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a b s t r a c t

The dynamic complexity of the glucose–insulin metabolism in diabetic patients is the main obstacle
towards widespread use of an artificial pancreas. The significant level of subject-specific glycemic vari-
ability requires continuously adapting the control policy to successfully face daily changes in patient’s
metabolism and lifestyle. In this paper, an on-line selective reinforcement learning algorithm that
enables real-time adaptation of a control policy based on ongoing interactions with the patient so as
to tailor the artificial pancreas is proposed. Adaptation includes two online procedures: on-line sparsifi-
cation and parameter updating of the Gaussian process used to approximate the control policy. With the
proposed sparsification method, the support data dictionary for on-line learning is modified by checking
if in the arriving data stream there exists novel information to be added to the dictionary in order to per-
sonalize the policy. Results obtained in silico experiments demonstrate that on-line policy learning is both
safe and efficient for maintaining blood glucose variability within the normoglycemic range.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Diabetes is a chronic disease due to the inability of the pancreas
to segregate the insulin and glucagon hormones, which gives rise to
anomalous blood glucose levels in individuals and mainly alter their
carbohydrate, fat and protein metabolisms. High level of blood glu-
cose concentration causes considerable long-term complications
such as cellular dehydration, tissue damage, vascular injury that
increases the risks to heart attacks, cardiovascular diseases, strokes,
end-stage renal diseases and blindness (Guyton & Hall, 2000;
Siegelaar, Holleman, Hoekstra, & DeVries, 2010). To overcome these
complications is necessary to maintain the blood glucose level as
near to the normal levels as possible. Through continuous insulin
infusion by an external pump it is possible to reduce glycemic var-
iability and prevent events of hyper- or hypoglycemia (Hanaire
et al., 2008). Recent advances in technological devices like glucose
sensors and insulin delivery pumps allow moving closer towards
the artificial pancreas (AP) (Cobelli, Renard, & Kovatchev, 2011),
which includes such devices as key hardware elements in the glu-
cose regulation loop. The other essential component of an artificial
pancreas is the control strategy used to calculate the insulin deliv-
ery rate upon a glucose measurement signal coming from the sensor
(Lunze, Singh, Walter, Brendel, & Leonhardt, 2013).

The major challenge for the development of an artificial pancreas
is to cope with the erratic changes in blood glucose levels due to the
variability of glucose metabolism between patients and for the
same person over time expressed in terms of age, insulin sensitivity,
life style, exercise routine, feeding habits, etc (Bequette, 2012;
Buckingham, Caswell, & Wilson, 2007; Heinemann, 2002; Krüger,
Slabber, Joubert, Venter, & Vorster, 2007). Moreover, despite impor-
tant developments in sensor and insulin pump technology, the con-
trol system of an AP must cope with delays and inaccuracies in both
glucose sensing and insulin delivery (control action). In the past
three decades the most extensively used control strategies in the
design of control algorithms for an artificial pancreas were the pro-
portional–integral-derivative (PID) and the model predictive con-
trol (MPC) (Peyser, Dassau, Breton, & Skyler, 2014). Also, fuzzy
logic control techniques were developed but to a lesser extent.
The main obstacle for most control algorithms is that unpredictable
factors, such stress and illness, are ubiquitous sources of glycemic
variability that must be handled properly. Most of the existing con-
trol literature have failed to address the challenge of patient-
specific variability mainly because a fixed control policy is applied
bearing in mind an ‘‘average’’ patient. Recent research efforts were
focused towards adaptive control techniques to develop an artificial
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pancreas which is capable to deal with the uncertain behavior in
diabetic patients (Turksoy & Cinar, 2014).

The well known proportional–integrative–derivative feedback
controller was employed as an early close-loop control algorithm
for the AP (Bequette, 2005). Several versions of the PID controller
have been developed and evaluated in silico. Chee, Fernando,
Savkin, and van Heeden (2003) designed a PID controller applying
the concept of an expert system, achieving a ‘‘sliding table’’ to
implement a PID control scheme with dynamic properties. A PID
is a purely reactive controller, i.e. responds to changes in glucose
concentration after they have occurred. To improve PID perfor-
mance, Weinzimer et al. (2008) add a feed-forward action and
Marchetti, Barolo, Jovanovic, Zisser, and Seborg (2008), incorporate
switching strategies for initialization after a meal and insulin
bolus, together with time-dependent trajectories and filters for
noise removal in continuous glucose monitoring. Gantt, Rochelle,
and Gatzke (2007) designed a simpler asymmetric PI controller
with adjustable parameters which are tuned by local search meth-
ods. As a result, the PI controller may exhibit a different response
depending on the sign of the observed error value. To deal with
the strong nonlinearity behavior of glucose insulin dynamics in
Sasi and Elmalki (2013), a PID and slider table controller are pro-
posed to address the glucose disturbance caused by exercise, delay
or noise in glucose sensor and nutrition mixed meal absorption at
meal times.

Model predictive control (MPC) is a model-based control tech-
nique (García, Prett, & Morari, 1989), which was extensively
adopted for simulation-based evaluation of glucose regulation in
Type 1 diabetic patients. In the work of Magni et al. (2007), a linear
MPC controller was assessed whereas in Magni et al. (2009) the trial
was extended to evaluate a nonlinear state feedback MPC controller
(Hovorka et al., 2004). In Lee, Buckingham, Wilson, and Bequette
(2009) a feedback control algorithm using MPC along with meal
detection and meal size estimation approach are combined. In addi-
tion, a pharmaco-dynamic model of insulin action is used to provide
‘‘insulin-on-board’’ constraints that explicitly include the future
effect of past and current changes to the insulin delivered. Further-
more, a pump shut-off feature is included to avoid hypoglycemic
events. In order to reduce the computational effort and explicitly
deriving the control policy the work of Dua, Doyle, and
Pistikopoulos (2006) proposes the integration of the parametric pro-
gramming optimization technique with the MPC framework to
obtain the control actions (changes to the insulin delivery rate) as
a function of the current blood glucose concentration of the patient
(state variables) by treating the control actions as optimization vari-
ables and the state variables as inputs. The multi-parametric model-
based control (mp-MPC) is an evolved version, which is a control
method with the ability to solve the on-line optimization problem,
involved in traditional MPC, off-line via parametric optimization
with the advantage that control actions are calculated in an on-line
way via simple function evaluations instead of solving repetitively
on-line a computationally demanding optimization problem (Dua,
Kouramas, Dua, & Pistikopoulos, 2008; Percival et al., 2011). Alter-
natively, a zone-MPC has been developed (Grosman, Dassau,
Zisser, Jovanovic, & Doyle, 2010) which uses mapped-input data
and is adjusted automatically by linear difference personalized
models, being the target of the control variable a zone instead of a
set point or trajectory. In Favero et al. (2014), a modular MPC algo-
rithm has been developed based on a meal-informed MPC strategy
and it was first used in an outpatient wearable AP.

Determination of PID constants through well-known methods,
such as the well known Ziegler–Nichols, is difficult since a well-
tuned AP is always a patient-specific issue. Also, changes in glucose
dynamics generate the need for constantly updating these param-
eters. On the other hand, MPCs are model-based control strategies
that have an important drawback for using them in an AP: the
controller performance is strongly dependent on the accuracy of
the model used to represent the true glucose–insulin dynamics.
To overcome these drawbacks, adaptive control techniques arise
as a promising alternative to address glycemic variability in
diabetic patients (Turksoy & Cinar, 2014). An adaptive control sys-
tem that do not necessitate any meal or activity announcements
was proposed in Turksoy, Bayrak, Quinn, Littlejohn, and Cinar
(2013), which is mainly based on the generalized predictive control
framework. In Eren-Oruklu, Cinar, Quinn, and Smith (2009) a lag
filter is used to account for the time-lag between subcutaneous
and blood glucose values. Also, a Smith predictor is used to cope
with delays in insulin action effects, which provides a model
based-control strategy that calculates the required insulin infusion
rate while model parameters are recursively tuned. In a similar
research avenue, machine learning techniques have been applied
in the attempt for integrating adaptive control strategies in glucose
regulation. In the pioneering work of McCausland, Mareels,
Barnett, and Arad (1999) a rule-based algorithm was proposed,
which starts from a set of generic rules to form conclusions. Later
on, decision rules are adapted to suit a given person characteristics
by learning from patient-specific data. In Cosenza (2012) fuzzy
techniques are employed for the development of a decision sup-
port system which operates as a off-line mixed feedback–
feedforward controller allowing the optimization of postprandial
glycemia in type 1 diabetic patients. In De Paula and Martínez
(2012a), a simulation based approach based on Gaussian process
dynamic programming (Deisenroth, Rasmussen, & Peters, 2009)
is implemented to find a control policy, which is represented in a
compact format that provides plenty of room for its personaliza-
tion. Run to run algorithms have been used for fine tuning of basal
infusion rates using sparse blood glucose measurements (Palerm,
Zisser, Jovanovič, & Doyle, 2008).

A machine learning algorithm can be considered as a systematic
procedure for extracting structure from data (Deisenroth, 2010). In
particular, the work of Esfandiari, Babavalian, Moghadam, and
Tabar (2014) review a set of techniques to extract knowledge from
the measured patient data. Automatically learning from the patient
data is of paramount importance to develop true adaptive control
strategies. In Serhani, Benharref, and Nujum (2014), an adaptive
Expert System is proposed that implements an iterative technique
based on previous experience to increasingly improve clinical-deci-
sion making. In Akbari Torkestani and Ghanaat Pisheh (2014), a
learning automata-based mechanism is proposed to determine
the insulin doses taking into account the past history of blood glu-
cose measurements which, in turn, are encoded in the parameters
of a Gaussian distribution function. In the work of Daskalaki,
Prountzou, Diem, and Mougiakakou (2012), continuous glucose
monitoring is used to develop on-line adaptive data-driven models
for glucose prediction to account for the glycemic variability of dia-
betic patients. An integration of reinforcement learning (RL) (Sutton
& Barto, 1998) and optimal control theory have been presented in
Elena Daskalaki, Diem, and Mougiakakou (2013), where a model-
free control approach is proposed. The control strategy admits an
initialization based on clinical procedures, includes simultaneous
adjustment of both the insulin basal rate and the bolus dose, and
makes room for a real-time personalization of the control policy.
In comparison with other traditional control strategies, RL does
not require a detailed description of the glucose dynamics in terms
of a first-principles model. Learning algorithms developed as
model-based control strategies are faster than those based on
model-free strategies. RL algorithms aim to find a policy control
that optimizes a long-term performance measure, which makes it
ideal to cope with delayed effects of the delivered insulin since that
effect will be taken into account by the state-value function or
state-action function (Daskalaki et al., 2013). For RL algorithms to
be practical, they must be able to learn from a handful of samples
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while continually taking actions in real-time (Hester, Quinlan, &
Stone, 2012). The paradigm of model-based learning strategies, bor-
rowed from the field of the robotics, require a model of the dynam-
ics (in our case a model of glucose–insulin dynamics) to describe
essential information about the response of the system to control
actions (Nguyen-Tuong & Peters, 2011b). Non-parametric models
are true data models suitable to work with erratic glucose–insulin
dynamics (Daskalaki et al., 2013, 2012), which makes them a pow-
erful tool for adaptive control by reducing the problem of model
bias, which frequently occurs when deterministic models are used.
In (Ruan, Thabit, Kumareswaran, & Hovorka, 2014), the proposal is
to estimate the parameters of the model developed to describe the
insulin pharmaco-kinetics; a Bayesian inference approach is used
based on the collected data from patients. More specifically, a
Gaussian process is a novel modeling tool within the non-
parametric framework which when combined with tractable Bayes-
ian inference (Rasmussen & Williams, 2006) is useful to cope with
modeling the glucose–insulin dynamics under uncertainty
(Markakis, Mitsis, Papavassilopoulos, & Marmarelis, 2010). For
safety and performance in the artificial pancreas, on-line adaptive
strategy requires to work in real-time and with continuous data
streams. Therefore, for a patient model to be useful in controlling
glycemic variability it should be incrementally updated in real-time
(Gijsberts & Metta, 2013). Recently proposed on-line sparsification
techniques (Chen, Gao, & Wang, 2013; Engel, Mannor, & Meir, 2004,
NguyenTuong and Peters, 2011a) are best suited for on-line learning
of dynamic models that adapt a control policy to a patient lifestyle
and unique glucose metabolism.

Model-based RL is a promising alternative to develop adaptive
personalization techniques to control blood glucose since RL algo-
rithms can quantitatively predict and measure the performance of
selected actions (Bothe et al., 2013; Daskalaki, Diem, &
Mougiakakou, 2013). The glucose–insulin dynamics has a contin-
uum of states and actions. Therefore, a truly flexible and adaptive
proposal based on the model-based RL framework should be made
in a continuous representation. In RL, to deal with this situation an
efficient balance between exploitation and exploration to general-
ize from experience is needed. Also, adaptive modeling of the
dynamics is critical. In this paper, an on-line selective reinforce-
ment learning algorithm that enables real-time adaptation of a
control policy based on ongoing interactions with the patient so
as to tailor the artificial pancreas is proposed. Adaptation includes
two online procedures: on-line sparsification and parameter
updating of the Gaussian process used to approximate the control
policy. Probabilistic Gaussian process models of the transition
dynamics and value functions are built on-line. Also, the control
policy itself is modeled by a Gaussian process model. For safety
and performance, the policy is adapted using only a small number
of interactions with the patient and only relevant data is sampled
through Bayesian active learning (Baranes & Oudeyer, 2013; Cohn,
Ghahramani, & Jordan, 1996; Deisenroth et al., 2009). The integra-
tion of a sparsification technique with the on-line learning algo-
rithm makes possible to work with a continuous data stream
which enables a permanent updating of the support data set used
to approximate the control policy. In this way, on-line adaptation
of the control policy is effective for controlling subject-specific var-
iability due to a patient’s lifestyle and its distinctive metabolic
response. Illustrative examples are used to discuss implementation
details of the proposed approach.

2. Off-line policy learning

The notion of a control policy comes from the field of artificial
intelligence (Russell & Norvig, 2009), and is especially used to
describe the behavior of an intelligent agent (controller) in the field
of RL (Sutton & Barto, 1998). In mathematical terms, the policy is a
function p:x ? u that maps states (x) to a control action (u). In this
sense, a control policy defines how a controller chooses the control
actions to be applied to the controlled system. More specifically, in
the artificial pancreas the control policy determines the insulin
infusion rate which should be delivered to a diabetic patient. By
formulating and solving a RL problem it is possible to find a generic
policy for controlling blood glucose by simulating uncertain condi-
tions in a generic patient and its environment which give rise to
glycemic variability. Later on, the generic policy can be personal-
ized in real-time to a given patient.

2.1. Reinforcement learning

Solving a RL problem consists in learning iteratively a task from
interactions to achieve a goal. During learning, an agent (or control-
ler) interacts with the target system by taking an action ut 2 U # R

and, after that, the system evolves from the state xt 2 X # Rnx to xt+1

and the agent receives a numerical signal rt called reward (or cost)
which provides a measure of how good (or bad) is the action taken
at xt in terms of the observed state transition. Rewards are given as
hints regarding goal achievement or optimal behavior. In applying
RL to the artificial pancreas, the main objective of the agent is to
learn the optimal policy, p⁄, which defines the optimal insulin infu-
sion for different patient’s states, bearing in mind both short and
long term rewards. Let us assume that under a given policy p, the
expected cumulative reward Vp(x), or value function over a certain
time interval, is a function of xp, where xp ¼ fxtgt¼N

t¼1 are the corre-
sponding state values and up ¼ futgt¼N

t¼1 defines the policy-specific
sequence of control actions. The sequence xp of state transitions
gives rise to rewards frtgt¼N

t¼1 . Blood glucose regulation is a
continuous task without a single final state, hence N could be
defined to account for the daily routine including meals,
exercise, sleep, etc. Therefore, the discounted sum of future rewards
Rt ¼ rtþ1 þ crtþ2 þ c2rtþ3 þ . . . ¼

P1
k¼ockrtþkþ1 is used to define the

(discounted) expected state-value function for a policy p from the
state x:

VpðxÞ ¼ EpfRt jxt ¼ xg ¼ Ep
XN

k¼o

ckrtþkþ1jxt ¼ x

( )
ð1Þ

where c 2 (0,1] is the discount factor which weights future rewards.
V⁄(x) is used to denote the maximum discounted reward obtained
when the agent starts in state x and executes the optimal policy
p⁄. Thus, the associated optimal state-value function satisfies the
Bellman’s equation for all state x is:

V�ðxtÞ ¼ argmaxu rt þ c:Extþ1 ðV
�ðxtþ1Þjxt ;utÞ½ �

� �
ð2Þ

where ut = p⁄(xt). Similarly, the state–action value function Q⁄ is
defined by:

Q �ðxt ;utÞ ¼ rt þ c:Extþ1 ðV
�ðxtþ1Þjxt;utÞ½ � ð3Þ

such that V�ðxÞ ¼ argmaxuQ �ðx;uÞ for all x. Once Q⁄ is known
through interactions, then the optimal policy can be obtained
directly through:

p�ðxÞ ¼ argmaxuQ �ðx;uÞ ð4Þ

When the state space X and the action space U are discrete and
finite, the optimal policy can be obtained directly from a tabular
representation of the value function. However, in our problem
the state and actions take their values from a continuum. Hence,
a function approximation technique is required for value function
approximation. Moreover, inductive modeling of the optimal pol-
icy is mandatory to allow selecting optimal actions in the continu-
ous space U. Gaussian process models are a powerful alternative
for generalization and on-line learning in reinforcement learning
algorithms.
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2.2. Gaussian process

Gaussian process (GP) is a relatively new kernel method popu-
larized within the machine learning community by Rasmussen and
Williams (2006). It is a powerful, non-parametric tool for regres-
sion in high dimensional spaces returning a non-parametric prob-
abilistic model. A GP is a generalization of a Gaussian probability
distribution where the distribution is over functions instead of
assuming a model with a given structure before data is considered.

A key advantage of the GP is the ability to provide uncertainty
estimates and learning the noise and smoothness parameters from
training data. In solving RL problems through on-going interac-
tions, the experience can be collected in data sets as {X,Y}, where
X : fxi 2 Rd=i ¼ 1;2 . . . ng is the set of input vectors and
Y : fyi 2 R=i ¼ 1;2 . . . ng is the set of the corresponding observa-
tions; where n is the number of samples. Assume that between
pairs of input–output data there is a functional relationship
h : Rd ! R, such that yi ¼ hðxiÞ þ e; e � N 0;r2

e
� �

. Then, in order to
make inference about a function value h(x⁄) for an unknown input
x⁄, an inferred model for underlying function h is needed. Within a
Bayesian framework, the inference of the underlying function h is
described by the posterior probability:

pðhjX;YÞ ¼ pðYjh;XÞpðhÞ
pðYjXÞ ð5Þ

where p(Yjh,X) is the likelihood and p(h) is a prior distribution on
plausible value functions assumed by the GP model. The term
p(YjX) is called the evidence or the marginal likelihood. When model-
ing with GPs, a GP prior p(h) is placed directly in the space of func-
tions without the necessity to consider an explicit parameterization
of the approximating function h. This prior typically reflects
assumptions on the, at least locally, smoothness of h.

Similar to a Gaussian distribution, which is fully specified by a
mean vector and a covariance matrix, a GP is specified by a mean
function m(�) and a covariance function Cov(�,�), also known as a
kernel. A GP can be considered a distribution over functions. How-
ever, considering a function as an infinitely long vector, all neces-
sary computations for inference and prediction of value functions
can be broken down to manipulate well-known Gaussian distribu-
tions. The fact that function h(�) is GP distributed is indicated by
hð�Þ � GPhðm;CovÞ hereafter.

Given a GP model of the function h, we are interested in predicting
the value function for an arbitrary input x�t . The predictive (marginal)
distribution of the function value h� ¼ h x�t

� �
� GPh x�t

� �
for a test

input x�t is Gaussian distributed with mean and variance given by:

E h x�t
� �� �

¼ Cov x�t ;X
� �

þ Kþ r2
e I

� ��1
Y ð6Þ

Var h x�t
� �� �

¼ Cov x�t ;x
�
t

� �
þ Cov x�t ;X

� �
Kþ r2

e I
� ��1

Cov X;x�t
� �

ð7Þ
where K is the kernel matrix with Kij ¼ Cov xi

t; x
j
t

� 	
8xt 2 X. A com-

mon covariance function is the squared exponential (SE):

CovSE xi
t ;x

j
t

� 	
:¼ f2 exp �1

2
xi

t � xj
t

� 	T
K xi

t � xj
t

� 	
 �
ð8Þ

where matrix K ¼ diag ‘2
1; ‘

2
2; . . . ; ‘2

d

� �� �
and ‘r, r = 1, . . . ,d, being the

characteristic length scales. The parameter f2 describes the variabil-
ity of the inductive model h. The parameters of the covariance func-
tion are the hyperparameters of the GPh and are collected within the
vector w. To fit parameters to value function data the evidence max-
imization or marginal likelihood optimization approach is recom-
mended (see Rasmussen & Williams (2006)). The log-evidence is
given by:

logpðYjX;wÞ¼
Z
ðYjhðXÞ;X;wÞpðhðXÞjX;wÞdh

¼�1
2

YT Kwþr2
e I

� ��1
Y�1

2
log Kwþr2

e I
� ��� ���d

2
logð2pÞ

ð9Þ
In Eq. (9), we have h(X) = [h(x1), . . . ,h(xn)] where n is the
number of training points. We made the dependency of K on the
hyper-parameters w explicit by writing Kw in Eq. (9). Evidence
maximization yields an inductive model of the value function that:
(i) rewards data, and (ii) rewards simplicity of the fitted model.
Hence, it automatically implements Occam’s razor, i.e. preferring
the simplest model. Further details on GP regression can be found
in the excellent books of Rasmussen and Williams (2006) and
MacKay (2003), and references therein.

2.2.1. Modeling the state transition dynamics
It is widely recognized that model-based methods often make

better use of available information since they capture the underly-
ing pattern (latent function) for state transitions. For controlling
glycemic variability, model-based learning methods require a
model of the state transition dynamics (in our case a model of the
glucose–insulin dynamics) to describe essential information about
the behavior of the system and the influence of an action taken
on this system. A transition function f, maps a state-action pair
(xt, ut) to a successor glycemic state (xt+1), as is indicated in Eq. (10).

xtþ1 ¼ xt þ f ðxt ;utÞ ð10Þ

Probabilistic models such as GPs can be used to model the glu-
cose–insulin dynamics by learning a transition function f based on
training data consisting of a sequence of observed glycemic states
and changes to the insulin infusion rate (control actions). As a
result, the GP learns to predict the change between two consecu-
tive states conditioned on the previous state and the control input.
Thus, the GP (inductive) model, the dynamicsGP, is learned to
describe the state transition dynamics f � GPf through expecta-
tions on changes caused by a control action execution. We attempt
to model short term transition dynamics based on the data coming
from the interactions (with a real patient or a simulator). We
assume that the glucose dynamics smoothly evolve while a control
policy is being applied. However, we implicitly assume that glu-
cose variability is due to uncertainty about both inter- and intra-
patient variability, inaccuracies in glucose sensing and delays in
insulin absorption from the subcutaneous tissue. For predicting
the glucose transition dynamics, a GP model is trained in such a
way the effect of uncertainty about the state transition following
a control action is modeled statistically as

xi
tþ1 � xi

t � GPf ðmf ; cov f Þ ð11Þ

where mf is the mean function and covf is the covariance function.
Notice that this model implies that the output dimensions are condi-
tionally independent on the given inputs. Moreover, the correlation
between the state variables is implicitly considered when we observe
pairs of states and successor states. The training inputs to the model
transition dynamicsGPf are tuples (xt, ut), whereas the targets are the
state differences shown in Eq. (11). The posterior distribution for the
dynamics GP reveals the remaining uncertainty about the underlying
latent function for any blood glucose change caused by a control ut

when it is implemented at xt. GP models of the transition dynamics,
for observable states, are built on the fly using data gathered from
interactions with a certain patient (real or virtual).

2.2.2. GP modeling of a value function
For generalization and on-line learning in RL algorithms with

continuous state and action spaces, GP models are useful to approx-
imate the value functions V(�) and Q(�,�) directly in function space by
representing them by fully probabilistic GP models (Deisenroth
et al., 2009). These inductive models make intuitive sense as they
use data (coming from real or simulated interactions) to determine
the underlying structures of the value functions, which are a priori
unknown. Moreover, GPs provide information about confidence
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intervals for the value function predictions. Thus, the state-value
function V(�) and the action-state value function Q(�,�) are approxi-
mated as Vð�Þ � GPv ðmv ;Covv Þ and Qð�; �Þ � GPqðmq;CovqÞ, respec-
tively. The training targets (observations) can be iteratively
determined by the RL algorithm. Thus, the training inputs for the
data-driven model GPv are the states xt whereas the targets are
the corresponding state values V(xt). Similarly, the training inputs
for GPq are tuples (xt, ut) and the targets are the state-action values
Q(xt, ut). The advantage of modeling the value functions by GP mod-
els is that the GPs provides a predictive distribution of V(xt) or Q(xt,
ut) for any xt or any pair (xt, ut) through Eqs. (6) and (7). Due to the
generalization property of GPv and GPq, we can work in a continu-
ous state space X # Rnx and action space U # R to determine a value
function V(x⁄) or Q(x⁄, u⁄) for any state x⁄ or state-action pair (x⁄,u⁄).
Then, to obtain the optimal control from the value functions for a
state xt in Eq. (4), the optimal action is given by the maximum of
the mean function of GPq which is obtained by solving the optimi-
zation problem:

p�ðxtÞ ¼ argmaxuQ �ðxt ;uÞ ¼ argmaxumqðuÞ
subject to : uminðxtÞ 6 u 6 umaxðxtÞ

ð12Þ

It is worth noting that using a probabilistic model for the value
function allows addressing uncertainty in state transitions follow-
ing a control action and the variability in corresponding rewards
(costs) in a natural way. Also, by resorting to GPs, the proposed
RL algorithm (developed below) can readily handle uncertainty
in state transitions due to a stochastic disturbance dynamics along
with noisy measurements and rewards.

2.2.3. GP modeling of a control policy
We regard the optimal policy p⁄ as a probabilistic map from

states to actions. In order to generalize the control policy all over
the state space, we have to solve a regression problem to obtain
an optimal policy p⁄ based on an observed data set. These data
are obtained from a sequence of interactions (real or simulated)
between a learning controller and a given patient. Although any
function approximation technique can be used to model the con-
trol policy, here it is also approximated with a GP model, GPp, since
it allows assessing the remaining uncertainty when estimating
optimal controls for unseen states. This capability is instrumental
in real-time personalization of a generic control policy. The train-
ing inputs of the model GPp are states xt 2 X # Rnx whereas the
training targets are controls ut 2 U # R. When the targets are the
optimal controls u�t ¼ p�ðxtÞ obtained from Eq. (12), the GPp mod-
els the optimal control policy.

2.3. Generic control policy

A generic control policy is a policy which is obtained in an
off-line way employing a simulation environment. Through a sim-
ulation experiment, involving the interaction between a given con-
troller and a patient, under certain conditions, valuable training
data can be acquired. This data can be sorted and grouped in a
support data set D, or simply support set, such that
D ¼ fdign

i¼1;di ¼ ½xt ut � 8 xt 2 X and " ut 2 U, where X � D
and U � D are the support sets of training inputs and targets
respectively. Thus, based on a certain support set, a generic policy
can be learned and modeled by a GP model, GPp, in on-line off-line
way. During the experiment, any feedback control strategy can be
applied to generate the training data. However, to introduce our
approach we employ the RL algorithm -referred to as Algorithm
1- sketched in the Fig. 1 to learn a generic control policy p� � GPp.

In Fig. 1, an algorithm integrating RL with GP is depicted. As
input, an initial policy p0 has to be supplied. In a general situation,
when no knowledge about the control task exists, p0 is commonly
a random policy which actually consists in a random function to
select admissible actions. In line 7, using a simulation environment
of the dynamics function f (which simulate the insulin–glucose
dynamics) the current policy pk�1 is applied to the simulator from
each start state x0 2 X0 during T sampling times, obtaining the
support sets X and U. For policy iteration, this algorithm describes
the value functions V(�) and Q(�,�) directly in function space by rep-
resenting them by fully probabilistic GP models. These inductive
models make intuitive sense as they use simulation data to deter-
mine the underlying structures of these value functions, which are
a priori unknown. The sets X and U instead of being a discrete rep-
resentation for the state and action spaces, are considered the sup-
port points (training data) to approximate the value functions V(�)
and Q(�,�) using GP models; which are indicated as Vð�Þ � GPv

and Qðxi; �Þ � GPq, respectively. The training targets (observations)
are iteratively determined by Algorithm 1 itself.

As it has been already mentioned, the advantage of modeling
the state-value function V(�) by GPv is that the GP provides a pre-
dictive distribution of V(xt) for any state xt. This property is
exploited in the computation of the Q-value (line 12). Due to the
generalization property of GPv we are not restricted to a finite
set of successor states x0i, result of applying an action uj at a certain
state xi, when determining E½Vðx0iÞjxi;uj; f ;GPv �.

Once the whole recursion for obtaining a support set X and
updated optimal controls p⁄(X ) have been completed, a new ver-
sion of the control policy is obtained in the form of a Gaussian
process, the policyGP: GPpk

in line 18. Policy iteration converges
when distributions for control policies are ‘‘close’’ enough. As con-
trol policies in successive iterations are also modeled using GPs,
policy iteration can be stopped when the relation e of the Kull-
back–Leibler (KL) divergences over a support set, with cardinality
kXk, between two successive policy GPs is lower than a small tol-
erance d. Typically, only a few iterations are necessary for the con-
trol policy distributions to converge according to the criterion in
Eq. (13).

� ¼ Kprevious � Kcurrent

Kprevious
� 100% 6 d ð13Þ

where:

Kprevious ¼
X
x2Xk

KL GPp�
k�2
ðX ÞGPp�

k�1
ðX Þ

� 	.
kXk

¼
X
x2Xk

GPp�
k�1
ðxÞ: log

GPp�
k�1
ðxÞ

GPp�
k�2
ðxÞ

 !,
kXk ð14Þ

Kcurrent ¼
X
x2Xk

KL GPp�
k�1
ðXÞGPp�pðXÞ

� 	.
kXk

¼
X
x2X
GPp�

k
ðxÞ: log

GPp�
k
ðxÞ

GPp�
k�1
ðxÞ

 !,
kXk ð15Þ

As it is shown in the line 21 of Algorithm 1 (Fig. 1), a GP model is
learned to approximate the generic policy p⁄ based on the support
sets X and p⁄(X ). As it was said, these data sets can be obtained by
solving a RL problem with the proposed Algorithm 1, or by record-
ing input–output data coming from simulations of applying other
control strategies. The simulation environment to emulate the gly-
cemic behavior in a diabetic patient is generally representative of
only an average subject under specific conditions. Therefore, once
a generic policy is obtained, it can be safely applied to a certain
patient. However, it is imperative to adapt this policy to the
patient-specific behavior and lifestyle. To do this, in the next
section we propose a methodology for control policy personaliza-
tion to control a given patient glucose variability using simula-
tion-based learning and on-line adaptation of a generic control



Algorithm 1. RLGP

1. Input , , , , , , 

2. 

3. 

4. Un�l do

5.    

6.    

7.    Simulate transi�ons using , star�ng from each , applying . 

Record the observed state transi�ons ( ) and applied ac�ons ( ) in .

8.    Compute sequences of rewards for the trajectories and 

es�mate using Eq. (1) obtaining .

9.    Approximate  with , 

10.    For all do

11.             For all

12.                    

13.             End For

14.              

15.

16.    End For

17.  

18. Approximate with , 

19. Eq. (13)

20. End Loop

21. Return a generic policy 

Fig. 1. Integration of reinforcement learning with Gaussian processes for policy iteration.
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policy. The proposed approach is based on reinforcement learning
principles, it is integrated with a recently methodology for incre-
mental online sparsification and employs Gaussian process
approximation. Also, a Bayesian active learning mechanism is pro-
posed for a self-exploration process (Baranes & Oudeyer, 2013)
able to work in an on-line way with a continuous data stream in
real-time.

It is important to highlight a key advantage of resorting to
Gaussian processes for data-driven modeling of control policies.
Using GPs, a generic control policy can be modeled over an aug-
mented support set, D�, which combine the support sets of differ-
ent generic policies obtained from different simulation runs. For
example, each simulation experiment can be done under different
conditions, for instance employing different control strategies,
regarding different patient configurations, assuming different meal
routines as well as many other possible variants. Thus, each jth
simulation experiment will give rise to a different support
set Dj. Thus, an augmented support set can be obtained as:
D� ¼ fD1 [D2 [ . . . [Dj [ . . .g. Then, a generic policy modeled by
a GP learned over a set D� should have a generalization ability to
deal with many different situations that a patient may experience.
2.4. Simulation environment

To emulate diabetic patients’ behavior, a simulation environ-
ment able to replicate the glucose–insulin dynamics (function f
in Algorithm 1 in Fig. 1) is needed. Glucose–insulin dynamics
shows great variability from patient to patient (inter-patient vari-
ability). Moreover, in the same person the glucose level evolutions
are not identical along consecutive days although the patient is
subjected to the same conditions every day (feeding, physical exer-
cise, insulin infusion). This is referred to as intra-patient variability.
When a control policy is learnt off-line using computational simu-
lation, the natural inter- and intra-patient variability needs to be
addressed.

Most of the glucose–insulin models proposed are based on
either the Bergman’s minimal model (Bergman, Ider, Bowden, &
Cobelli, 1979, 1981) or Sorensen’s physiological model (Sorensen,
1985). These models offer a rather qualitative prediction tool for
blood glucose dynamics to account for exogenous insulin infusions
and carbohydrate intake. If the uncertainties are omitted and if the
model cannot accurately represent the glucose and insulin dynam-
ics, a significant performance degradation in model-based control
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strategies may arise whereas hypoglycemic episodes cannot be
ruled out. Meals and exercise along with age and weight require
different values of model parameters to describe in quantitative
terms the variability observed in the insulin–glucose dynamics.
Furthermore, patients with diabetes are constantly exposed to
external disturbances that cause large blood glucose perturbations
like meal consumption or physical activity on a daily basis. Both
Bergman’s and Sorensen’s models are physiologically based and
can qualitatively explain what happens with varying levels of
physical activity. In this paper, the validated stochastic model pro-
posed by Ulas Acikgoz and Diwekar (2010) is used to simulate the
glucose–insulin dynamic system (simulated patients) which
accounts for the different sources of uncertainties and variability.
This model is an enhanced model based on the physiological model
proposed by Lehmann and Deutsch (1992).

The physiological model proposed by Lehmann and Deutsch
considers two subsystems (compartments) to represent the
glucose–insulin dynamics based on the following system of differ-
ential equations (more detail can be found in Lehmann & Deutsch
(1992) and in the website http://www.2aida.net):

dG
dt
¼ GinðtÞ þ NHGBðp3; IÞ

VG
� Gðp2Ia þ p5ÞðKM þ GXÞ

GXðKM þ GÞVG
� Gren

VG
ð16Þ

dIa

dt
¼ p3I � p4Ia ð17Þ

dI
dt
¼ �gI þ Dt

VI
ð18Þ

In the differential equations system above, Eqs. (16)–(18) repre-
sent the changes with time of the: plasma glucose concentrationG,
insulin in remote compartment Ia and plasma insulin concentra-
tion I, respectively; their initial conditions are: G(0),Ia(0) and I(0).
In Eq. (16) Gin is the systemic appearance of glucose via glucose
absorption from the gut, NHGB is the net hepatic glucose balance,
VG is the volume of distribution of glucose, GX is a reference glucose
level, KM is the Michaelis–Menten constant between glucose utili-
zation and plasma glucose concentration and Gren is the renal
excretion of glucose. In Eq. (18), g is the fractional disappearance
rate of insulin, VI is the insulin distribution volume and Dt is the
flow rate of exogenous insulin infused such that Dt = Dt�1 + ut

where ut is the change in the insulin supplied (control action).
The vector P = [p1p2p3p4p5] stands for estimated patient-specific
parameters and in this work the values estimated by Ulas
Acikgoz and Diwekar (2010) are used. These parameters are given
in Table 1, assuming a body weight of 70 kg. The parameter Sh that
appears in Table 1 is the hepatic sensitivity needed to determine
the NHGB(t) (see Lehmann & Deutsch (1992)).

Eqs. (16)–(18) provide a deterministic dynamic model for blood
glucose in Type 1 diabetic patients. However, there exists uncer-
tainty about the estimation of model parameters in Table 1 that
prevents describing variability among daily values of glucose in
Table 1
Model parameters.

Parameter Value Unit

VG 0.22 L/kg
GX 5.3 mmol/L
KM 10.0 mmol/L
g 5.4 h�1

VI 0.1421 L/kg
p1 0.278
p2 0.0248 mmol min�1 kg�1 mU�1 L�1

p3 0.000758 min�1

p4 0.0148 min�1

p5 0.00986 mmol min�1 kg�1

Sh 0.5
patients, whereas other sources of structural errors give rise to
model-patient mismatch. Also, in a standard implementation there
exists inaccuracies of the measurement devices and therefore the
available measurements do not uniquely determine the true state
in a diabetic patient. Thus, there is uncertainty in both estimating
system state and predicting the outcome of control actions. Fur-
thermore, noise is present in subcutaneous glucose sensors which
is another important cause of variability (Sanger, 2010). All these
sources of time-dependent uncertainties could be represented by
introducing stochastic processes in a deterministic model (Ulas
Acikgoz & Diwekar, 2010). Introducing a superimposed Ito’s sto-
chastic process (Ito, 1951), to represent the variability in plasma
glucose concentration, can be obtained by modifying Eq. (16) as
follows:

dG
dt
¼GinðtÞþNHGBðp3; IÞ

VG
�Gðp2Iaþp5ÞðKMþGXÞ

GXðKMþGÞVG
�Gren

VG
þritoeffiffiffiffiffi

dt
p ;

Gð0Þ¼G0 ð19Þ

where rito is the variance parameter and e is a random number gen-
erated by a normal distribution with a mean equal to zero and a
standard deviation equal to one ðe � Nð0;1ÞÞ.

The preceding model was used to represent the dynamics as the
function f describing an average glycemic behavior of diabetic
patients with parameters in Table 1. The inter- and intra-variability
in diabetic patients are modeled using rito = 0.25. Later on, the
Algorithm 1 (Fig. 1) is applied and a generic control policy p⁄ is
obtained. In Fig. 2, the key concept of a control policy p⁄ is high-
lighted through the resulting glucose profiles of 125 independent
simulations made using the described dynamics model (Eqs. (19),
(17) and (18) manipulated by an optimal policy p⁄. It is noticeable
that the optimal policy is able to achieve tight glycemic control as
glucose levels are within soft constrains (green lines).

The next section presents a novel simulation-based algorithm
for real-time personalization of a generic control policy (p⁄) to
the specific characteristics and lifestyle of a given patient.
3. On-line policy learning and adaptation

Once a generic control policy (p⁄) has been obtained in an off-
line way, it can be adapted to the requirements of a specific patient
so as to obtain a personalized control policy, referred to as p�c here-
after. By introducing some changes to the Algorithm 1 in Fig. 1, a
new version capable of adapting a generic control policy whilst
the control algorithm interacts with the patient is obtained. Bayes-
ian active learning, borrowed from robotics, should be included for
safe exploration as the control policy is being implemented
(Baranes & Oudeyer, 2013; Cohn et al., 1996; Settles, 2010). Hence,
only a relevant part of the state space will be explored while the
exploitation–exploration dilemma of the RL problem is addressed
(Krause & Guestrin, 2007). Moreover, during the on-going interac-
tions between the AP (and its control policy) and a patient, a model
of the glucose dynamics must be learnt on-line, allowing the policy
to adapt itself to changes in the patient response to control actions.
For this reason, the on-line learning algorithm must be capable of
dealing with continuous data stream to update the support data
set. To this aim, incremental on-line sparsification suitable to work
with non-parametric Gaussian process regression is required
(Engel et al., 2004; Nguyen-Tuong & Peters, 2011a). The incremen-
tal sparsification technique makes possible to determine whether
arriving data provide valuable information regarding the current
support sets for both the dynamics and the policy. This allows us
to limit the cardinality of the support sets and keep them updated
to account for subject-specific glycemic variability.

http://www.2aida.net


Fig. 2. Glucose profiles for 125 independent simulations under the generic policy p⁄.
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3.1. Bayesian active learning

To learn probabilistic metamodels of the glucose–insulin
dynamics and the value functions on the fly, a constrained version
of Bayesian active learning (BAL) mechanism must be used on-line.
Let us first describe how to determine the most promising states
from a given set of candidate states ðfX Þ and then a mechanism
suitable for online interactions with the patient (real or virtual)
is proposed to obtain candidate data to be added to the support
sets. A version of Bayesian active learning algorithm is sketched
in Fig. 3 which is referred to as BAL algorithm or Algorithm 2.

3.1.1. Selecting promising states
Consider a given set fX of candidate states ~xi; i ¼ 1 . . . n. We

need to value them in some way. Thus, we have to rank them
according to that value and select the one with the highest value.
In on-line policy learning control, a ‘‘good’’ state ~x 2fX should pro-
vide both information gain about the latent value function and be
able to reduce uncertainty about the optimal controls. Hence, an
utility function Uð�Þ that captures both objectives to rate the qual-
ity of candidate states is used (Deisenroth et al., 2009). Accord-
ingly, the most promising state ~x� 2fX is the one that maximizes
the expected utility function defined as follows

Uð~xÞ ¼ qEvðV�ð~xÞjXÞ þ
b
2

logðvarvðV�ð~xÞjXÞÞ ð20Þ

where q and b are used to control the exploration–exploitation
tradeoff, and the predictive mean and variance of the value function
are

EvðV�ð~xÞjXÞ ¼ kT
vK�1

v V�ðXÞ ð21Þ
varvðV�ð~xÞjXÞ ¼ kv � kT

vK�1
v kv ð22Þ

where Kv is the augmented kernel matrix when including ~x

Kv ¼
Kv kv

kT
v kv


 �
ð23Þ

and kv is called kernel vector such that kv ¼ kðX ; ~xÞ. Similarly, Kv is
the kernel matrix such that Kv ¼ kðX;XÞ and kv is the kernel value
computed as kv ¼ kð~x; ~xÞ. Hereafter k(�, �) is a kernel function as pre-
viously indicated in Eq. (8), unless otherwise stated.

The utility of a candidate state ~x expresses how much total
reward is expected from it when acting optimally (first term in
Eq. (20)) and how surprising V�ð~xÞ is expected to be given the cur-
rent training inputs X of the GP model for V (second term). The
second term in Eq. (20) is somewhat related to the expected Shan-
non information (entropy) of the predictive distribution V�ð~x�Þ or
the Kullback–Leibler divergence (Deisenroth, 2010; Verdinelli &
Kadane, 1992) between the predictive Gaussian distribution of
V�ð~xÞjX and V⁄(X). The parameters q and b are used to trade off
optimality in action selection with information gain which is
needed for on-line policy adaptation. A large (positive) value of q
introduces data bias towards optimal controls, whereas a large
value (positive) b favors gaining information based on the pre-
dicted variance of the value function for unseen states at different
decision stages.
3.1.2. Generating the promising states
Adapting the policy to the patient’s dynamics requires incre-

mentally improving the model GPf of the glucose–insulin dynam-
ics and consequently the value function model, GPv , will also be
improved. Therefore, the support set must be updated with actu-
ally reachable states. In the proposed BAL on-line algorithm of
Fig. 3, input locations are added by interacting directly with the
patient. In addition, through BAL safe exploration with control
actions is done whereas taking actions that may lead the patient
to hazardous states are avoided. To begin with, a safe enough gen-
eric control policy (p⁄) is applied. Then, as the personalization of
the policy progresses, the resulting policy p�c

� �
is increasingly tai-

lored to the patient.
Initially, the patient is in state x0. In each recursion of the per-

sonalization algorithm (described below), a new datum d defined
as a state-action tuple (x,u), resulting from the interaction with
the patient (real or virtual) is obtained. When the patient is in a
state x0, safe exploration is done by taking actions over a certain
set eU that represents the remaining uncertainty about the optimal
action. This set can be defined as a uniform discretization in the fea-
sible interval for choosing an action. We propose to establish this
set based on the confidence interval of two standard deviations
(2rp) around the mean of the action distribution ð�uÞ. Thus, we
obtain an interval with a confidence level of 95% for optimal action
selection. The mean value �u is given by the mean function of the
current GPp evaluated at x0 and the standard deviation is given by
the covariance function of the GPp. Lines 4 through 7 in the BAL
algorithm (Fig. 3) are the steps required to define eU. From line 8
to 11, a procedure to obtain the set fX is described, where several
one-step transitions from x0 for all ~uj 2 eU are simulated. Then, by
the procedure detailed in the Section 3.1.1, the most promising
state ~x� 2fX (line 12) must be determined. The action
u� ¼ ~u� 2 eU, which gives rise to the simulated transition from x0

to ~x�, is considered as the best action to be applied to the patient
(line 13). Once the interaction controller-patient takes place (line
14) by applying u⁄, the state transition is observed, and a the new
candidate datum d is defined (line 15 and 18).



Algorithm 2. BAL

1.   Input , , , , 

2.   

3. Define as an empty set

4.   Obtain ; where , 

5.    If ;   ;  else ;  End If

6.    If ;   ;  else ;  End If
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9.                ;   where 

10.               

11.    End For
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13. Obtain as the ac�on which gave rise to the simulated transi�on from to 
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16.   Define a tuple with the observed transi�on in the previous line

17.

18. Return ,

Fig. 3. Bayesian active learning algorithm.
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3.2. Online sparsification in a nutshell

Sparsification techniques have been successfully employed in
robotics for online identification of data-driven models. Addition-
ally, sparsification techniques have been combined with regression
techniques (Sigaud, Salaün, & Padois, 2011) in order to limit the
computational complexity. Particularly, in the work of Nguyen-
Tuong and Peters (2011a) an incremental online sparsification
(IOS) method has been proposed which is mainly inspired in the
Kernel Recursive Least-Squares algorithm proposed by Engel
et al. (2004). To prevent expensive computational costs in on-line
policy learning, once a new datum ðdnewÞ carrying novel informa-
tion is detected, the point that brings the least information from
the support set ðDÞ should be removed. By incorporating incre-
mental online sparsification into the approach employed by the
Algorithm 1, an incremental selection of samples that are used to
update the support set is possible. Accordingly, the GP models of
the dynamics ðGPf Þ and the value function ðGPv Þ are kept updated
by re-estimating their hyper-parameters. On-line learning of the
models used to approximate GPf and GPv are critical for continu-
ous policy adaptation to a given patient characteristics. Following,
an overview about the incremental online sparsification technique
is given. Further details on IOS can be found in the works of
Nguyen-Tuong and Peters (2011a) and Engel et al. (2004), and
references therein. Also, the reader is referred to work of Chen
et al. (2013) for a novel integration of on-line sparsification with
temporal difference learning.
The general notion is that the kernel matrix Kv should be fully
ranked. That is to ensure that any sample in the support set cannot
be linearly represented by the other samples D. Then, for online
sparsification, the basic idea is that if an arriving datum can be
linearly represented by the data in the support set, it should not
be added. Assuming that at time t, the support set has m data
points such that D ¼ fdigm

i¼1, where, by construction, f/ðdiÞgm
i¼1

are linearly independent feature vectors. When a new datum,
dnew, arrives, the key crucial to determine to decide whether it
can be linearly represented by the existing data in D. So, testing
whether /ðdnewÞ is linearly dependent on data points is required.
The linear dependence (Schölkopf et al., 1999; Schölkopf &
Smola, 2001) can be measured by

d ,
Xm

i¼1

ai/ðdiÞ � /ðdnewÞ
�����

�����
2

ð24Þ

Therefore, when dnew brings some novelty since d exceedes a
threshold g, it must be added to D. Accordingly, this procedure
aims to cover only the relevant region of state space with a limited
support set. In Eq. (24) we have a vector a = (a1, . . . ,am)T of coeffi-
cients ai of linear dependence which can be determined by mini-
mizing d as follows

a ¼mina½aT Ka� 2aT kþ k� ð25Þ

where K ¼ kðD;DÞ; k ¼ kðD;dnewÞ and k ¼ kðdnew;dnewÞ. Solving
the unconstrained optimization problem of Eq. (25) yields the opti-
mal a = K�1k. Replacing this result in Eq. (24) gives rise to



Fig. 5. Algorithm to augment the support set by incorporating a new data point.
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d ¼ kðdnew;dnewÞ � kT a ð26Þ

Once d is computed by Eq. (26) for a new data point, its value is
compared with the threshold g and a decision to incorporate dnew

into the set D taken. In the pseudocode of Algorithm 3 in Fig. 4 are
the main steps for the sparsification procedure.

In the sparsification algorithm, when d > g and the support set
size is smaller than its maximum size (Nmax),D must be updated
using the Algorithm 3.1 in Fig. 5. Whenever the number of data
in the set D is Nmax;D must be updated by replacing an old point
dj 2 D by the new one dnew. In the latter case, the Algorithm 3.2
of Fig. 6 which takes into account the spatial and temporal alloca-
tion of the data through a forgetting rate ki 2 [0,1] (Nguyen-Tuong
& Peters, 2011a) is used. The forgetting rate defined as

kiðtÞ ¼ exp �ðt � tiÞ2

2h

 !
ð27Þ

where ti is the time when the point i was included into D and the
parameter h controls the trade-off between spatial and temporal
coverage. The detailed computations involved in Algorithms 3.1
and 3.2 are given in the Appendices A and B, respectively.
3.3. Algorithm for real time policy personalization

Based on the RL framework, the Algorithm 4 outlined in Fig. 7
for policy learning and adaptation is proposed. This algorithm is
able to adapt on-line a policy by interacting with a patient in real
time. The personalization process means passing from a generic
control policy p⁄ to a particular personalized control policy p�c
and keeping it updated over time. Initially, it is assumed that a gen-
eric control policy p⁄ which can be obtained as was indicated in
Section 2.3 is available. This policy is modeled by a GP model, i.e.
p� � GPp� . Moreover, the support set D which supports the model
GPp� is known. As indicated in line 3, the generic policy p⁄ is
applied to the patient during T sampling times. In this way, T
state-action transitions are observed and recorded in a set DC.
Next, through the sparsification algorithm, novel data points DC

are identified using Algorithm 3 which provides meaningful infor-
mation to update D (line 5). Then, the models GPf and GPv are
updated by re-estimating their corresponding hyper-parameters
using the support set D (lines 7 to 9).
Fig. 4. Sparsification algorithm.

Fig. 6. Algorithm to update the support replacing an old data point by a new one.
On-line policy learning in Algorithm 4 takes place in the loop
defined from lines 11 to 27. Through Bayesian active learning
(Algorithm 2), safe exploration while interacting with the patient
is made by choosing the best action for the current patient state.
Once the control action is applied, the data point for observed state
transition is available and recorded in dnew (line 12). By means of
Algorithm 3, the support set D is updated iff dnew provides valu-
able information (line 13). Later on, the dynamics model GPf is
updated based on the latter version of D (line 14). In this way,
an updated version of the model used to describe the patient
response to control actions is available. Also, an improved version
of the control policy adapted to the patient’s glycemic variability is
obtained.

In line 16, the Q-learning rule is implemented to update the
Q-values regarding an immediate reward r(xi,ui) and a discount
factor c. The value function and the dynamics are approximated



Fig. 7. On-line policy learning and adaptation algorithm.
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by GP models, therefore the uncertainties about value function and
dynamics have been taken into account. Due to the generalization
property of GPf and GPv , when the expected value function of x00i
E V x00i

� �
jxi;ui;GPf

� �� �
is computed there is no need to restrict to a

finite set of successor states x00i . Thus, in the computation of these
expected values, the expected value of V⁄ at a successor (uncertain)
state x00i is estimated as described in the Appendix C (Deisenroth
et al., 2009). Later on, in the next for loop (line 18 to 22), with the
computed Q-values and all actions ui 2 p�ðXÞ � D, a model of
state-action value function, GPq, is learned. Then, the optimal
control u�i ¼ p�ðxiÞ is the maximizing argument of the Q-values
for a certain state xi, and the value function V⁄(xi) at xi is the
corresponding maximum value. To maximize Q for a certain state
xi, standard optimization methods such as Golden section or Fibo-
nacci Search are used. Note that GPq models a function of u only
since xi is fixed. In this way, the optimal action is obtained through
maxuQ(xi,u) �maxumq(u), the maximum of the mean function
mq(u) of GPq.

Once the optimal values V�ðxiÞ8xi 2 X � D are computed, a GP
model, GPv , to approximate the state-value function is learned.
Moreover, with all xi 2 X � D and the optimal controls computed
in line 20 for all xi 2 X an updated version of the control policy can
be approximated by a new GP model, which is referred as GPp�cp

in
the recursion p of the Algorithm 4.

As iterations of Algorithm 4 are made, the personalization
process of the control policy takes place. We say that there is a
‘‘personalization’’ since the dynamics GP model, GPf , is learned
with data coming from direct interactions with the patient (real
or virtual). Any change in patient’s dynamic behavior will be
reflected in the underlying structure of the collected data. There-
fore, the dynamic model must be updated in each recursion of
Algorithm 4. Hence, the flexible features of nonparametric approx-
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Fig. 8. Examples of Gaussian reward functions for different a parameters with
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Table 2
Feeding schedules.

Meal routine I Meal routine II

Meal times (min) [180 780 960 1080] [180 300 450 660 870 1020]
Carbohydrate

content (g)
[ 20 20 60 20 ] [ 47 16 63 31 63 31 ]
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imators plays a central issue. Modeling glycemic response by GPf

allows a nonparametric representation which can be improved
continuously to the patient behavior based on data from on-going
interactions. Accordingly, a policy personalization is made since
the state-value function depends on the dynamic model accuracy
and the policy model, GPp�c . Note that GPp�c is learnt based on opti-
mal controls ðp�ðXÞÞ, which depends on the GPq model which, in
(a)

(b)
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Fig. 9. Results obtained through Algorithm 1 for two different settings of t
turn, depends on state-actions values (computed in line 16) which
are estimated using the dynamics model GPf .
4. Simulation results

4.1. RL settings for glucose regulation

Controlling glycemia in diabetic patients means maintaining
the glucose level within the normoglycemic range. In the diabetes
research community there is not universal agreement about a
unique and standard range for normoglycemia. For instance, in
some research papers a hypoglycemic event is defined using a
lower threshold of 3.33 mmol/L (�60 mg/dl) for the glucose level,
while others set the lower bound for normoglycemia at
2.22 mmol/L (�40 mg/dl). Likewise, in the existing literature is
possible to find that hyperglycemic events are defined using from
10 mmol/L (�180 mg/dl), 15 mmol/L (�270 mg/dl), 16.66 mmol/L
(� 300 mg/dl) and up to 18 mmol/L (�325 mg/dl), which is a very
dangerous level. Narrow ranges of glycemic variability prevent
multiple long-term complications of diabetes, e.g. the oxidative
stress, that contribute to increase morbidity and mortality
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he parameter a for the gaussian reward function. (a) a = 1.5; (b) a = 1.



Fig. 10. Rates of glucose absorption from the gut for the feeding schedules in
Table 2. (a) Gin for meal routine I; (b) Gin for meal routine II.
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(Marling, Shubrook, Vernier, Wiley, & Schwartz, 2011; Siegelaar
et al., 2010). For on policy learning, the normoglycemic range is
defined by glucose levels between 4 mmol/L to 7 mmol/L. These
tighter bounds give rise to a more difficult control task which high-
Fig. 11. Glucose profiles by applying the optimal generic policy found by Algorithm 1 o
lights the need of addressing the long-term effects of control
actions. In the RL problem formulation, the lower and upper
bounds for glucose levels are set by choosing an appropriate
reward function. In our simulation experiments, the following
Gaussian reward function is used:

rðGðtÞÞ ¼ �1þ e�
1
2
ðGðtÞ�GxÞ2

a2 ; r 2 ½�1;0� ð28Þ
where G(t) is the instantaneous reading from the glucose sensor
whereas Gx and a are the symmetry center and the amplitude of
the Gaussian function r(�), respectively. Thereby, the reward func-
tion represented in Eq. (28) saturates for significant deviations from
Gx. The width of the glucose band is defined by the parameter a. In
order to enforce glucose levels between 4 mmol/L and 7 mmol/L,
Gx = 5.5 and a = 1 are selected. It is worth mentioning that these
limits are not mandatory thresholds since they may be exceeded
by a small amount during short periods of time. Note that the opti-
mal policy should generate a sequence of control actions such that
the cumulative reward is maximized instead of maximizing each
immediate reward. In Fig. 8, examples of different reward functions
for different values of the parameter a are shown. As can be seen, as
the value of a decreases, the reward function spans a smaller inter-
val of glucose readings and consequently the control task is more
challenging.

To illustrate the effect of changing the parameter a in the
reward function, Fig. 9 depicts glucoses profiles resulting of apply-
ing the optimal policies found by using Algorithm 1 (in Fig. 1) for
the same patient (simulated) under identical conditions (diet, exer-
cise, etc.). For a = 1.5, the control policy is acceptable (see Fig. 9(a))
although rather looser when compared to the much tighter policy
resulting from using a = 1 in the reward function (see Fig. 9(b)). As
can be expected, the corresponding control policy is a bit more
aggressive in the latter case to guarantee optimal performance. It
is worth noting that green dotted lines in Fig. 9 correspond to soft
thresholds for the blood glucose concentrations in the range from 4
to 7 mmol/L whereas red solid lines correspond to hard thresholds
imposed to penalize hypo- or hyper-glycemic bounds. Hereafter,
Gx = 5.5 and a = 1 will be chosen unless otherwise stated.
n a patient (virtual). (a) Results for meal routine I; (b) Results for meal routine II.



Fig. 12. Test experiments. Each panel shows 125 resulting glucose profiles for simulated patients with variability parameter rito of 0.15, 0.25 and 0.50 under both meal
routines I and II. (a) Results for rito = 0.15 and meal routine I; (b) Results for rito = 0.25 and meal routine I; (c) Results for rito = 0.50 and meal routine I (d) Results for rito = 0.15
and meal routine II; (e) Results for rito = 0.25 and meal routine II; (f) Results for rito = 0.50 and meal routine II.

Fig. 13. Testing case. (a) Rate of glucose absorption from the gut of a testing meal routine; (b) Results of controlling the patient under the testing meal routine.
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To apply the RL framework, a remaining issue is to define the
variables that made up the vector which provides a perception of
the system state. To this aim, the measured blood glucose concen-
tration at time t (Gt) and the insulin flow rate in the previous time
step Dt�1 are used to characterize the glycemic state of the patient
at time t. In this way, a perception of the system state is conve-
niently defined through xt = (Gt,Dt�1)T. Furthermore, the scalar
control action, ut, is chosen as the change to the insulin infusion
rate. An advantage of perceiving the system state xt in this way
is that it only involves readily known variables, yet they are infor-
mative enough to describe the physiological state of a patient for
successfully controlling blood glucose.

4.2. Obtaining a generic control policy in off line way

A generic control policy for glucose regulation was obtained by
simulation-based learning using the model-based algorithm
Fig. 14. Deterministic case. (a) Results for rito = 0.0 and mea
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Fig. 15. Performance of p⁄ as initial policy fo
presented in Fig. 1 (Algorithm 1). Patient responses to control
actions were simulated using the model presented in Section 2.4
with parameters in Table 1. To assess Algorithm 1, different meal
routines were considered to obtain the corresponding generic con-
trol policies. The dynamic effect of a meal on blood glucose behav-
ior mainly depends of its carbohydrate contents. Two feeding
schedules indicated in Table 2 which are significantly different
regarding the carbohydrate intakes are considered. In Fig. 10, the
effect of carbohydrate ingestions of each meal routine (given in
Table 2) in terms of the glucose absorption from the gut Gin are
shown. A meal can be understood as an external disturbance that
causes blood glucose perturbations and it is useful to interpret
the results. It can be seen that the Routine II is significantly more
intensive in term of carbohydrate intakes.

The glucose profiles resulting of applying the optimal policies
found using Algorithm 1 for the same patient (simulated) under
meal routines I and II, respectively, are given in Fig. 11a and b. In
l routine I; (b) Results for rito = 0.0 and meal routine II.
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r a specific patient under meal routine I.
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this case, the algorithm inputs are: X0 ¼ xl
0

� �n0

l¼1 with n0 = 5 where
xl

0 ¼ ðGlDlÞ such that Gl and Dl are random values from intervals
Gl 2 [3,10] and Dl 2 [0,80]; d = 10%, c = 0.95 and p0 is a random
policy. The changes in insulin infusion rate are performed every
6 min, whereby T ¼ 240 is used to ensure full-day trajectories.
Fig. 16. Results of five days of a policy personalization carried out by Algori
Results depicted in Fig. 11 clearly indicate that control actions
needed to regulate the blood glucose levels for the Routine II is
more demanding in terms of the exogenous insulin required.
However, in both cases the time profile of insulin infusion required
is vividly correlated with the glucose absorption rate. Glycemic
thm 4, starting from p⁄, for a (virtual) patient under the meal routine I.
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variability for both meal routines is significantly low and both con-
trol policies exhibit outstanding performance. It is worth noting
that for different carbohydrate intakes, the blood glucose concen-
tration is always confined within the green dot lines as can be
expected for an optimal control policy.

The flexibility of modeling the policies by GP models allows
combining the support sets of different generic policies, which
are obtained in a separated way through different simulation
experiments (see Section 2.3). In this way, we obtain a new generic
control policy p⁄ based on an augmented support data set which
includes the support data of policies obtained for meal routine I
and II. Thus, the new generic policy will have an outstanding gen-
eralization ability to deal with different situations that a patient
may experience. We test this new policy for meal routines in
Table 2. In Fig. 12, different test experiments are shown. Each
experiment includes 125 simulations for a patient (virtual) under
a meal routine (I or II) considering different degrees of variability
in glycemic behavior, which is established by the rito parameter
in the model discussed in Section 2.4.

Fig. 13 shows a situation where there exists quite high carbohy-
drate intakes spaced in time (see Fig. 13(a)). Fig. 13(b) exhibits the
corresponding result for this testing case. Results obtained demon-
strate that the obtained generic control policy can successfully
control glycemic variability while maintaining it within the safe
range (soft thresholds). In Fig. 14, the extreme situation where
the patient follows a deterministic behavior is shown. It can be
seen that the policy achieves an optimal performance for meal rou-
tine I (Fig. 14(a)) and routine II (Fig. 14(b)). Note the control prob-
lem becomes rather simple when the policy obtained using
Algorithm 1 is applied. In the next section, the generic policy p⁄

is taken as the initial policy which will be personalized in real-time
to a certain patient using the Algorithm 4.
4.3. Real time personalization of a generic control policy via on-line
interactions

The main difference between off-line learning and on-line adap-
tation is that in the latter, the policy is modified based on the data
actually generated in real-time by online interactions between the
patient and the artificial pancreas which implements the Algo-
rithm 4. To illustrate on-line policy adaptation, the generic policy
p⁄ is taken as the starting point and then increasingly personalized
to a specific patient upon data obtained from applying p⁄.

As a proxy for a real patient, the model described in Section 2.4 is
parameterized such that the policy p⁄ used do not have an optimal
performance. Thus, setting Sh = 0.28 (hepatic sensitivity parameter)
and considering the meal routine I (Table 2) when applying p�c0

¼ p�
to the virtual patient, it can be seen in the results shown in Fig. 15
that this initial policy ðp�c0

Þ exhibits an acceptable performance, but
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Fig. 17. Performance of p�c5
for a spec
there is plenty of room for performance improving through real-
time personalization.

Results obtained for the personalization strategy using the Algo-
rithm 4 during five days (top-down) are summarized in Fig. 16. The
algorithm inputs are: the generic policy p⁄with its support data set
D;g ¼ 1:0e�04;h ¼ 8000;Nmax ¼ 800, q = 1, b = 2, c = 0.95 and the
reward function r(�) is the one described in Section 4.1. Each panel
in Fig. 16 corresponds to a daily run of Algorithm 4. It is rather
remarkable the fast evolution from a safe, yet sub-optimal generic
policy p⁄ to an optimal personalized control policy p�c. It can be seen
that after the third day of policy personalization, only minor
changes are perceived in the patient’s glycemic variability when
the artificial pancreas implements the adapted control policy.

Now, let us assume that the same (virtual) patient suddenly
changes his diet after the day #5 and adopts the meal routine II.
Results obtained when the patient is controlled using the current
policy p�c5

are shown in Fig. 17 (note that on-line policy adaptation
is not yet carried out). As can be seen, the version p�c5

of the special-
ized policy is underperforming to manage the glucose variability of
the patient (virtual). To adapt the policy to the new feeding pat-
tern, the Algorithm 4 is applied. In Fig. 18, results obtained during
on-line policy learning over five consecutive days are shown.
Similarly to Fig. 16, each panel of Fig. 18 shows a daily run (top-
down). The improvement of the policy as the adaptable artificial
pancreas interacts with the patient is quite remarkable.

Again, let us assume that the patient suddenly changes his feed-
ing routine such that carbohydrate intakes follow the profile
shown in Fig. 19a. If the control policy p�c10

is applied results
obtained are given in Fig. 19b, which exhibits that the artificial
pancreas is underperforming. Again, if on-line policy learning is
carried out over the next consecutive days, optimal control of gly-
cemic variability is restored (see Fig. 20).
5. Finals remarks

A strategy for on-line learning and real-time adaptation of a
control policy for personalization of an artificial pancreas to a spe-
cific patient has been presented. This development is an important
step forward towards an individualized therapy in diabetes man-
agement. Unlike other adaptive approaches, policy personalization
proposes a promissory alternative which allows a real-time contin-
uous interaction with the patient whilst critical patient data are
used to update on-line the model of a specific patient dynamics.
This enables that the control policy can be adapted on the fly
according to a given patient metabolism and lifestyle. By consider-
ing patient-specific data and working with continuous data stream
without requiring any state discretization, the on-line personaliza-
tion policy can be applied regardless which control strategy was
used to define the initial policy. That is, the initial policy would
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ific patient under meal routine II.



Fig. 18. Results of the next five days of a policy personalization carried out by Algorithm 4, starting from p�c5
, for a virtual patient under the meal routine II.
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be obtained using reinforcement learning or mp-MPC. However,
Bayesian active learning algorithm and the sparsification algorithm
play a key role in favoring our RL formulation. Moreover, a compact
representation of the control policy modeled based on GPs which
greatly facilitates real-time computing is proposed. This is the
main advantage of the proposed approach for its implementation
in wearable devices.
Blood glucose control is intrinsically a regulation problem for
which we have proposed our approach based on the RL framework
unlike the proposal made in De Paula and Martínez (2012b) which
belongs to the field of dynamic programming and was developed
to solve mainly an episodic learning task in a multi-modal setting.
Also, in De Paula and Martínez (2012b) learning is based on Lebes-
gue sampling due to control modes whereas in the present work
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Fig. 19. Change in feeding habits. (a) Rate of glucose absorption from the gut for the new diet; (b) Performance of p�c10
for the virtual patient under the new feeding routine.
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Fig. 20. Results of the next two days of a policy personalization carried out by Algorithm 4, starting from p�c10
, for a virtual patient under the latter meal routine.
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Riemann sampling is used. The Bayesian active learning strategy in
our previous work (De Paula & Martínez, 2012b) was developed for
a simulation-based schema which is not apt enough for policy
adaptation in real-time interactions. Therefore, in the present work
an improved BAL algorithm capable of interacting in real-time with
a certain patient is proposed. Also, the present development
includes a sparsification algorithm that allows working with a lim-
ited number of data for data-driven modeling of the glucose
dynamics. These features makes policy adaptation a computational
tractable problem which favor working in real-time. Unlike an
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expert system, policy personalization is carried out without any
prior expert knowledge beyond the initial control policy used as
input to the algorithm.

One of the major limitations of the research work made so far
lies in resorting to in silico patient experimentation for assessing
policy personalization. Therefore is imperative to test policy adap-
tation on real patients, or animals, for which is mandatory working
as part of a multidisciplinary team. In turn, this limitation encour-
ages a direction for our future work. On the other hand, the RL
ensures convergence even under conditions for constrained action
selection (Sutton & Barto, 1998). Therefore, it is interesting to con-
sider the possibility of enhancing our proposal by accommodating
expert knowledge to make sense of the personalized policy so that
it can be better understood by physicians, and on that basis safety
constraints can be added.

Current research efforts focus on three avenues. First, we are
working towards integrating the personalized policies of patients
in a homogeneous group in a ‘‘grand’’ policy which can be used
as a robust initial policy for a new patient in the same group.
Secondly, the ambitious idea of an autonomic artificial pancreas
is being pursued. In this regard, self-optimization (policy personal-
ization) is just one of the key functions. Also, self-monitoring and
self-diagnostic functionalities are being developed. Finally, proto-
typing policy personalization so it can be readily used in tablets
and smart-phones is an important objective for wide dissemina-
tion of the policy personalization idea.
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Appendix A. Calculation when augmenting a data set

Whenever a support set D is augmented by adding a new data
point dnew, the linear independence measures di for all di 2 D must
be updated (Engel et al., 2004). This involves updating ai,Ki�1 and ki

for every i-th point. Thus, the Ki must be extended by a row/column
and ki by a single value, such that

K i
new ¼

K i
old kmþ1

kT
mþ1 kmþ1

" #
ðA:1Þ

ki
new ¼ ki

old ki;mþ1

h iT
ðA:2Þ

where kmþ1 ¼ kðdnew;dnewÞ; ki;mþ1 ¼ kðdi;dnewÞ;knew ¼ kðDi;dnewÞ
with Di ¼ D n fdig.

With the Eqs. (A.1) and (A.2), the inverse kernel matrix ðK i
newÞ

�1

is given by

K i
new

� 	�1
¼ 1

ci

ci K i
old

� 	�1
þ aiaT

i �ai

�aT
i 1

24 35 ðA:3Þ

Then, the independence measure di for all point di 2 D is given by

di ¼ kðdi;diÞ � ki
new

� 	T
ai

new ðA:4Þ

being

ai
new ¼

1
ci

cia
i
new þ aiaT

i ki
old � ki;mþ1ai

�aT
i ki

old þ ki;mþ1

" #
ðA:5Þ

where ai ¼ ðK i
oldÞ

�1
kmþ1 y ci ¼ kmþ1 � kT

mþ1ai.
Appendix B. Calculation when replacing an old data by a new
one in a data set

Every time that a jth data point dj is replaced by a new data
dnew in D, the independence measure di for all point di 2 D
must be updated (Nguyen-Tuong & Peters, 2011a). This involves
a manipulation of the jth row/column of Ki and the jth value of
k, this is

K i
new ¼

K i
oldð1:jÞ kmþ1ð1:jÞ K i

oldðj:mÞ

kT
mþ1ð1:jÞ kmþ1 kT

mþ1ðj:mÞ

K iT
oldðj:mÞ kmþ1ðj:mÞ K iT

oldð1:jÞ

2664
3775 ðB:1Þ

ki
new ¼ ki

oldð1:jÞ ki;mþ1 ki
oldðj:mÞ

h iT
ðB:2Þ

where kmþ1 ¼ kðdnew;dnewÞ, ki;mþ1 ¼ kðdi;dnewÞ;knew ¼ kðDi;dnewÞ.
Then, the independence measures di8di 2 D must be updated as
in Eq. (A.4), where

ai
new ¼ ðK

i
newÞ

�1
ki

new ðB:3Þ

while K i
new

� 	�1
can be recalculated using the following update rule

K i
new

� 	�1
¼ A� � rowj½A��T rT A�

1þ rT rowj½A��T
ðB:4Þ

where

A� ¼ A� �
ðK i

oldÞ
�1

r rowj ðK i
oldÞ

�1h i
1þ rT rowj K i

old

� 	�1

 �T ðB:5Þ

where r ¼ kmþ1 � rowj K i
old

h iT
and rowj[M] denotes the jth row of a

given matrix M.

Appendix C. Predictions with uncertain inputs

In the following we refer to the results given in Deisenroth et al.
(2009) of how to predict with GPs for uncertain inputs. Considerer
the problem of predicting a function value h(x⁄) for an uncertain test
input which is Gaussian distributed x� � N ðl;RÞ, where h � GP
with a square exponential (SE) covariance function k(�,�) (as in Eq.
(8)), correspond to seeking the exact predictive distribution:

pðhðx�Þjl;RÞ ¼
Z

pðhðx�Þjx�Þpðx�jl;RÞdx� ðC:1Þ

which is not a Gaussian distribution. The mean and the variance of
the predictive distribution p(h(x⁄)—l,R) in Eq. (C.1) are given by
Eqs. (6) and (7), respectively. When a GP model regards a square
exponential (SE) kernel, kSE (�,�), the mean l⁄ and the variance V2

of predictive distribution in Eq. (C.1) can be computed in close form.
Approximating the exact predictive distribution with a Gaussian,
which possesses the same mean and variance, the mean l⁄ is given
by:

l� ¼ Eh Ex� ½hðx�Þ�½ � ¼ Ex� ½Eh½hðx�Þ��

¼ Ex� ½mðx�Þ� ¼
Z

mðx�Þpðx�Þdx� ¼ bTl
ðC:2Þ

with b ¼ ðK þ r2
wIÞ�1Y , where

li ¼
Z

Covðxi;x�Þpðx�Þdx�

¼ a2jRK�1 þ Ij�1=2 exp �1
2
ðxi � lÞTðRþ K�1Þðxi � lÞ

� �
here, K is a diagonal matrix with the characteristic length-scales.
The variance V2 of the predictive distribution of Eq. (C.1) is given by:
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V2 ¼ Ex� ½mðx�Þ2� þ Ex� ½Covðx�;x�Þ2� � Ex� ½mðx�Þ�2

¼ bTLbþ a2 � trððKþ r2
wIÞ�1

LÞ � l�2
ðC:3Þ

where

Lij ¼
Covðxi;lÞCovðxj;lÞ
j2RK�1 þ Ij�1=2 exp ð~zij � lÞT Rþ 1

2
K

� ��1

RK�1ð~zij � lÞ
" #

with ~zij ¼ 1
2 ðxi þ xjÞ. Note, that the predictive mean l⁄ and the pre-

dictive variance V2 depend explicitly on the mean, l, and covariance
matrix, R, of the uncertain input x⁄.
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