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ABSTRACT Two novel variants of Klebsiella pneumoniae carbapenemase (KPC) 
associated with resistance to ceftazidime-avibactam (CZA) and designated as KPC-113 
and KPC-114 by NCBI were identified in 2020, in clinical isolates of Klebsiella pneumoniae 
in Brazil. While K. pneumoniae of ST16 harbored the blaKPC-113 variant on an IncFII-IncFIB 
plasmid, K. pneumoniae of ST11 carried the blaKPC-114 variant on an IncN plasmid. Both 
isolates displayed resistance to broad-spectrum cephalosporins, β-lactam inhibitors, 
and ertapenem and doripenem, whereas K. pneumoniae producing KPC-114 showed 
susceptibility to imipenem and meropenem. Whole-genome sequencing and in silico 
analysis revealed that KPC-113 presented a Gly insertion between Ambler positions 
264 and 265 (R264_A265insG), whereas KPC-114 displayed two amino acid insertions 
(Ser-Ser) between Ambler positions 181 and 182 (S181_P182insSS) in KPC-2, responsible 
for CZA resistance profiles. Our results confirm the emergence of novel KPC variants 
associated with resistance to CZA in international clones of K. pneumoniae circulating in 
South America.

IMPORTANCE KPC-2 carbapenemases are endemic in Latin America. In this regard, in 
2018, ceftazidime-avibactam (CZA) was authorized for clinical use in Brazil due to its 
significant activity against KPC-2 producers. In recent years, reports of resistance to CZA 
have increased in this country, limiting its clinical application. In this study, we report 
the emergence of two novel KPC-2 variants, named KPC-113 and KPC-114, associated 
with CZA resistance in Klebsiella pneumoniae strains belonging to high-risk clones ST11 
and ST16. Our finding suggests that novel mutations in KPC-2 are increasing in South 
America, which is a critical issue deserving active surveillance.

KEYWORDS antimicrobial resistance, KPC variants, ceftazidime-avibactam, Enterobac
terales, international clones, genomic surveillance

K lebsiella pneumoniae carbapenemases (KPCs) have successfully spread in South 
America, becoming endemic in Argentina, Brazil, and Colombia, being associated 

with global clones belonging to sequence types (STs) ST11, ST25, ST258, ST307, ST340, 
ST437, ST512, and ST1271 (1–5). More recently, the international ST16 has also been 
identified in this region, being associated with an increased virulence potential (6–11).

For clinical treatment of infections caused for KPC-producing Enterobacterales, the 
combination of ceftazidime-avibactam (CZA) has been approved by the United States 
Food and Drug Administration (FDA) in 2015 (12). Worryingly, CZA resistance was 
reported early in 2015, in a KPC-3-producing Klebsiella pneumoniae of ST258 isolated in 
the United States of America, and it was related to the combination of OmpK36 mutation 
with increased KPC-3 expression (13, 14). Currently, CZA resistance has increased globally 
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and is now associated with novel KPC variants (15–19). In this study, we report two 
novel KPC variants associated with resistance to CZA emerging in K. pneumoniae strains 
belonging to the high-risk clones ST11 and ST16, in Brazil, 2 years after CZA approval in 
this country (20).

In 2020, two CZA-resistant K. pneumoniae strains (330 and 331) were isolated from 
blood and rectal swab cultures from two different patients admitted to a teaching 
hospital.

Carbapenemase-positive K. pneumoniae strain 330 was isolated from a 61-year-old 
male patient admitted to the ICU ward with a medical history of alcoholic cirrhosis, 
hepatocellular carcinoma, hypertension, type 2 diabetes mellitus, and hepatic ence
phalopathy. The patient underwent a liver transplant. A surveillance rectal swab was 
collected, being negative for carbapenemase producers. However, after transplant, the 
patient’s respiratory status deteriorated, polymerase chain reaction COVID-19 test was 
negative, and based on chest X-ray abnormalities the patient was treated with polymyxin 
B, fluconazole, teicoplanin, meropenem, and sulfamethoxazole/trimethoprim. After a 
month of hospitalization, blood cultures tested positive for KPC-producing K. pneumo
niae (strain 330), and pulmonary sepsis was the focus of the infection. The patient was 
treated with ceftazidime-avibactam, gentamicin, and sulfamethoxazole/trimethoprim. 
However, the patient’s condition deteriorated rapidly, with multiple organ dysfunctions, 
metabolic acidosis, and positive blood cultures for Candida tropicalis. Then therapy with 
ceftazidime-avibactam, polymyxin B, teicoplanin, and micafungin was started. However, 
clinical condition worsened and the patient died within 24 h.

Carbapenemase-positive K. pneumoniae strain 331 was isolated from a 59-year-old 
female patient with a medical history of chronic kidney disease, hypertension, smok
ing, and alcoholism. The patient was admitted to the nephrology ward for a kidney 
transplant. The patient did not experience any complications during hospitalization. A 
surveillance rectal swab was collected 1 week after transplant, and culture was negative 
for carbapenemase producers. However, a week later, a new surveillance rectal swab was 
collected being positive for carbapenemase-producing K. pneumoniae (strain 331). The 
patient was treated with meropenem for 14 days and a week later was discharged.

Both strains were identified by MALDI-TOF. Antimicrobial susceptibility testing was 
performed by BD Phoenix (Becton Dickinson), disk diffusion, broth microdilution, or MIC 
Test Strip (Liofilchem) methods, with interpretative criteria based on CLSI and/or EUCAST 
guidelines (21, 22). In this regard, both isolates displayed resistance to penicillins, 
cephalosporins, cephamycins, monobactam, and β-lactamase inhibitors (i.e., clavulanic 
acid, sulbactam, tazobactam, and avibactam), remaining susceptible to siderophore-
linked cephalosporin. However, while strain 330 displayed resistance to imipenem and 
meropenem, strain 331 was susceptible to both carbapenems (Table 1).

The genomic DNA of K. pneumoniae strains was sequenced using the Illumina 
NextSeq platform (Illumina Inc., San Diego, CA), using the Nextera DNA Flex library 
prep and 2 × 75 bp paired-end reads. Quality-filtered reads were De novo assembled 
using Unicycler v0.4.8 (https://github.com/rrwick/Unicycler). Genomic analyses were 
performed using ABRicate v0.9.8 (https://github.com/tseemann/abricate) to predict 
antibiotic resistance genes (ResFinder 4.1), virulence genes profiling through the VFDB, 
and identification and typing of plasmid replicons (PlasmidFinder 2.1). Threshold ID and 
minimum length values (identity and coverage) of 90% were used for gene prediction.

Whole-genome sequencing analysis revealed that K. pneumoniae 330 (Bioproject 
ID: PRJNA867691; GenBank accession number: JANLGR000000000) belonged to ST16, 
and K. pneumoniae 331 (Bioproject ID: PRJNA868780; GenBank accession number: 
JANTNP000000000) belonged to ST11. Moreover, resistome analysis showed the 
presence of two novel KPC variants in K. pneumoniae 330 and 331, designated as 
KPC-113 (GenBank accession number: OM728506.1) and KPC-114 (GenBank accession 
number: OM728507.1), respectively, by NCBI. In addition, bioinformatic analysis showed 
that blaKPC-113 and blaKPC-114 are present in IncFII/IncFIB and IncN plasmids, respectively, 
associated with Tn4401b. The strain 330 carried chromosomal blaSHV-145, oqxA, oqxB, and 
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fosA5 genes and plasmidial blaCTX-M-15, blaOXA-1, aph(3')-Ia, aac(6')-Ib-cr, aadA2, mphA, 
dfrA12, tetA, and sul2 genes. On the other hand, strain 331 carried blaSHV-182, oqxA, oqxB, 
and fosA6 genes on the chromosome and blaOXA-1, blaCTX-M-15, aac (3)-IIa, aph(3')-Ia, 
aac(6')-Ib-cr, aadA2, mphA, dfrA12, sul1, tetA, and qnrS1 on plasmids. Strikingly, only K. 
pneumoniae 331 belonging to ST11 harbored ybtS, ybtX, ybtQ, ybtP, ybtA, irp2, irp1, ybtU, 
ybtT, ybtE, and fyuA siderophore virulence genes (Fig. 1).

SNP-based phylogenomic analysis of K. pneumoniae strains 330 (ST16/KPC-113) and 
331 (ST11/KPC-114), along with a collection of genomes from Brazilian K. pneumoniae 
strains, sharing identical STs (Table S1) was performed using CSI phylogeny v.1.4 (https://
cge.food.dtu.dk/services/CSIPhylogeny/), revealing genomic relationship (83–176 SNP 
differences) of the KPC-113-producing K. pneumoniae with KPC-2-producing K. pneumo
niae strains belonging to ST16, isolated from wound infection and blood cultures 
between 2014 and 2020. On the other hand, the KPC-114-producing K. pneumoniae 
displayed genomic relatedness (36–54 SNP differences) with two KPC-2-positive K. 
pneumoniae strains of ST11, isolated from blood cultures in 2015 and 2016 (Table S1).

TABLE 1 Antimicrobial resistance profile of K. pneumoniae strains producing KPC-113 and KPC-114 
variants to β-lactam antibiotics

Antibiotics Resistance profile (MIC, µg/mL)a

K. pneumoniae 330
(KPC-113/ST16)

K. pneumoniae 331
(KPC-114/ST11)

Ampicillin R (>16) R (>16)
Amoxicillin R R
Ticarcillin R R
Piperacillin R R
Amoxicillin/clavulanic acid R (>16/8) R (16/8)
Ampicillin/sulbactam R R
Ticarcillin/clavulanic acid R (>64/2) R
Piperacillin/tazobactam R (>64/4) I (16/4)
Ceftolozane/tazobactam R (255/4) R (12/4)
Ceftazidime/avibactam R (32/4) R (64/4)
Aztreonam R (>16) R (>16)
Cefoxitin R R
Cephalexin R R (>32)
Cephalothin R R
Cephazolin R (>8) R (>8)
Cefaclor R R
Cefuroxime R R
Cefixime R R
Cefoperazone R R
Cefotaxime R R
Cefpodoxime R R
Ceftazidime R (>32) R (>32)
Ceftriaxone R (>32) R (>32)
Cefepime R (>16) R (>16)
Ertapenem R (>2) R (1)
Doripenem R R
Imipenem R (>8) S (≤ 1)
Meropenem R (>16) S (≤ 0.25)
Cefiderocol S (0.064) S (0.25)
Amikacin S (8) S (4)
Ciprofloxacin R (>64) R (>64)
aResistance profile determined by disk-difussion method. Minimal inhibitory concentrations determined by Vitek 
system, broth microdilution, or MIC Test Strip method. Interpretative criteria were based on CLSI and EUCAST 
guidelines (21, 22).
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FIG 1 Heatmap displaying the resistome and virulome of K. pneumoniae 330/ST16 and K. pneumoniae 331/ST11 harboring KPC-113 and KPC-114, respectively. 

The colored regions represent the presence of antibiotic resistance genes (ARGs) and virulence genes (VGs) and the location (plasmid or chromosome). Blank 

fragments represent their absence.
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A comparison of amino acid sequences with those of other KPC enzymes revealed 
that both KPC-113 and KPC-114 enzymes were novel allele variants of KPC-2. In this 
regard, KPC-113 presented a Gly insertion between Ambler positions 264 and 265 
(R264_A265insG), whereas KPC-114 displayed two amino acid (Ser-Ser) insertions 
between Ambler positions 181 and 182 (S181_P182insSS) (Fig. S1).

In order to evaluate the in vivo activity of meropenem against meropenem-suscep
tible KPC-114-positive K. pneumoniae 331, healthy Galleria mellonella larvae weigh
ing ~250 mg were selected and inoculated with 10 µL of 1.5 × 108 CFU/mL K. pneumoniae 
331. After 1 h, larvae were treated with 10 µL of 0.5 mg/mL meropenem or 10 µL 
of 1.0 mg/mL meropenem, in order to achieve clinical human doses of 1 g and 2 g 
meropenem, respectively, as standardized by the EUCAST for intravenous regimens 
(22, 23). The inoculum was delivered in the last right proleg, and the treatments were 
injected in the last left proleg by using a sterile insulin syringe. Five larvae were included 
in each tested group, and assays were performed in duplicate. While 60% of untreated 
G. mellonella larvae died at 48 h post-infection, 100% survival was observed in both 
G. mellonella groups treated with clinical doses of 1 g and 2 g meropenem (Fig. S2). 
Likewise, 100% survival was observed in the uninfected control group treated with 10 µL 
of sterile saline. Although this result suggests that meropenem could be an option for 
decolonization or treatment of meropenem-susceptible KPC-114-positive K. pneumoniae, 
additional investigation is necessary, in order to investigate the emergence of possible 
additional new mutations conferring resistance to CZA and meropenem. In this study, 
the colonized patient was treated with meropenem for 14 d and a week later was 
discharged, confirming favorable use of empiric therapy in KPC-positive K. pneumoniae 
colonized patients (24).

Carbapenem-resistant K. pneumoniae has been the most important species recov
ered from surveillance rectal swabs of hospitalized patients and the most common 
cause of subsequent infections (25, 26). In fact, colonization at multiple sites with 
carbapenem-resistant K. pneumoniae has been the strongest predictor of bloodstream 
infection development in previous large cohorts of carbapenem-resistant K. pneumo
niae rectal carriers (27). In patients colonized by KPC-positive K. pneumoniae, utility 
of the Giannella Risk Score (https://www.pharmacyjoe.com/giannella-risk-score-calcula
tor-for-infection-with-carbapenem-resistant-klebsiella-pneumoniae/) to predict infection 
risk has been previously confirmed (24, 28).

Following introduction of CZA into clinical use, emergence of bacterial resistance 
has been shortly reported (19). In this respect, among K. pneumoniae strains resist
ant to CZA, point mutations, insertions, and/or deletions have been described in 
various hot spots of blaKPC-2 and blaKPC-3 allele variants (19). Currently, more than 
40 blaKPC alleles conferring resistance to CZA have been reported, with most of 
the mutations being in the omega-loop (amino acid positions 164–179) (19). Specifi-
cally in South America, between 2021 and 2022 the number of novel KPC variants 
conferring resistance to CZA has rapidly increased, as reported in the NCBI data
base; with KPC-96, KPC-97, and KPC-115 (GenBank accession numbers: OK086970.1, 
OK086971.1, OM714909.1) being detected in Argentina, and KPC-103, KPC-104, KPC-105, 
KPC-106, KPC-107, KPC-108, KPC-139, KPC-140, KPC-141, KPC-142, and KPC-143 (GenBank 
accession numbers: OL445423.1, OL445424.1, OL445426.1, OL445428.1, OL445425.1, 
OL445427.1, OP503887.1, OP503888.1, OP503889.1, OP503890.1, OP503891.1) being 
now identified in Brazil.

In this study, we described the emergence of KPC-113 e KPC-114 variants asso
ciated with CZA resistance, originating from ST11 and ST16, the most threaten
ing and widespread KPC-2-producing clones in South America (5–10). Noteworthy, 
R264_A265insG in KPC-113 was outside the omega-loop region of the KPC-2 protein, 
whereas S181_P182insSS in KPC-114 was near the omega-loop region of the KPC-2. In 
this regard, amino acid substitutions outside the omega-loop region of KPC-2 have also 
been associated with CZA resistance, such as in KPC–8,–14, –23,–28, –29,–41, –44,–50, 
–58,–63, –67,–74, –79,–80, –82,–84, –87,–96, –97,–103, and −105 variants (19).
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Strikingly, KPC-114 was not detected by the NG-Test CARBA 5 lateral flow immu
nochromatographic test (NG Biotech) (29). Previous studies have demonstrated that 
KPC-31, KPC-33, KPC-68, KPC-71, KPC-78, KPC-90, KPC-104, KPC-106, KPC-139, KPC-141, 
KPC142, and KPC-143 variants also have been not detected by NG-Test CARBA-5 (30, 
31). Therefore, most likely R264_A265insG and S181_P182insSS mutations confer protein 
conformations leading to inefficient binding of immobilized monoclonal antibodies 
targeted to recognize KPC-type enzymes inhibited by avibactam, consequently resulting 
in the failure of the detection method. On the other hand, CZA-resistant isolates 
displaying susceptibility to meropenem could not be identified as KPC producers (32), 
leading to a misleading detection by diagnostic laboratories. Thus, since CZA has 
become the first-line option for the treatment of infections due to KPC-2 producers, it is 
imperative to improve screening methods for the detection of KPC variants displaying 
resistance to CZA, in order to facilitate its rapid and accurate detection.

Although a limitation of this study is the lack of kinetic data, shortly after NCBI 
designation of the novel blaKPC allele identified in the CZA-resistant K. pneumoniae 
strain 330 as blaKPC-113 (GenBank accession number: OM728506.1), a report from China 
described the presence and kinetic properties of KPC-113, identified in Pseudomonas 
aeruginosa, confirming considerable hydrolyzing abilities to carbapenems and ceftazi
dime and the significantly weakened inhibitory effect of avibactam (33).

In summary, we described two novel KPC variants, KPC-113 and KPC-114, associated 
with resistance to CZA in high-risk clones of K. pneumoniae belonging to ST11 and ST16. 
Our finding suggests that novel mutations in KPC-2 are increasing in South America, 
which is a critical issue deserving active surveillance.
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