. By making use of Reynolds’ Transport Theorem (Gurtin,
1981; Sokołowski and Zolésio, 1992) we obtain the identitiesZ

X
reðueÞ � rus

e

� ��
¼
Z

X
ð2reðueÞ � r _us

e � 2reðueÞ � ðruerVÞs

þ
Z

X
ðreðueÞ � rus

eÞdivVÞ; ð37Þ

Z
X

Q eðheÞ � rus
e

� ��
¼
Z

X
ðQ eðheÞ � r _us

e � Q eðheÞ � ðruerVÞs

þ
Z

X
ðQ eðheÞ � rus

eÞdivV þ Q eð _heÞ � rus
e: ð38Þ

Then, by considering the above results in (34), the shape derivative
of the functional J ve ðue; heÞ is given by

_J ve
ðue; heÞ ¼

Z
X

1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI � ðrueÞ>Seðue; heÞ
� �

� rV

�
Z

X
Q eð _heÞ � rus

e þ
Z

X
Seðue; heÞ � r _us

e �
Z

CNu

�t � _ue: ð39Þ

Since _ue 2 UM
e , see the work made by Sokołowski and Zolésio (1992),

the terms in _ue satisfy the state equation (25), then

_J ve ðue; heÞ ¼
Z

X

1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI � ðrueÞ>Seðue; heÞ
� �

� rV

�
Z

X
Q eð _heÞ � rus

e: ð40Þ

Now, adding the term �
R

X Q eð _heÞ � rus in the above result, the
derivative _J ve ðue; heÞ can be written alternatively as

_J ve ðue; heÞ ¼
Z

X

1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI � ðrueÞ>Seðue; heÞ
� �

� rV

�
Z

X
Q eð _heÞ � rðue � uÞs �

Z
X

Q eð _heÞ � rus: ð41Þ

On the other hand, the derivative of the state equation (28) with re-
spect to the parameter e is given byZ

X
qeð _heÞ � rg ¼ �

Z
X
½ðqeðheÞ � rgÞI � 2qeðheÞ�srg� � rV 8g 2 VT

e :

ð42Þ

Next, taking g ¼ ue in the above expression, we obtainZ
X

qeð _heÞ � rue ¼ �
Z

X
½ðqeðheÞ � rueÞI � 2qeðheÞ�srue� � rV ; ð43Þ

and tacking g ¼ _he in the auxiliary problem (33), we obtainZ
X

qeðueÞ � r _he ¼
Z

X
Q eð _heÞ � rus: ð44Þ

By using the definition of the heat flux operator (29) and comparing
the two last expressions, the following identity holdsZ

X
Q eð _heÞ � rus ¼ �

Z
X
½ðqeðheÞ � rueÞI � 2qeðheÞ�srue� � rV : ð45Þ

From the above result, the derivative of the shape functional
J ve ðue; heÞ can be written equivalently in the following form:

_J ve
ðue; heÞ ¼

Z
X

1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI � ðrueÞ>Seðue; heÞ
� �

� rV

þ
Z

X
½ðqeðheÞ � rueÞI � 2qeðheÞ�srue� � rV

�
Z

X
Q eð _heÞ � rðue � uÞs; ð46Þ

which leads to the result with Re given by (36). h

Proposition 2. Let J ve ðue; heÞ be the functional defined by (21). Then,
its derivative with respect to the small parameter e is given by

_J ve ðue; heÞ ¼ �
Z
@Be

sRetn � n�
Z

X
Q eðh0eÞ � rðue � uÞs; ð47Þ

where h0e is the spatial derivative of the temperature field and Re is a
generalization of the classical Eshelby momentum-energy tensor pre-
sented in (36).

Proof. By making use of the Reynolds’ Transport Theorem (Gurtin,
1981; Sokołowski and Zolésio, 1992), we obtain the following
identities:Z

X
reðueÞ � rus

e

� ��
¼
Z

X
2ðreðueÞ � r _us

e þ divðreðueÞÞ � ðrueÞVÞ

þ
Z
@X
ðreðueÞ � rus

eÞI � 2ðrueÞ>reðueÞ
� �

n � V

þ
Z
@Be

sðreðueÞ � rus
eÞI � 2ðrueÞ>reðueÞtn � V ;

ð48Þ

Z
X

Q eðheÞ � rus
e

� ��
¼
Z

X
ðQ eðheÞ � r _us

e þ Q eðh0eÞ � rus
eÞ

þ
Z

X
divðQ eðheÞÞ � ðrueÞV

�
Z
@X
ðrueÞ>Q eðheÞ � ðQ eðheÞ � rus

eÞI
� �

n � V

�
Z
@Be

sðrueÞ>Q eðheÞ � ðQ eðheÞ � rus
eÞItn � V :

ð49Þ

Introducing the above expressions in the definitions of the shape
derivative (34) and taking into account that: (i) _ue 2 UM

e , see the
work made by Sokołowski and Zolésio (1992), the terms in _ue satisfy
the state equation (25); (ii) divSeðue; heÞ ¼ 0 in X; (iii) adding the
term �

R
X Q eðh0eÞ � rus; and (iv) the shape change velocity field V de-

fined in X satisfies V j@X ¼ 0 and V j@Be
¼ �n; then

_J ve ðue; heÞ ¼ �
Z
@Be

s
1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI

� ðrueÞ>Seðue; heÞtn � n�
Z

X
Q eðh0eÞ � rðue � uÞs

�
Z

X
Q eðh0eÞ � rus: ð50Þ
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By using the relation between the material and spatial derivatives
of the temperature field, the above expression can be written as,

_J ve ðue; heÞ ¼ �
Z
@Be

s
1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI

� ðrueÞ>Seðue; heÞtn � n�
Z

X
Q eðh0eÞ � rðue � uÞs

�
Z

X
Q eð _heÞ � rus þ

Z
X

Q eðrhe � nÞ � rus: ð51Þ

On the other hand, the derivative of the state equation (28) with re-
spect to parameter e is given byZ

X
qeð _heÞ � rg ¼ �

Z
X
½ðqeðheÞ � rgÞI� 2qeðheÞ�srg� � r V 8 g 2 VT

e :

ð52Þ
Next, tacking g ¼ ue in the above expression, we obtainZ

X
qeð _heÞ � rue ¼ �

Z
X
½ðqeðheÞ � rueÞI � 2qeðheÞ�srue� � rV ; ð53Þ

and tacking g ¼ _he in the auxiliary problem (33), we obtainZ
X

qeðueÞ � r _he ¼
Z

X
Q eð _heÞ � rus: ð54Þ

By using the definition of the heat flux operator (29) and comparing
the two last expressions, the following identity holdsZ

X
Q eð _heÞ � rus ¼ �

Z
X
½ðqeðheÞ � rueÞI � 2qeðheÞ�srue� � rV : ð55Þ

From the above result, the derivative of the shape functional
J ve ðue; heÞ can be written equivalently in the following form,

_J ve ðue; heÞ ¼ �
Z
@Be

s
1
2
ððSeðue; heÞ � Q eðheÞÞ � rus

eÞI

� ðrueÞ>Seðue; heÞtn � nþ
Z

X
½ðqeðheÞ � rueÞI

� 2qeðheÞ�srue� � rV �
Z

X
Q eðh0eÞ � rðue � uÞs

þ
Z

X
Q eðrhe � nÞ � rus: ð56Þ

By integrating by parts the second term in the above expression and
using the definition of the Eshelby’s tensor Re, we have

_J ve ðue; heÞ ¼ �
Z
@Be

sRetn � n�
Z

X
Q eðh0eÞ � rðue � uÞs

�
Z

X
div½ðqeðheÞ � rueÞI � 2qeðheÞ�srue� � V

þ
Z

X
Q eðrhe � VÞ � rus: ð57Þ

Taking into account the state equation (28) and the auxiliary prob-
lem (33), we observe that the second term in the above expression
satisfies the following identityZ

X
div½ðqeðheÞ �rueÞI�2qeðheÞ�srue� �V ¼

Z
X

Q eðrhe �VÞ �rus: ð58Þ

Then, the lats two terms in (57) vanish, leading to the result. h

Corollary 1. By considering the relation between the material and
spatial derivative of the temperature field, (35) can be written as:

_J ve ðue; heÞ ¼
Z

X
Re � rV �

Z
X

Q eðh0eÞ � rðue � uÞs

�
Z

X
Q eðrhe � VÞ � rðue � uÞs: ð59Þ

By integrating by part the first term of the above expression and using
the restriction of the velocity field V on the boundaries @X and @Be, we
obtain

_J ve ðue; heÞ ¼ �
Z
@Be

sRetn � n�
Z

X
divRe � V �

Z
X

Q eðh0eÞ � rðue � uÞs

�
Z

X
Q eðrhe � VÞ � rðue � uÞs: ð60Þ

By comparing (47) with (60) and recalling that both identities are valid
for all V 2 X, the follow result holds trueZ

X
ðdivðReÞ þ cM

e cC
e ðCB � rðue � uÞsÞrheÞ � V ¼ 0 8V 2 X; ð61Þ

Thus, the equation for the balance of the configurational forces (Gurtin,
2000) can be written as:

divðReÞ ¼ �cM
e cC

e ðCB � rðue � uÞsÞrhe in X: ð62Þ
Note that the first term of the derivative _J ve ðue; heÞ in (47) is gi-

ven by an integral concentrated on @Be depending on the solution
to (25), (28) and (33). The second term, given by a integral over all
domain X, will be treated carefully (see Appendix A).

To analytically solve the integrals expression of the derivative
_J ve ðue; heÞ it is necessary to perform an asymptotic analysis of

the solutions of the PDE’s involved in these coupled problems. In
order to simplify the analysis, let us use the linearity property of
the shape functional with respect to the solution of the thermal
problem (28) and split the analysis in two cases: (i) cT ¼ 1 and
(ii) cM ¼ cC ¼ 1.

3.1. Case cT ¼ 1

For this particular case, cT ¼ 1, we have that the temperature
field is not perturbed by the presence of the inclusion Be in the
mechanical problem. Then, the temperature for the unperturbed
and perturbed problems coincides, i.e. he ¼ h. Thus, the derivative
of the shape functional can be written as:

_J ve ðue; hÞ ¼ �
Z
@Be

sRetn � n ¼ �
Z
@Be

s
1
2
ððSeðue; hÞ � Q eðhÞÞ � rus

eÞI

� ðrueÞ>Seðue; hÞtn � n: ð63Þ

In order to obtain an explicit expression for the perturbed stress
field, we consider the following ansatz for the displacement field
ue:

ueðxÞ ¼ uðxÞ þweðx=eÞ þ ~ueðxÞ; ð64Þ

where uðxÞ is the solution of the unperturbed problem in X, weðx=eÞ
the solution to an exterior perturbed problem in R2 and ~ueðxÞ the
remainder, solution to a perturbed problem in X. The terms in the
above expansion requires additional explanation. The function
weðx=eÞ decays to zero at the infinity, i.e., we ! 0 at1, and compen-
sates the discrepancy introduced by the lower order term of the
Taylor series expansion of u around x̂. The remainder ~ueðxÞ is intro-
duced to compensate the discrepancies left by we on the exterior
boundary @X as well as by the higher order term of the Taylor series
expansion of u in the neighborhood of Beðx̂Þ. Then, the mechanical
stress satisfies the identity

reðueÞ ¼ cM
e Crus þ cM

e Crws
e þ cM

e Cr~us
e: ð65Þ

Moreover, by introducing the term �Q eðhÞ at both sides of the
above expression, the stress field associated to the perturbed do-
main Seðue; hÞ admits the following asymptotic expansion

Seðue; hÞ ¼ cM
e rðuÞ þ reðweÞ þ reð~ueÞ � cM

e cC
e QðhÞ; ð66Þ

where reðweÞ is the solution of the exterior problem
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divðreðweÞÞ ¼ 0 in R2

reðweÞ ¼ cM
e Crws

e

reðweÞ ! 0 at 1
sreðweÞtn ¼ �su on @Be

8>>><>>>: ; ð67Þ

and the residue ~ue satisfies the equation

divðreð~ueÞÞ ¼ 0 in X n Be

divðreð~ueÞÞ ¼ ð1� cCÞcMCBrh in Be

reð~ueÞ ¼ cM
e Cr~us

e

~ue ¼ �we on @CDu

reð~ueÞn ¼ �reðweÞn on @CNu

sreð~ueÞtn ¼ ehu on @Be

8>>>>>>>>><>>>>>>>>>:
; ð68Þ

which has the following estimate k~uekH1ðX;R2Þ ¼ oðeÞ (see Appendix
A). Moreover, the functions su and hu in (67) and (68), respectively,
are given by

su :¼ ð1� cMÞrðuðx̂ÞÞn� ð1� cMcCÞQðhðx̂ÞÞn; ð69Þ
hu :¼ ð1� cMÞðrrðuðfÞÞnÞn� ð1� cMcCÞðrQðhðnÞÞnÞn; ð70Þ

where the points f and n belong to the interval ðx; x̂Þ.

By considering a polar system of coordinates ðr;/Þ centered at
point x̂ (center of the inclusion Be) and aligned with the principal
directions of the tensor Sðu; hÞ associated to the original domain
X, the components of the tensor reðweÞ are given by (see, for in-
stance, Little, 1973):

� Exterior solution (r P e)

reðweÞrr ¼ � 1� cM

1þ acM

e2

r2

r1 þ r2

2

� �
� 1� cM

1þ bcM

e2

r2 4� 3
e2

r2

� �
r1 � r2

2

� �
cos 2/

þ 1� cMcC

1þ acM

e2

r2

Q 1 þ Q 2

2

� �
; ð71Þ

reðweÞ//¼ 1�cM

1þacM

e2

r2

r1þr2

2

� �
�3

1�cM

1þbcM

e4

r4

r1�r2

2

� �
cos2/

�1�cMcC

1þacM

e2

r2

Q1þQ2

2

� �
; ð72Þ

reðweÞ/r ¼ � 1� cM

1þ bcM

e2

r2 2� 3
e2

r2

� �
r1 � r2

2

� �
sin 2/: ð73Þ

� Interior solution (0 < r < e)

reðweÞrr ¼ acMð1� cMÞ
1þ acM

r1 þ r2

2

� �
þ bcMð1� cMÞ

1þ bcM

r1 � r2

2

� �
cos 2/

� acMð1� cMcCÞ
1þ acM

Q 1 þ Q 2

2

� �
; ð74Þ

reðweÞ// ¼ acMð1� cMÞ
1þ acM

r1 þ r2

2

� �
� bcMð1� cMÞ

1þ bcM

r1 � r2

2

� �
cos 2/

� acMð1� cMcCÞ
1þ acM

Q 1 þ Q 2

2

� �
; ð75Þ

reðweÞ/r ¼ � bcMð1� cMÞ
1þ bcM

r1 � r2

2

� �
sin 2/: ð76Þ

where r1;2 and Q 1;2 are, respectively, the principal stress associated
to the tensor rðuÞ and QðhÞ of the unperturbed domain X, evaluated
at the point x̂ 2 X. In addition, the constants a and b in (71)–(76)
depend only on Poisson’s ratio mof the matrix, and are given by

a ¼ 1þ m
1� m

and b ¼ 3� m
1þ m

: ð77Þ

Finally, using the asymptotic expansions presented in (71)–
(76), we have that the derivative _J ve is given by the following
expression:

_J ve ðue; hÞ ¼ �
pe
E

1� cM

1þ bcM

� �
4rðuÞ � rðuÞ þ cM b� 2að Þ � 1

1þ acM
ðtrrðuÞÞ2

� 	
� pe

2E
1� cMcC

1þ acM

� �
½ð1� cMcCÞð1þ mÞðtrQðhÞÞ2

� 4trrðuÞ trQðhÞ� þ oðeÞ; ð78Þ

where trð�Þ denotes the trace operator of tensor ð�Þ.

3.2. Case cM ¼ 1 and cC ¼ 1

In this case the restriction cM ¼ 1 and cC ¼ 1 is introduced in
expression (47), then the derivative of the shape functional
J ve ðue; heÞ is given by:

_J ve ðue; heÞ ¼
Z
@Be

sðqeðheÞ � rueÞI � 2qeðheÞ�sruetn � nþ EðeÞ; ð79Þ

where the term EðeÞ is given by

EðeÞ ¼ �
Z

X
Q eðh0eÞ � rðue � uÞs: ð80Þ

The temperature field he associated to the perturbed problem
admits the following asymptotic expansion:

heðxÞ ¼ hðxÞ þ veðx=eÞ þ eheðxÞ; ð81Þ

where hðxÞ is the solution of the unperturbed problem in X, veðx=eÞ
the solution to an exterior perturbed problem in R2 and eheðxÞ the
remainder, solution to a perturbed problem in X. The function
veðx=eÞ is such that ve ! 0 at1 and it compensates the discrepancy
left by the lower order term of the Taylor series expansion of h in
the neighborhood of x̂. The remainder eheðxÞ compensates the dis-
crepancies introduced by ve on the exterior boundary @X and by
the higher order term of the Taylor series expansion of h around
Beðx̂Þ. In particular, ve is the solution of the exterior problem

divðqeðveÞÞ ¼ 0 in R2

qeðveÞ ¼ �cT
e Krve

ve ! 0 at 1
svet ¼ 0 on @Be

sqeðveÞt � n ¼ �ð1� cTÞrhðx̂Þ � n on @Be

8>>>>>><>>>>>>:
; ð82Þ

and the remainder ehe must be satisfies the following equation:

divðqeðeheÞÞ ¼ 0 in X

qeðeheÞ ¼ �cT
e Kreheehe ¼ �ve on CDh

qeðeheÞ � n ¼ �qeðveÞ � n on CNh

sqeðeheÞt � n ¼ eð1� cTÞðrqðhðfÞÞnÞ � n on @Be

8>>>>>>><>>>>>>>:
; ð83Þ

which has the following estimate kehekH1ðXÞ ¼ oðeÞ (see Appendix A).
Moreover, the point f in (83) belongs to the interval ðx; x̂Þ. In addi-
tion, the solution ve to the exterior problem can be obtained by
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using a standard separation of variables technique, together with
the Fourier series method. Then, the solution of the problem (82)
is explicitly written in compact notation as:

� Exterior solution (r P e)

veðx=eÞ ¼
1� cT

1þ cT

e2

kx� x̂k2rhðx̂Þ � ðx� x̂Þ: ð84Þ

� Interior solution (0 < r < e)

veðx=eÞ ¼
1� cT

1þ cT
rhðx̂Þ � ðx� x̂Þ: ð85Þ

Following the same steps as before, we assume that the field ue,
solution of the auxiliary problem (33), admits an asymptotic
expansion of the form

ueðxÞ ¼ uðxÞ þ peðx=eÞ þ eueðxÞ; ð86Þ

where pe is the solution of the exterior problem

divðqeðpeÞÞ ¼ 0 in R2

qeðpeÞ ¼ �cT
e Krpe

pe ! 0 at 1
spet ¼ 0 on @Be

sqeðpeÞt � n ¼ �ð1� cTÞruðx̂Þ � n on @Be

8>>>>>><>>>>>>:
; ð87Þ

and the remainder eue must be satisfies the following equation:

divðqeð eueÞÞ ¼ 0 in X n Be

divðqeð eueÞÞ ¼ �ð1� cTÞCB � rus in Be

qeð eueÞ ¼ �cT
e Kr eueeue ¼ �pe on CDh

qeð eueÞ � n ¼ �qeðpeÞ � n on CNh

sqeð eueÞt � n ¼ eð1� cTÞðrqðuðnÞÞnÞ � n on @Be

8>>>>>>>>><>>>>>>>>>:
; ð88Þ

which has the following estimate k euekH1ðXÞ ¼ oðeÞ (see Appendix A).
Moreover, the point n in (88) belongs to the interval ðx; x̂Þ. In addi-
tion, by applying separation of variables technique and the Fourier
series method, the solution ue to the exterior problem (87) can be
explicitly written in compact notation as:

� Exterior solution (r P e)

peðx=eÞ ¼
1� cT

1þ cT

e2

kx� x̂k2ruðx̂Þ � ðx� x̂Þ: ð89Þ

� Interior solution (0 < r < e)

peðx=eÞ ¼
1� cT

1þ cT
ruðx̂Þ � ðx� x̂Þ: ð90Þ

Finally, using the asymptotic expansions presented in (84), (85),
(89) and (90), and recalling the estimate for (80) (see Appendix A);
we have that the derivative of the functional J ve ðue; heÞ is given by
the following expression:

_J ve ðue; heÞ ¼ �4pe
1� cT

1þ cT
rh � ruþ oðeÞ: ð91Þ

3.3. Topological derivative

In order to calculate the topological derivative, we shall adopt
the methodology developed in Novotny et al. (2003) whereby the
topological derivative is obtained as

DTðx̂Þ ¼ lim
e!0

1
f 0ðeÞ

_J ve ðue; heÞ; ð92Þ

where the function f ðeÞ is the size of the perturbation, i.e.
f ðeÞ ¼ pe2 ) f 0ðeÞ ¼ 2pe.

Due to the linearity property of the shape functional with re-
spect to the thermal problem (28), it is possible to write the topo-
logical derivative of the functional J ve ðue; heÞ based on the results
given in (78) and (91). Then, the final expression of the topological
derivative becomes a scalar function defined over the unperturbed
domain X, that is

DTðx̂Þ ¼ �
1

2E
1� cM

1þ bcM

� �
4rðuÞ � rðuÞ þ cMðb� 2aÞ � 1

1þ acM
ðtrrðuÞÞ2

� 	
� 1

4E
1� cMcC

1þ acM

� �
½ð1� cMcCÞð1þ mÞðtrQðhÞÞ2

� 4trrðuÞ trQðhÞ� � 2
1� cT

1þ cT
rh � ru:

ð93Þ

Notice that the first term is classic in the topological asymptotic
analysis for the elasticity problem. The linearity property men-
tioned previously appears explicitly in the last term of the above
results, see term involving the contrast parameter cT . On the other
hand, the non-linear dependence of the problem with the thermo-
elastic constitutive properties appears, also explicitly, in the term
with the contrast parameters cMcC . These two last terms represent
the contribution of the thermal problem to the elastic stress
problem.

3.4. Numerical validation

The analytical formula for the topological derivative presented
in (93), can be validated by using the computational framework
described in this section. To this end, we define (for a finite value
of e) the function geðx̂Þ as:

geðx̂Þ :¼ wðveðx̂ÞÞ � wðvÞ
f ðeÞ : ð94Þ

Clearly, the above definition have the following property,

lim
e!0

geðx̂Þ ¼ DTðx̂Þ: ð95Þ

A numerical approximation of DTðx̂Þ can be obtained by calcu-
lating the functions wðveðx̂ÞÞ and wðvÞ, for a sequences of decreas-
ing values of e and then using (94) to compute the corresponding
estimates geðx̂Þ for DTðx̂Þ. The values of the function w are com-
puted numerically by means of standard finite element procedure
for the elasticity problem with thermal stresses. The domain con-
sidered in the verification is a unit square with material properties
given by: Young’s modulus E ¼ 1, Poisson’s ratio m ¼ 1=3, thermal
conductivity k ¼ 1 and thermal expansion coefficient a ¼ 1. The
perturbed domains are obtained by introducing circular inclusions
of radii

e 2 f0:160;0:080;0:040;0:010;0:005g; ð96Þ

centered at x̂ ¼ ð0:5;0:5Þ, with the origin of the coordinate system
positioned at the bottom left corner. The finite element mesh used
to discretise the perturbed domain contains a total number of
962560 three-nodded elements and 481921 nodes. To solve the
thermal problem, we set the temperature �h ¼ 0 on the boundary de-
noted as CDh

. On the boundary CNh
, an external heat flux �q ¼ 1 is

prescribed, see Fig. 2(a). In addition, the remainder part of the
boundary remains insulated. For the mechanical problem, we pre-
scribe the displacement on CDu to be �u ¼ 0 and tractions �t ¼ 1 on
CNu , see Fig. 2(b). Due to the definition of the auxiliary problems
(20) and (33), the boundary conditions for these problems are the
same as the thermal problem on CDh

and with homogeneous data
on CNh

.
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The study is conducted for two combinations of the contrast
parameters cM , cC and cT . The analyzed cases are given by:

� Case A: cM ¼ cC ¼ cT ¼ 1=3 ,
� Case B: cM ¼ cT ¼ cC ¼ 3 .

The normalized obtained results (ge=DT ) are plotted in Fig. 3,
where the analytical topological derivative and the numerical
approximations for each value of e are shown. It can be seen that
the numerical topological derivatives converge to the correspond-
ing analytical value for all cases. This confirms the validity of the
proposed formula (93).

According to the numerical experiments, the obtained for-
mula (93) remains valid only for small (infinitesimal) inclusions.
The case associated to topological perturbations of finite
size has been analyzed by Faria and Novotny (2009), Bonnet
(2009), Silva et al. (2010), and Hintermüller et al. (2012), for
instance.

4. Final comments

The topological derivative in its closed form for the total
potential mechanical energy associated to a thermo-mechanical
semi-coupled system, when a circular inclusion is introduced at

an arbitrary point of the domain, has been derived. In particular,
the linear elasticity system (modeled by the Navier equation) cou-
pled with the steady-state heat conduction problem (modeled by
the Laplace equation) has been considered. The mechanical cou-
pling term comes out from the thermal stresses induced by the
temperature field. Since this term is non-local, a non-standard ad-
joint state has been introduced, which allowed to obtain a closed
form for the topological derivative. In addition, a full mathematical
justification for the derived formulas and precise estimates for the
remainders of the topological asymptotic expansion have been
provided. Finally, we remark that this information can be poten-
tially used in a number of applications of practical interest such
as multi-physic topology design of structures under mechanical
and/or thermal loads.
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Appendix A. Estimation of the remainders

Lemma 1. Let ~ue be solution to (68) or equivalently solution to the
following variational problem: find ~ue 2 eU e, such thatZ

X
reð~ueÞ � rgs ¼ e2

Z
CNu

rðguÞn � gþ e
Z
@Be

hu � gþ
Z
Be

bu � g 8g 2 eV e;

ðA:1Þ

where the set eU e and the space eV e are defined as

eU e :¼ f/ 2 H1ðX; R2Þ : s/t ¼ 0 on @Be; /jCDu
¼ e2gug; ðA:2ÞeV e :¼ f/ 2 H1ðX; R2Þ : s/t ¼ 0 on @Be; /jCDu
¼ 0g; ðA:3Þ

Fig. 3. Results of numerical verification.

Fig. 2. Domain and boundary conditions.
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and with functions gu; hu and bu, independents of the small parameter
e, given by

gu :¼ �e�2we; ðA:4Þ
hu :¼ ð1� cMÞðrrðuðfÞÞnÞn� ð1� cMcCÞðrQðhðnÞÞnÞnÞ; ðA:5Þ
bu :¼ �ð1� cCÞcM divðQðhÞÞ; ðA:6Þ

where the points f and n belong to the interval ðx; x̂Þ. Then, we have the
following estimate for the remainder ~ue

k~uekH1ðX;R2Þ 6 Ce1þd; ðA:7Þ

where C is a constant independent of the parameter e and d > 0.

Proof. By taking g ¼ ~ue � /e in (A.1), where /e is the lifting of the
Dirichlet boundary data e2gu on CDu , we haveZ

X
reð~ueÞ � r~us

e ¼ e2
Z

CNu

rðguÞn � ~ue þ e2
Z

CDu

gu � rð~ueÞn

þ e
Z
@Be

hu � ~ue þ
Z
Be

bu � ~ue: ðA:8Þ

From the Cauchy–Schwarz inequality we obtainZ
X
reð~ueÞ � r~us

e 6 e2krðguÞnkH�1=2ðCNu ;R2Þk~uekH1=2ðCNu ;R2Þ

þ e2kgukH1=2ðCDu ;R2Þkrð~ueÞnkH�1=2ðCDu ;R2Þ

þ ekhukH�1=2ð@Be ;R2Þk~uekH1=2ð@Be ;R2Þ

þ kbukL2ðBe ;R2Þk~uekL2ðBe ;R2Þ: ðA:9Þ

Taking into account the trace theorem, we haveZ
X
reð~ueÞ � r~us

e 6 ðe2C1 þ ekhukL2ðBe ;R2ÞÞk~uekH1ðX;R2Þ

þ kbukL2ðBe ;R2Þk~uekL2ðBe ;R2Þ

6 e2C2k~uekH1ðX;R2Þ þ eC3k~uekL2ðBe ;R2Þ; ðA:10Þ

where we have used the interior elliptic regularity of functions u
and h, solution to problems (12) and (15), respectively. For the esti-
mation of the last term in the right-hand side of the above expres-
sion we will use the Hölder inequality together with the Sobolev
embedding theorem. In fact, we can find an estimate for the remain-
der ~ue of the form k~uekH1ðX;R2Þ 6 Ce1þd, with d > 0 small. In particular,
for 1=pþ 1=q ¼ 1, we have

k~uekL2ðBe ;R2Þ 6

Z
Be

k~uek2p
� �1

p
Z
Be

12q
� �1

q
" #1

2

¼ p1=2q e1=qk~uekL2pðBe ;R2Þ

¼ p1=2q e1=qk~uekL2q=ðq�1ÞðBe ;R2Þ 6 edCk~uekH1ðX;R2Þ; ðA:11Þ

where d ¼ 1=q, with q > 1, and the constant C independent of the
small parameter e. Next, by introducing the above result in (A.10)
we have,Z

X
reð~ueÞ � r~us

e 6 e1þdC4k~uekH1ðX;R2Þ: ðA:12Þ

Finally, from the coercivity of the bilinear form on the left-hand side
of (A.1), namely,

ck~uek2
H1ðX;R2Þ 6

Z
X
reð~ueÞ � r~us

e; ðA:13Þ

we obtain

k~uekH1ðX;R2Þ 6 C5e1þd; ðA:14Þ

which leads to the result, with C5 ¼ C4=c. h

Lemma 2. Let ehe be solution to (83) or equivalently solution to the
following variational problem: find ehe 2 eU e such that

�
Z

X
qeðeheÞ � rg ¼ e2

Z
CNh

qðghÞ � ngþ e
Z
@Be

hh g 8g 2 eV e; ðA:15Þ

where the set eU e and the space eV e are defined aseU e :¼ f/ 2 H1ðXÞ : s/t ¼ 0 on @Be; /jCDh

¼ �e2ghg; ðA:16Þ

eV e :¼ f/ 2 H1ðXÞ : s/t ¼ 0 on @Be; /jCDh

¼ 0g; ðA:17Þ

and with functions gh and hh, independents of the small parameter e,
given by

gh :¼ e�2ve; ðA:18Þ
hh :¼ �ð1� cTÞðrqðhðnÞÞnÞ � n; ðA:19Þ

where the point n belongs to the interval ðx; x̂Þ. Then, we have the fol-
lowing estimate for the remainder ehe

kehekH1ðXÞ 6 Ce2; ðA:20Þ

where C is a constant independent of the parameter e.

Proof. By taking g ¼ ehe � /e in (A.15), where /e is the lifting of the
Dirichlet boundary data e2gh on CDh

, we have

�
Z

X
qeðeheÞ � rehe ¼ e2

Z
CNh

qðghÞ � nehe þ e2
Z

CDh

gh qðeheÞ � n

þ e
Z
@Be

hh
ehe: ðA:21Þ

From the Cauchy–Schwarz inequality we obtain

�
Z

X
qeðeheÞ � rehe 6 e2kqðghÞ � nkH�1=2ðCNh

ÞkehekH1=2ðCNh
Þ

þ e2kghkH1=2ðCDh
ÞkqðeheÞ � nkH�1=2ðCDh

Þ

þ ekhhkH�1=2ð@BeÞkehekH1=2ð@BeÞ: ðA:22Þ

Taking into account the trace theorem, we have

�
Z

X
qeðeheÞ � rehe 6 e2C1kehekH1ðXÞ þ e2C2krehekL2ðXÞ

þ ekhhkL2ðBeÞkehekH1ðBeÞ

6 e2C1kehekH1ðXÞ þ e2C3kehekH1ðXÞ

þ e2C4kehekH1ðXÞ

6 e2C5kehekH1ðXÞ; ðA:23Þ

where we have used the interior elliptic regularity of function h,
solution to problem (15). Finally, from the coercivity of the bilinear
form on the left-hand side of (A.15), namely,

ckehek2
H1ðXÞ 6 �

Z
X

qeðeheÞ � rehe; ðA:24Þ

we obtain

kehekH1ðXÞ 6 Ce2; ðA:25Þ

which leads to the result, with C ¼ C5=c. h

Lemma 3. Let ehe be solution to (83). Then, its derivative with respect
to e has the following estimate

keh0ekH1ðXÞ 6 Ce; ðA:26Þ

where C is a constant independent of the parameter e.
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Proof. The convergence follows by the property of the asymptotic
expansions of solutions which can be differentiated term by term
under the appropriate decrease order rule for the remainders of
the expansions, namely O0ðemÞ ¼ Oðem�1Þ. See the work by Nazarov
and Sokołowski (2003), for instance. Therefore, the result follows
by Lemma 2 together with the rule O0ðe2Þ ¼ OðeÞ. h

Lemma 4. Let eue be solution to (88) or equivalently solution to the
following variational problem: find eue 2 eU e such that

�
Z

X
qeð eueÞ � rg ¼ e2

Z
CNh

qðguÞ � ngþ e
Z
@Be

hu gþ
Z
Be

bu g 8g 2 eV e;

ðA:27Þ

where the set eU e and the space eV e are defined aseU e :¼ f/ 2 H1ðXÞ : s/t ¼ 0 on @Be; /jCDh

¼ �e2gug; ðA:28Þ

eV e :¼ f/ 2 H1ðXÞ : s/t ¼ 0 on @Be; /jCDh

¼ 0g; ðA:29Þ

and with functions gu;hu and bu, independent of the small parameter
e, given by

gu :¼ e�2pe; ðA:30Þ
hu :¼ �ð1� cTÞðrqðhðnÞÞnÞ � n; ðA:31Þ
bu :¼ �ð1� cTÞa trrðuÞ; ðA:32Þ

where the point n belongs to the interval ðx; x̂Þ. Then, we have the fol-
lowing estimate for the remainder eue

k euekH1ðXÞ 6 Ce1þd; ðA:33Þ

where the constant C is independent of the parameter e and d > 0.

Proof. By taking g ¼ eue � /e in (A.15), where /e is the lifting of the
Dirichlet boundary data e2gu on CDh

, we have

�
Z

X
qeð eueÞ � r eue ¼ e2

Z
CNh

qðguÞ � n eue þ e2
Z

CDh

gu qð eueÞ � n

þ e
Z
@Be

hu eue þ
Z
Be

bu eue: ðA:34Þ

From the Cauchy–Schwarz inequality we obtain

�
Z

X
qeð eueÞ � r eue 6 e2kqðguÞ � nkH�1=2ðCNh

Þk euekH1=2ðCNh
Þ

þ e2kgukH1=2ðCDh
Þkqð eueÞ � nkH�1=2ðCDh

Þ

þ ekhukH�1=2ð@BeÞk euekH1=2ð@BeÞ

þ kbukL2ðBeÞk euekL2ðBeÞ: ðA:35Þ

Taking into account the trace theorem, we have

�
Z

X
qeð eueÞ � r eue 6 e2C1k euekH1ðXÞ þ e2C2kr euekL2ðXÞ

þ ekhukL2ðBeÞk euekH1ðBeÞ

þ kbukL2ðBeÞk euekL2ðBeÞ

6 e2C1k euekH1ðXÞ þ e2C3k euekH1ðXÞ

þ e2C4k euekH1ðXÞ þ eC5k euekL2ðBeÞ; ðA:36Þ

where we have used the interior elliptic regularity of functions h
and u. By using the Hölder inequality together with the Sobolev
embedding theorem, the last term in the right-hand side of the
above expression is given by

k euekL2ðBeÞ 6 edCk euekH1ðXÞ; ðA:37Þ

where d ¼ 1=q, with q > 1, and the constant C independent of the
small parameter e. Next, by introducing the above result in (A.36)
we have,

�
Z

X
qeð eueÞ � r eue 6 e1þdC6k euekH1ðXÞ: ðA:38Þ

Finally, from the coercivity of the bilinear form on the left-hand side
of (A.15), namely,

ck euek2
H1ðXÞ 6 �

Z
X

qeð eueÞ � r eue; ðA:39Þ

we obtain

k euekH1ðXÞ 6 Ce1þd; ðA:40Þ

which leads to the result, with C ¼ C6=c. h

Lemma 5. Let he;ue and u solution of the problems (28), (25) and
(12). Then, we have the following estimate for the remainder EðeÞ in
(80):

EðeÞ 6 Ce2; ðA:41Þ

where C is a constant independent of the parameter e.

Proof. By tacking into account the definition of the mechanical
and thermal stress operators re and Q e, respectively, the remainder
term EðeÞ in (80) can be alternatively written as:

EðeÞ ¼ �
Z

X
cC
e Bh0e � reðue � uÞ: ðA:42Þ

Next, by considering the definition of the contrast cC
e and the ansatz

(64) and (81), the above expression is given by

EðeÞ ¼ �
Z

XnBe

Bv 0e � reðweÞ �
Z
Be

cCBv 0e � reðweÞ �
Z

XnBe

Beh0e � reðweÞ

�
Z
Be

cCBeh0e � reðweÞ �
Z

XnBe

Bv 0e � reð~ueÞ �
Z
Be

cCBv 0e � reð~ueÞ

�
Z

X
Beh0e � reð~ueÞ: ðA:43Þ

Since v 0e ¼ 0 in Be and reð/Þ ¼ rð/Þ in X n Be, the remainder EðeÞ is
given by

EðeÞ ¼ �
Z

XnBe

Bv 0e � rðweÞ �
Z

XnBe

Beh0e � rðweÞ �
Z
Be

cCBeh0e � reðweÞ

�
Z

XnBe

Bv 0e � rð~ueÞ �
Z

X
Beh0e � reð~ueÞ: ðA:44Þ

From the Cauchy–Schwarz inequality we obtain

EðeÞ 6 C1kv 0ekL2ðXnBeÞkrðweÞkL2ðXnBe ;R2Þ

þ C1keh0ekL2ðXnBeÞkrðweÞkL2ðXnBe ;R2Þ

þ C2keh0ekL2ðBeÞkreðweÞkL2ðBe ;R2Þ

þ C1kv 0ekL2ðXnBeÞkrð~ueÞkL2ðXnBe ;R2Þ

þ C3keh0ekL2ðXÞkreð~ueÞkL2ðX;R2Þ: ðA:45Þ

By considering the asymptotic expansion of ve presented in (84) its
derivative with respect to e can be written as v 0e ¼ egvðxÞ in X n Be,
with the function gv independent of the parameter e. After intro-
ducing a change of variables of the form y ¼ e�1x, we have

kv 0ekL2ðXnBeÞ ¼
Z

XnBe

jegvðxÞj
2

 !1
2

¼ e
Z

R2nB1

jgvðyÞj
2

 !1
2

6 eC4;

ðA:46Þ
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where we have used the fact that function gvðyÞ is regular at infin-
ity, i.e., gvðyÞ ! 0 when kyk ! 1. In the same way, by considering
(71)–(73) and the same change of variables, we obtain

krðweÞkL2ðXnBe ;R2Þ ¼ e
Z

R2nB1

krðhrðyÞÞk2

 !1
2

6 eC5; ðA:47Þ

being the function hrðxÞ independent of the parameter e and regular
at infinity, such that, rðhrðyÞÞ ! 0 when kyk ! 1. By taking into
account the fact that function reðweÞ is independent of the param-
eter e in Be, we can write reðweÞ ¼ rðbrðxÞÞ in Be. Then, we have

kreðweÞkL2ðBe ;R2Þ ¼
Z
Be

krðbrðxÞÞk2
� �1

2

6 eC6: ðA:48Þ

Next, by introducing the above results in (A.45), we have

EðeÞ 6 e2C7 þ eC8keh0ekL2ðXnBeÞ þ eC9keh0ekL2ðBeÞ

þ eC10krð~ueÞkL2ðXnBe ;R2Þ þ C3keh0ekL2ðXÞkreð~ueÞkL2ðX;R2Þ;

6 e2C7 þ eC11keh0ekH1ðXÞ þ eC12k~uekH1ðX;R2Þ

þ C13keh0ekH1ðXÞk~uekH1ðX;R2Þ; ðA:49Þ

Finally, by considering the Lemmas 1–3, we obtain

EðeÞ 6 Ce2; ðA:50Þ

which leads to the results, with C independent of the parameter
e. h
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