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Abstract. Photospheric shearing motions are one of the possible ways to inject magnetic helicity
into the corona. We explore their efficiency as a function of their particular properties and those of the
magnetic field configuration. Based on the work of M. A. Berger, we separate the helicity injection
into two terms: twist and writhe. For shearing motions concentrated between the centers of two
magnetic polarities the helicity injected by twist and writhe add up, while for spatially more extended
shearing motions, such as differential rotation, twist and writhe helicity have opposite signs and
partially cancel. This implies that the amount of injected helicity can change in sign with time even
if the shear velocity is time independent. We confirm the amount of helicity injected by differential
rotation in a bipole in the two particular cases studied by DeVore (2000), and further explore the
parameter space on which this injection depends. For a given latitude, tilt and magnetic flux, the
generation of helicity is slightly more efficient in young active regions than in decayed ones (up to
a factor 2). The helicity injection is mostly affected by the tilt of the AR with respect to the solar
equator. The total helicity injected by shearing motions, with both spatial and temporal coherence, is
at most equivalent to that of a twisted flux tube having the same magnetic flux and a number of turns
of 0.3. In the solar case, where the motions have not such global coherence, the injection of helicity
is expected to be much smaller, while for differential rotation this maximum value reduces to 0.2
turns. We conclude that shearing motions are a relatively inefficient way to bring magnetic helicity
into the corona (compared to the helicity carried by a significantly twisted flux tube).

1. Introduction

Magnetic helicity plays a key role in magnetohydrodynamics (MHD) because it
is one of the few global quantities which are preserved (see, e.g., Biskamp, 1993,
Chapter 7). Helicity is conserved not only in ideal MHD, but also in resistive MHD
on time scales shorter than the global diffusion time scale (Berger, 1984). For solar
plasmas this diffusion time scale is several orders of magnitude larger than the
relevant time scale for the evolution of magnetic fields, e.g., for a typical coronal
loop, Berger (1984) found a minimum helicity dissipation time of the order of
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10° years with a classical resistivity (see his Equation (57), this time scale reduces
proportionally to the resistivity if it is enhanced over the classical one). More-
over, magnetic helicity is also preserved with a very good approximation during
magnetic reconnection. This conservation of magnetic helicity has led to Taylor’s
theory (Taylor, 1974): the minimum energy state of a magnetic field, preserving
magnetic helicity, is a linear (or constant «) force-free field. Conversely compared
to magnetic energy, which is efficiently transported to the small spatial scales, mag-
netic helicity cascades to the large scales. Subsequently, magnetic energy is much
more rapidly dissipated (transformed into other forms of energy) than magnetic
helicity. The conservation of magnetic helicity gives an important tool for under-
standing the link between phenomena present in very different physical conditions,
such as in the convective zone, the corona and the interplanetary medium.

There are two principal mechanisms (e.g., Seehafer, 1990) through which mag-
netic helicity can be injected into the solar corona. One of them is through the
emergence of twisted magnetic flux tubes from the bottom of the convection zone,
where dynamo action amplifies the fields. The second one implies the shearing (or
twisting) of magnetic fields by large-scale photospheric motions, like the differen-
tial rotation. Evidence for the first mechanism is the observation of chirality pat-
terns in young active regions (e.g., Seehafer, 1990; Pevtsov, Canfield, and Metcalf,
1995), and the inference of strong electric currents in newly emerged flux (Leka
et al., 1996; Wang, 1996). Shearing motions have been widely used in MHD nu-
merical simulations (e.g., Miki¢ and Linker, 1994; DeVore and Antiochos, 2000).
In particular, differential rotation is injecting helicity in ARs (DeVore, 2000).

The definition and the computation of the relative magnetic helicity is recalled
in Section 2.1. The injection of magnetic helicity within a volume via boundary
motions is summarized in Section 2.2, then the notion of twist and writhe helicity
is introduced (Section 2.3). These results are applied to a set of theoretical con-
figurations in the next two sections. In Section 3, we investigate shearing motions
which are parallel and concentrated around the photospheric inversion line (PIL)
of the magnetic field component normal to photosphere. Section 4 is devoted to a
particular shearing motion: differential rotation. Then, in Section 5 we compare the
amounts of helicity injected by shearing motions to those contained in twisted mag-
netic configurations. Finally, in Section 6, we discuss our findings. We conclude
that shearing motions, in particular differential rotation, are not efficient processes
to inject magnetic helicity into the coronal field.



HELICITY INJECTED BY SHEARING MOTIONS 89

2. Magnetic Helicity

2.1. DEFINITION OF THE RELATIVE MAGNETIC HELICITY

The magnetic helicity of a field B within a volume V is defined by

H=/A-BdV, (D
\4

where the vector potential A satisfies
B=V xA. (2)

However, Equation (1) is physically meaningful only when the magnetic field is
fully contained inside the volume V (i.e., at any point of the surface S surrounding
V, the normal component B,, = B - 2 vanishes); this is because the vector potential
is defined only up to a gauge transformation (A’ = A 4+ V®), then H is gauge-
invariant only when B, = 0.

Berger and Field (1984) have shown that for cases where B, # 0 one can
define a relative magnetic helicity (H,) subtracting the helicity of a reference field
By, having the same distribution of B,, on S:

H,:/A-BdV—/Ao-BodV. 3)
14 14

Berger and Field (1984) and Finn and Antonsen (1985) have shown that H, is
gauge-invariant, and that H, does not depend on the common extension of B and
By outside V. A convenient choice for the reference field By is a potential field
with A satisfying Equation (2), V - Ay = 0 and (Ap), = 0 on S; in this way the
helicity fv Ag - By dV vanishes (Berger, 1988).

2.2. INJECTION OF MAGNETIC HELICITY

Since H, is well preserved under solar conditions (see Introduction), the only way
helicity can be modified inside V is because of helicity flux crossing the boundary
S (S being the photospheric boundary in our case). The change of relative helicity
is (Berger and Field, 1984):

dg’ = —2[[(A0 -v)B — (Ay - B)v]-dS, 4)
S

where v is the velocity of the plasma. The last term on the right-hand side of Equa-
tion (4) represents a direct ‘inflow’ of plasma inside the volume V (forv-d S > 0,
otherwise ‘inflow’ should be replaced by ‘outflow’), which carries magnetic helic-
ity together with the magnetic flux. In order to evaluate the amount of H, injected
by shearing motions, we only have to consider the first term on the right-hand side
of Equation (4). This term represents the injection of helicity by plasma motions
parallel to the surface S. In this case, Equation (4) reduces to
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dH,
dr

= _2f(A0 -v)B, dS. ®)
N

This helicity injection depends only on plasma motions v and the normal field B,,,
integrated over all positions r on S; being so because A, for the potential field B
can be expressed only as a function of B, on S. This contrasts with the injection
of energy (Poynting flux), which also depends on the stress of the field into the
corona. In this way, we can compute the injection of magnetic helicity without
computing explicitly the evolution of the magnetic field in V (i.e., the corona) by
solving numerically the MHD equations.

For simplicity, let us assume that the photosphere is locally planar at the scale
size of an AR (see Berger and Ruzmaikin, 2000, for a spherical version). Com-
puting Ay as a function of the B, distribution, Berger (1984, 1988) derived an
expression for dH, /dt that depends only on observable photospheric quantities
(B,, R and v):

dH,_ 1//va(r)
d 7 R?
N

where R = r — 1’ is the difference between two spatial positions on the photo-
spheric plane. This equation involves a double integration on the boundary. Since
the integrations are done on the same surfaces, S = §’, we can exchange r and r’.
This yields a new equation that summed up with Equation (6) gives

2dH, B _l R x [v(r) — v(r')]
d 7 // R?
s s

Let us define 6 as the angle between R and a fixed direction (e.g., the east—west
direction) with trigonometric convention (counterclockwise), then:

B,(r)B,(r')ds ds’, 6)

B,(r)B,(r')dS dS’. @)

dd R xdR/dt
L 8
dr R? . ®
(with dR/dr = v(r) — v(r’)) and Equation (7) is transformed to
dH, 1 do
= —— —B,(r)B,(r "
5 7 f / o (r)B,(r)ds ds ©)

N

This equation shows that the helicity injection rate can be understood as the sum-
mation of the rotation rate of all the pairs of elementary fluxes weighted with their
magnetic flux (as first derived by Berger, 1986).

We stress again that throughout our analysis we are computing the input of he-
licity only due to horizontal flows; here, we are further supposing that the magnetic
flux is not removed from the photosphere (e.g., by magnetic reconnection). Then,
the elementary fluxes B, (r) dS are time-independent (though they can still change
in shape or field strength) and Equation (9) can be integrated:
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AH,(t) = —% / f AO(R, 1)B,(r)B,(r') dS dS’, (10)
s s

where AH,(t) = H,(t) — H,(0) is the variation of the relative helicity and A8 =
6(t) — 6(0). As Equation (9), Equation (10) gives a geometrical interpretation to
the injected helicity.

2.3. TWIST AND WRITHE HELICITY

The magnetic helicity injected by shearing motions can be separated into two
terms:

1
AH.(t) = _2_/ / AOB,B, dS dS'+
T
B, B, >0
1
+—/ / AG|B,B,| dS dS’ (11)
2
B, B}, <0

= AIfr(l‘)ltwist + A[—Ir(l‘)|writhe .

The first term corresponds to the generation of helicity by the rotation of each
polarity (B, (r) - B,(r)" > 0). This helicity is generated in a similar way as twisting
motions would do. The last term, with B,(r) - B,(r') < 0, corresponds to the
relative rotation of positive and negative polarities. It basically changes the global
shape, more precisely the writhe, of the flux tube linking the opposite polarities.
The decomposition in twist and writhe helicity injection applies also to the rate of
injection, so that Equation (9) becomes

dH, ) = dH, o dH, o
dr Cdr dt

+ 12)

twist writhe

What is the meaning of this decomposition? Let us consider shearing motions
which are not evolving with time, so they deform the initial boundary flux dis-
tribution in the same systematic way. For a large set of these shearing motions,
A6 (t) has a given sign and is a monotonic function of time, then both terms
AH,(1)|wist and A H, () |writhe also have a given sign and are monotonic functions
of time. However, both of these properties do not hold for the total helicity injected
when the twist and writhe helicity injected have opposite sign. In such a case
the decomposition in the twist and writhe terms is useful to understand the non-
monotonic behavior and the change in sign with time of the injected helicity, while
the shearing motion stays the same.
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3. Generation of Magnetic Helicity by Shearing Motions

3.1. CONFIGURATIONS STUDIED

We use a magnetic configuration created by a sub-photospheric horizontal and
potential dipole (Figure 1). The magnetic dipole is oriented in the y direction
in the Cartesian frame (X, y). This flux distribution is characterized by the pa-
rameters defined below. The magnetic flux is defined by ® = |, -0 Bn dS =
/ 5, <0 | Bal dS. The mean photospheric position of the polarities is defined asr, =
/ B,~0 | Balr dS/®, with a similar expression for r_ for the negative polarity. The
size of the region is simply defined by S = [r; —r_]|.
As a first example we consider the shearing motion defined by the velocity v, :
vy, =a sinty/W  when|y| < W,
13)
=0 when |y| > W,
where a is a numerical coefficient and W is the width of the shearing region on
both sides of the PIL (located at x = 0). Figure 1(b) shows the deformed flux
distribution at the time # when the maximum shear amplitude (at) equals the region
size (S). Such a shearing motion was applied to the above bipolar configuration
to model a magnetic configuration suited to support a prominence (De Vore and
Antiochos, 2000).
As a second example we consider the shearing motion:

vy = a sign(y) exp(=2[y|/W). (14)

This second example implies a shear around the PIL which is larger than in the
first example. Indeed v,, as defined by Equation (14) is discontinuous at x = O.
This can be avoided by multiplying the expression on the right hand side by, e.g.,
(1 — exp(—2|y|/V)), with V < W not to modify significantly the large scale
flow. Indeed, because the helicity injection involves B2, which is a very small
quantity near the PIL, both shear profiles give a very similar helicity injection.
For simplicity, we keep below the motion defined by Equation (14) as an example
of a shearing motion with an amplitude which is decreasing with the distance to

the PIL.

3.2. LOCALIZED SHEARING MOTIONS

We analyze below shearing motions localized around the PIL (W « S), one exam-
ple is shown in Figure 1(b). For small values of W/S twist and writhe helicity are
nearly the same, so the magnetic helicity is a monotonic function of the amplitude
of the shear distance. This is still the case for W/S = 0.2 (Figure 2(a)). This case
is close to the one studied by DeVore and Antiochos (2000) and we find a similar
input of magnetic helicity (compare to their Figure 5) when the same normalization
is used (we are expressing the helicity in its natural units, ®?).
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Figure 1. Magnetic field distribution for: (a) the initial bipolar configuration, and (b) after applying a
shear concentrated in the vicinity of the PIL (see Equation (13). Isocontours of positive/negative By,
are drawn with continuous/dashed lines.
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Figure 2. Injection of magnetic helicity by shearing motions in the dipolar configuration of Figure 1
for different extension of the shearing motions around the PIL. The abscissa is the shear distance
in units of the bipole size S, and the helicity is written in units of @2 (where @ is the magnetic
flux of one polarity). Three quantities are plotted: twist, writhe and total magnetic helicity (see
Equation (11)). The total injected helicity is drawn with thicker lines.
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Figure 3. Injection of magnetic helicity by shearing motions in the dipolar configuration of Fig-
ure 1(a) for shearing motions decreasing exponentially with the distance to the PIL (Equation (14)).
The drawing conventions and the axis extensions are the same as in Figure 2. For such shear profile,
the twist helicity has always the same sign as the writhe helicity, and the twist helicity only vanishes
in the limit of a very broad shear (W > ).

The above result (that twist and writhe helicity are nearly the same) is indeed
general for shearing motions parallel to the PIL and concentrated around it in
symmetric magnetic configurations. This is illustrated in Figure 3(a), where we
show the result obtained with the second shear profile, and generalized below. Let
us consider one elementary portion of the sheared field located at r, (having flux
B, dS say) and two elementary portions of the positive and negative unsheared
field (located respectively at rp and ry (having flux B, dS” and —B;, dS’). In the
limit W « S, the rotation rate (d6/d¢, Equation (8) of ry — rp is opposite to the
rotation rate of ry — ry; this results in an elementary helicity injection which is the
same for the writhe and the twist (see Equation (11)).

3.3. COMPETITION BETWEEN WRITHE AND TWIST HELICITY

We analyze below the influence of the width W of the shearing region on the
amount of magnetic helicity injected. The amount of flux which is sheared in-
creases with W/S, as does the amount of helicity injected as writhe (Figures 2
and 3). The same is true for the twist helicity for small values of W/S§, but, as
the sheared region extends, the twist helicity becomes a decreasing function of
W/S. This is because the shearing motions rotate, on average, the field located at
large |y| in the opposite direction to the field located at small |y|. This differential
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effect implies that the twist helicity depends on the spatial distribution of the shear
while, on the contrary, the writhe helicity is relatively non dependent on it (the
shear profile is averaged in the integral associated to the writhe in Equation (11)).
In general when the shear is more important close to (resp. away from) the PIL, the
twist helicity adds up to (resp. subtracts from) the writhe helicity.

The previous general results are illustrated by the two shearing profiles consid-
ered above. For the sinusoidal profile (Equation (13)) |A H, |wist| 15 a decreasing
function of W/S for W/S > 0.4. The injection of twist helicity vanishes for
W/S =~ 0.85, changing in sign for larger values of W /S (Figures 2(c) and 2(d)).
For W/S > 0.85, the field located at large |y| values is more sheared than the
field located at small |y| values, then the shearing motion inputs positive twist. For
the exponential profile (Equation (14)), the magnetic field is always more sheared
close to the PIL, then the twist helicity has always the same sign as the writhe
(Figures 3(b) and 3(c)). It only vanishes in the limit W >> § (when both magnetic
polarities are simply moved along the PIL without deformation).

3.4. TOTAL INJECTION OF MAGNETIC HELICITY

In the case of shearing motions parallel to the PIL, both the writhe and twist helic-
ities increase with W, and they also add up for W <« S. But for large values of W
the twist helicity either vanishes or changes in sign. Subsequently, the maximum
injected helicity is generally expected when the shear profile affects most of the
magnetic flux (so W is of the order of §).

The combined effect of writhe and twist makes the total magnetic helicity max-
imum for W/§ =~ 0.5, when considering the sinusoidal profile (keeping the mag-
netic flux ® constant). For shear amplitudes (at) smaller than the region size S, the
magnitude of the helicity is below 0.3®2, while for larger shear amplitudes, this
amount is only multiplied by a factor 2 (Figure 2). However, such large shear am-
plitudes have not been observed (even for the case at = S shown in Figure 1!). For
shear profiles having a larger spatial extension W, the amount of helicity injected
has a maximum (e.g., Figure 2(d)). For these broader shear profiles, this maximum
is lower than 0.15®? (0.1®? for W >> ).

The exponential profile (Equation (14)) is probably one of the most efficient
profiles to inject helicity, because writhe and twist do not subtract. For a given shear
amplitude (at) and a given magnetic flux (®), the injection of helicity is maximum
for W/S =~ 1.5. Indeed, around this maximum, the helicity injected depends little
on W/S, since for W/S = 1 or 2 the value decreases only &~ 1%. The limit of very
large shears (at > S) gives a helicity of ®? (equally distributed between shear
and twist). However, for at < S the maximum helicity is 0.392, comparable to the
maximum amount injected by the sinusoidal profile.
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3.5. HELICITY INPUT IN THE SOLAR CONTEXT

The above estimates are probably generous upper bounds for the helicity injected
by photospheric shearing motions for three main reasons. First, the motions are
affecting all the magnetic flux around the PIL. Second, the motions are coherent
both spatially and temporarily. Finally, the shear amplitude considered (the size of
the active region) is a large upper bound. In the solar context, shearing motions are
likely to be localized, not necessarily coherent from place to place and moreover
time dependent (with changes of direction or even reversals of flows). Each of these
effects decreases the amount of helicity injected.

Recently, Chae (2001) and Chae et al. (2001) analyzed the magnetic helicity in-
jection in two active regions. They deduced the horizontal flows from MDI/SOHO
magnetograms using a local cross correlation tracking technique. The maximum
injection of the helicity in both active regions is 3 x 10~2®? during 27 hours and
3 x 1072®? during 50 hours, respectively (& is the active region flux, which is
around 1.7 x 10?' and 10%* Mx, respectively). As expected these values are well
below (resp. two and one order of magnitude) the maximum values obtained above
in the theoretical cases. The three reasons mentioned above contribute to these
lower values. The cancellation of the helicity injected at different locations of the
active regions and the time evolution of the flows are more significant. For the
second case studied (Chae et al., 2001), the injected helicity rate decreases to a
very low value after 2 days, while in the first case (Chae, 2001) the injected helicity
rate changes in sign after only 20 hours!

The most significant injection is very likely produced by coherent and long-
lasting shearing motions (similar in characteristics to the theoretical profiles an-
alyzed above). These motions, because of their spatial and temporal coherence,
should be the most obvious to observe. Presently, this type of motion has not been
reported frequently. Moreover, these motions bring only a small amount of helicity,
typically of the order of one tenth of ®2. We conclude that shearing motions, which
have a spatial scale comparable or lower than an active region, are likely to inject
only a relatively small amount of magnetic helicity into the corona.

4. Generation of Magnetic Helicity by Differential Rotation

The main large-scale shearing motion is differential rotation. It is both spatially
and temporally coherent, being, therefore, a candidate to inject magnetic helicity
into the corona. Some of the results for differential rotation (e.g., the competition
between writhe and twist) can be qualitatively deduced from the sinusoidal profile
(Equation (13)) in the limit W > S, but, since differential rotation is a large-
scale process independent of the active region properties, this shearing motion is
not necessarily parallel to the PIL (as supposed in Section 3). We present below
an extended study of the role of differential rotation in providing helicity to the
coronal field.



HELICITY INJECTED BY SHEARING MOTIONS 97
4.1. TWIST AND WRITHE HELICITY FOR DIFFERENTIAL ROTATION

The hypotheses in Sections 2.2 and 2.3 and (horizontal flows and conservation of
the vertical magnetic flux at the photospheric level) are well suited to apply our
results to differential rotation. We will consider the following classical expression
for differential rotation:

w(L)y=a+b sin> L+c¢ sin* L, (15)

where L stands for the latitude. Such angular velocity transforms the photospheric
flux distribution, injecting helicity into the corona. In the numerical applications
below, we will take a = 14.38 deg day ™', b = —1.95 deg day~!, ¢ = —2.17 deg
day~! as given by the cross-correlation analysis of Kitt Peak magnetograms from
1975 to 1991 (Komm, Howard, and Harvey, 1993). These values are very close to
the recent ones deduced from seismology measurements with MDI (e.g., Charbon-
neau et al., 1999, and references therein). It is worth mentioning that very similar
results would be obtained with the other values present in the literature (where the
variation of b and c is less than 20% of the above values).

Let us use a Cartesian frame, with X (respectively y) pointing in the east-
west (respectively south-north) direction. We further assume for simplicity (and
because w(L) differs little from a linear profile on the scale size of an AR) a
locally linearized form of Equation (15) (see DeVore, 2000). As shown at the end
of Section 4.3, this approximation is precise enough. The shear velocity induced
by the differential rotation is:

v, (diff. rot.) = y 2sin L cos® L(b + 2¢ sin® L)

(16)
=yQ.
Equation (8) then gives:
de . 5
— =—Q sin” 0. a7
dt

Including Equation (17) in Equation (9) gives the injection of relative helicity
by differential rotation. We split this expression into two terms:

dHV Q : 2 1 ’
(t) = — (sin”9)B, B, dS dS —
dr 2T
B, B}, >0
Q 102 / /
% (sin“0)|B,B,|dS dS (18)
B, B}, <0
. dH, o n dH, o
dr twist dr writhe

With differential rotation both A H, |wist and A H, |wrime are monotonic functions
of time because the signs of dH, /dt|is; and dH, /df|yyime are fixed according to
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Figure 4. Photospheric magnetic field for two typical theoretical distributions of B, created by: (a) a
subphotospheric horizontal dipole, and (b) two subphotospheric sources (the two distributions are
simplified configurations representing, respectively, evolved and young active regions). R is the ra-
dius of the polarities, S is the size of the region and y is the tilt angle. Isocontours of positive/negative
By, are drawn with continuous/dashed lines. The top figures show the initial field distribution and the
bottom figures represent the distributions distorted by differential rotation after 3 Carrington rotations
(taking a mean latitude of —10°).

the hemispheric location of the AR. However, the generation of helicity by twist
and writhe are in competition; they have opposite signs but their magnitudes are
similar as it is the case in the previous section for shearing motions with a broad
shear profile (Figure 2(d)). This implies that the total helicity A H, is only a fraction
of these helicity injections.

4.2. MAGNETIC CONFIGURATIONS ANALYZED

We analyze here two particular magnetic configurations: (a) one created by a sub-
photospheric horizontal dipole (as in Section 3), and (b) another one created by



HELICITY INJECTED BY SHEARING MOTIONS 99

two subphotospheric magnetic sources (Figure 4). Configuration (b) converges to
configuration (a) when the two sources are infinitely close; (a) is the same con-
figuration used by DeVore (2000) and presents the main characteristics of evolved
ARs. In young ARs, the photospheric magnetic field is more concentrated than the
distribution of B, given by the magnetic dipole; in such cases, configuration (b)
is more appropriate. These flux distributions are characterized, as in Section 3, by
their magnetic flux @ and their size S. We also define the radii of their polarities as
R, =R_=R= an>0 |B,|y/(r — ;)2 dS/®. We study the injection of helicity
for various ratios of R/S (R/S = 0.5 for the horizontal dipole, R/S = 0.06, 0.24,
for the magnetic sources). The analytical distributions of B, are computed on a
mesh to simulate magnetograms; that is to say, we build a model magnetogram.
The resolution used in Figures 5—7 is 2 Mm in order to represent the resolution of
present magnetographs (except for the case R/S = 0.06 where it is 1 Mm).

Statistically, the leader polarity of solar ARs is closer to the equator than the
following one (Joy’s Law, Hale et al., 1919), though a great dispersion of the tilt
is present. The tilt angle x of the configuration is the angle between the vector
r, — r_ and the solar equator (Figure 4). x is defined, in the interval [—90°, 90°],
symmetrically in both hemispheres; so that positive tilt angles correspond to re-
gions with a leader (or westward) polarity towards the pole (then x > 0 is in the
clockwise, respectively counter clockwise, direction in the southern hemisphere,
respectively northern hemisphere). With this convention, the effect of differential
rotation is to increase monotonically the tilt angle x in both hemispheres. We show
below that the tilt y, the latitude L and the magnetic flux ® are the main parameters
determining the amount of magnetic helicity injected by differential rotation.

Active regions are usually more complex than the above simple bipolar config-
urations; in particular, there are several small parasitic polarities present creating a
complex magnetic topology which is determinant for flare physics (e.g., Démoulin
et al., 1997). However, these small polarities will have a very small effect on the
computation of the injected helicity because of the square of the magnetic flux en-
tering in Equations (11) and (18). This remark does not apply to the more complex
cases, e.g., quadrupolar configurations with similar polarity fluxes; in such cases
the helicity computations have to be done using Equation (18). It is also worth
noting that we are using potential field models only to define the B,, distribution at
the photospheric level (model magnetograms), and that we are making no further
hypotheses on the chromospheric and coronal magnetic fields.

We are showing in Figures 5—7 the results with a latitude of —10° so that these
theoretical plots can be directly compared to the results obtained using observed
magnetograms for AR 7978 (Démoulin et al., 2001). The injection time scale
(1/€2) decreases with latitude L for |L| < 35° with ¢ = 0 and for |L| < 45° with
Komm, Howard, and Harvey (1993) values, while the maximum injected helicity is
nearly unchanged (even with the full differential rotation profile, see below). From
Equations (16) and (18), the helicity injection rate is approximately proportional to
the latitude L, for |L| < 40°; therefore, Figures 5—7 can be easily scaled to other
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Figure 5. Injection of magnetic helicity in the two typical theoretical distributions of B, shown in
Figure 4. (a, b) Injection of helicity by differential rotation in units of @2 versus time in units of the
Carrington period (where & is the magnetic flux crossing the photosphere for one polarity). Three
quantities are plotted: twist, writhe, and total injection rate of magnetic helicity for an initial tilt
x = 0. The total helicity injected is marked by the thicker lines. (c, d) The injection rate of helicity
by differential rotation (dH /d¢) is normalized by 2 / TCarrington- The curves depend on the same
parameters as in (a, b).

latitudes. The choice of a negative latitude lets us also consider a shear profile with
the same sign as in Section 3 (compare Figure 1 and Figure 4).

4.3. THE DEPENDENCE OF THE HELICITY INJECTION

4.3.1. Temporal Evolution

For the field of a dipole oriented parallel to the solar equator (tilt angle x = 0), a
little more helicity is injected as twist than as writhe (Figures 5(a) and 5(c)). The
total injected helicity is then relatively small and maximum around the 6th rotation
for a latitude of |L| = 10°. With a more concentrated field, the helicity due to twist
is almost the same, but in the case of writhe is much lower (compare right and left
columns in Figures 5), then the total helicity is larger and is maximum at longer
times.

Our results for dH, /dt, considering the horizontal dipole with x = 0 (Figure (5)
and with x = 90 (not shown but similar to the time derivative of the plot shown in
Figure 2(d)) agree exactly with those of DeVore (2000) when computed with the
same normalization. It is worth remarking that dH, /d¢ is computed numerically
in a different way in both studies; we are using Equation (18) while DeVore is
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Figure 6. Same as Figure 5 but for an initial tilt x = 30 (continuous lines) and x = —30 deg (dashed
lines). The total injected helicity is drawn with thicker lines.

rather using Equation (5) and a numerical evaluation of A(¢) for the instantaneous
B, (t) (see his Equations (3) and (4)). For the helicity H,, there is also a main
difference between the two approaches: DeVore computes H, from the coronal
force-free field, while here H, is the helicity injected by boundary motions (see
Equation (11)).

4.3.2. Tilt Angle

The initial tilt angle x is the parameter that decides if twist or writhe injection will
weakly dominate later on. As an illustrative example we show the case x = £301in
Figure 6. The case xy = —30 (leader inclined towards the equator) has a total helic-
ity growing with time, while the case y = 30 starts with a positive injection which
rapidly reverses sign (because of a strongly negative writhe injection). Moreover,
except close to the initial time, where both injections have the same value, there is
no symmetry between y = +30 and x = —30.

While the helicity injection is an even function of x at ¢ = 0 (see Equation (21)
below), an asymmetry progressively builds up with time; for a very long time
the helicity H,(x) is an odd function of x (Figure 7; note, however, that this is
only a theoretical limit since on the Sun several other processes play a dominant
role on such long time scales). For the initial tilt interval [—45°, 45°] (bipoles ori-
ented in the east—west direction) and for short shearing times, the injected helicity
has the sign of the observed hemispheric dominance (negative/positive helicity
in the northern/southern hemisphere; Seehafer, 1990; Pevtsov, Canfield, and Met-
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(By,) distribution given by a subphotospheric horizontal dipole shown in Figure 4(a) (with a ratio of
the polarity radius, R, over the size, S, of the region R/S = 0.5), and two with B, given by two
subphotospheric sources (R/S &~ 0.24, not labeled, and 0.06). The helicity is in units of @2 (where
® is the magnetic flux of one polarity), note the evolution of the helicity magnitude on the left axis.
For small shearing times, H; is an even function of x. With time, H, becomes progressively an odd
function of x. In the figure for # = 1000 Tcarrington, Which is a pure theoretical limit including only
differential rotation (see Appendix A), the analytical limits for very large times (¢ >> TCarrington) Of
Equations (22) and (23) are added (two straight dash-dotted lines are plotted in the limit R/S — O,
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calf, 1995). With time, this interval progressively shifts to [—90, 0] (bipoles which
were initially inclined towards the equator). In agreement with the conclusion of
DeVore (2000), this behavior is coherent with the observed helicity dominance per
hemisphere, since ARs are in average more tilted towards the equator.

The results of Figure 7 can also be understood qualitatively when compared
to the results of van Ballegooijen and Martens (1990). These authors consider an
initial magnetic configuration formed by a potential arcade invariant by translation.
In this simple configuration, the sign of the injected helicity can be deduced from
the evolution of the magnetic shear angle (angle between the direction of the ar-
cade field lines (AFL) and the normal to the PIL). Applying the analysis in their
Section II to the southern hemisphere, we find a different evolution in the four
initial tilt angle x intervals. In the interval —90 < y < —45, the AFL are initially
more south-north oriented, so more affected by differential rotation than the PIL.
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This implies a negative shear angle, so a negative helicity input. This tendency
reverses when the PIL becomes more oriented in the south—north direction than
the AFL and, both, shear angle and magnetic helicity reverse in sign (Figure 7). In
the interval —45 < x < 0, the AFL are always more east—west oriented than the
PIL. This results in a shear angle and a magnetic helicity which are always positive.
A similar analysis of the shear angle evolution shows that the magnetic helicity is
first positive, then negative in the interval 0 < x < 45, while it stays negative in
the interval 45 < y < 90.

4.3.3. Relative Extension of the Photospheric Polarities

The helicity injection is affected by the photospheric B, distribution. The relative
extension of the polarities can be characterized by the ratio between the radius
of the polarities, R, and the size of the AR, S. The total injection of helicity is
less efficient when the magnetic polarities are more extended, so for large R/S
(compare the left and right columns of Figures 5 and 6 as well as the curves in
Figure 7).

The dependence of the helicity on R/S comes mainly from the writhe term.
To understand this it is worth remembering that the helicity injection related to the
pair (B, dS, B, dS’), located at (r, r’), depends on sin? @ (Equation (18)). For small
relative extension of the polarities all pairs have similar orientation angles 6, and
so their contributions add up (dH, /df (x)|writhe = QP2 /T sin® x). This results in
a strong dependence on the tilt angle. The spread of sin? 6 increases with R/S;
then, the modulation of the writhe helicity with x around a mean value becomes
less important (Figure 7). The relative extension of the polarities (R/S) has a small
effect on the twist injection (the low x dependence present in Figure 7 comes
from the fact that the polarity is no longer circular when R is comparable to ).
The combination of these two effects gives a total helicity which can be a factor
2 larger in a young AR (concentrated field) than in an evolved AR (closer to the
dipole case).

4.3.4. Full Differential Rotation Profile

In general, the extension of an AR is small compared to the solar radius. This
implies that the linearized differential profile used above is expected to give a good
approximation of the injected helicity. Indeed, the quasi-cancellation of twist and
writhe helicity makes this approximation even better. The linearized expression for
the differential rotation profile (Equation (16)) gives a total helicity injection hav-
ing a 10% difference with the injection obtained using the full differential rotation
profile (Equation (15)) in the case of an AR at a latitude of 10° and extending
£10° in the north—south direction. This estimate is indeed an upper bound since
the difference decreases with a larger mean latitude as the profile of differential
rotation is less curved.
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4.4. INITIAL INJECTION OF MAGNETIC HELICITY

The above numerical results show that an important parameter for the injection of
helicity is the tilt angle x. We extend below this result to more general configura-
tions and we obtain analytical results for the initial injection.

In order to analyze only the effect of the tilt angle x, let us consider the same
magnetic configuration but tilted at variable angles x. Let us restrict the analysis to
an initial B, distribution which has a mirror symmetry with respect to the axis
joining the mean positions of negative and positive polarities (the axis joining
the points defined above by r; and r_). With this hypothesis on the initial field
distribution, the initial injection of writhe for a given tilt angle x is simply related
to the injection obtained with an east—west orientation (x = 0):

dH, dH,
dr dr

2

0 = cos 2x 0) sin? X, (19)

writhe writhe

where @ is the magnetic flux crossing the photosphere in both polarities.
Similar considerations apply to the twist injection:
dH,
dr

dH, 2

dr

QP
+ sin” x , (20)

twist

) = cos 2x 0)

twist

the main difference being the sign in front of the last term.

Equations (19) and (20) show how the initial helicity injection changes with the
tilt of the AR with respect to the east—west direction. In particular, for y = 4 45°
both the writhe and twist injections depend only on the differential rotation profile
(via €2) and on the total magnetic flux, but not on the precise distribution of the flux.
Moreover, for these values of yx, the writhe and the twist injection cancel exactly,
so that there is no net injection of magnetic helicity.

These results apply, in particular, to a dipole distribution as the one considered
by DeVore (2000) and to the configurations studied above. Furthermore, they gen-
eralize the results for a dipole to flux distributions which have a mirror symmetry.
Adding Equations (19) and (20) one gets

dH, dH,

= 2
q X) =cos 2x—

This implies that the initial injection of helicity is an even function of the tilt x
(Figure 6). Later on, this symmetry is broken (Figure 7). Though here we use a
B, photospheric distribution that has a mirror symmetry, the previous results are
expected to be a good approximation to solar ARs because dH, /dt is an integral
quantity little affected by the precise distribution of the flux. These analytical
results can be used to obtain an estimation of the injection rate in a bipolar AR.

). @n
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5. Comparison with Twisted Flux Tubes

In order to see how large the amount of helicity injected by shearing motions is, it
is worth comparing it to the helicity present in a twisted flux tube. The magnetic
helicity contained in a twisted flux tube having N turns and a magnetic flux @, is
simply N ®? (Berger, 1984).

The localized shearing motions analyzed in Section 3 can be compared to the
emergence of a twisted flux tube having the same magnetic flux as that in the
sheared region (]y| < W). Let us call @y the total positive sheared flux and, as
above, @ the total positive flux, then write the injected helicity as c®®yy . For
small W/S§ values, |c| is an increasing function of the shear amplitude (at) but it
is a decreasing function of the shear spatial extension (W/S). The limit at > S
and W « S provides an upper-bound to |c|. This limit is obtained analytically
with an analysis similar to the one done in Appendix A; it gives a helicity injection
of 2&®y,. For a shear amplitude equal to the region size (at = S), a numeri-
cal integration of Equation (11) shows that this injection is about half the above
limit. Such an amount of helicity, &~ ®®y,, can be comparable, or even larger for
Dy K D, to the magnetic helicity, N CD%V, which can be carried by a small-scale
emergence of a twisted flux tube.

However, for W « S, so ®y < P, the shear motions bring a relatively small
quantity of magnetic helicity to the whole magnetic configuration as follows. Coro-
nal magnetic configurations with S-shaped X-ray loops are routinely observed with
Yohkoh and are frequently associated with coronal mass ejections (e.g., Canfield,
Hudson, and McKenzie, 1999; Glover et al., 2000). An important fraction of these
sigmoid structures are interpreted as being twisted magnetic flux tubes with a twist
of the order of one turn (e.g., Rust and Kumar, 1996; Titov and Démoulin, 1999;
Portier-Fozzani et al., 2001). The magnetic helicity of these coronal configurations
is then of the order of ®2. This is above the maximum helicity (= 0.3®?) that
shearing motions can inject for a shear amplitude of S (a large shear upper bound
from the observed photospheric magnetic field distributions!). The typical amount
of helicity injected by shearing motions is rather of the order of 0.1®? (and even
lower for less organized shearing motions, see Section 3.5), so it is at least one
order of magnitude less than what is required to explain the observed coronal
sigmoids.

The same conclusion is reached for the differential rotation as follows. The
maximum amount of helicity injected by differential rotation for an AR at a latitude
of |L| = 10° after three Carrington rotations is ~ 0.1®? if the field is concentrated
(at |L] = 30°, that amount is achieved after one Carrington rotation). Later on, the
AR becomes less concentrated, and a dipole better represents the photospheric field
distribution. At that point, the maximum amount of helicity is found to be ~ 0.2?
(Figure 7) for very long shearing times. Indeed, a twist of 0.2 turns in any coronal
magnetic configuration is almost not observable because magnetic configurations
are far from being simple straight flux tubes with simple photospheric field distri-
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bution, and because only few coronal loops with the right projection can be seen at
a given time.

Finally, we recall that a significant twist is needed to keep the coherence of
magnetic flux tubes as they travel through the convective zone (e.g., Emonet and
Moreno-Insertis, 1998). These flux tubes, which form active regions after crossing
the photosphere, are then expected to carry a significant amount of magnetic helic-
ity (of the order of few ®?). We think that they are the main candidate to explain
the origin of the coronal magnetic helicity.

6. Conclusion

We estimate the amount of magnetic helicity that can be injected into the corona by
horizontal photospheric motions. Following the theoretical work of M. A. Berger
(see references in the previous sections), we have extended C. R. DeVore’s com-
putation so that the helicity injected into the corona can be computed for any
distribution of the magnetic field at the photosphere, so from any observed magne-
togram (Section 2.2). We then separate the helicity injection into two terms: twist
(intrinsic rotation of photospheric polarities of a given sign) and writhe (relative
rotation of opposite polarities).

For shearing motions concentrated in the vicinity of the photospheric inversion
line (PIL) of the vertical field component (B,,), both twist and writhe helicity add
up. Then, in this case, the amount of coronal helicity increases monotonically
with the shear amplitude until it saturates for very large shear amplitudes. This
saturation is due to both the finite rotation of each polarity (twist) and the finite
rotation of positive and negative polarities (writhe) in the limit of a large shear
(maximum rotation of % of turn in each case). However, when the sheared region
is more extended around the PIL, the sheared regions farthest from the PIL inject
an opposite twist, so that the magnetic helicity injected decreases with a larger
extension of the sheared region. When the shear velocity is increasing with the
distance to the PIL, the twist and writhe helicity injected have opposite signs,
and then, they compete. In such cases the amount of coronal helicity reaches a
maximum after a finite shear, then declines and even changes in sign for a larger
shear (Section 3).

A well observed example of such large-scale shear is differential rotation (Sec-
tion 4). The helicity injected into a bipolar AR depends mainly on the following
five parameters: the temporal duration of the shearing motions, the AR latitude L,
the AR magnetic flux &, the AR tilt x (inclination of the bipole with respect to the
solar equator) and the ratio R/S of the mean polarity size over the AR size. We
fully confirm, using a different numerical computation method, the results found
by DeVore (2000) about the amount of helicity injected by differential rotation
for the two cases he studied (an initial magnetic dipole with a tilt x = 0 and
90°). Analytical limits for the initial injection rate (Section 4.4) and for very long
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shearing periods (Appendix A) have been found. They are successfully used to test
the numerical computations.

We have determined the amount of helicity injected as a function of the five
parameters mentioned above. Because the evolution with time of the helicity is gen-
erally non-monotonic, individual results, such as those in Figures 5—7 are needed
to analyze particular cases for a given interval of time. However, some general
results can be summarized as follows. The injection of magnetic helicity is nearly
proportional to the latitude L for the range of latitudes where ARs are observed.
The injected helicity is simply proportional to ®2. The initial injection has a cos 2
dependence, giving a negative/positive injection in the northern/southern hemi-
sphere for ARs more inclined in the east—west direction. This even dependence
with x progressively changes to an odd dependence with y as the shear amplitude
increases (in agreement with van Ballegooijen and Martens, 1990). Finally, the
amount of generated helicity depends only slightly on the relative extension of
the polarities with respect to the active region size (ratio R/S). A more efficient
helicity generation is found for more concentrated fields, so for young ARs (up to
a factor 2).

From the analysis of a set of theoretical shearing motions, but also from the
inspection of the general formulae, we conclude that the maximum amount of mag-
netic helicity that shearing motions can provide to the corona is small compared
to the magnetic helicity present into a twisted flux tube with significant twist (of
the order of one). Most of the observed photospheric motions are likely to be less
extended and/or less coherent both in space and time than the studied theoretical
motions, and so they bring a lower amount of magnetic helicity. This is indeed
the case for motions observed so far (Chae, 2001; Chae er al., 2001). The most
efficient shearing motions are affecting a significant part of the flux, in a coherent
and systematic way; then such motions, if present, are likely to be easily detected.
The only well-known motion of this type is differential rotation. However, we again
show that it is not an efficient process to inject a significant amount of magnetic
helicity into the corona.

The above results are guide lines for studying the injection of magnetic helicity
in active regions. More precise results on particular active regions can be obtained
by using directly Equation (11) with observed magnetograms. Because magnetic
helicity is well preserved, even in presence of magnetic reconnection, it is a useful
physical quantity to follow the evolution of magnetic fields from the convective
zone, to the corona, and then to the interplanetary space. This will be the object of
the next papers (Démoulin et al., 2001; Green et al., 2002) in the context of coronal
mass ejections. One final goal is to determine if the accumulation of magnetic
helicity into the corona is at the origin of the coronal mass ejections (Low, 1996).
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Appendix
Injection after a Long Shearing Period

It is instructive to compute analytically the limit, lim,_, ., AH,(¢). First, it illus-
trates the geometrical interpretation of the injection of helicity in the simple case
implying the complete rotation of the polarities. Second, it allows testing the nu-
merical computation of AH, from Equation (11) in the extreme limit when the
initial flux distribution is very distorted, probably the worst case concerning the
numerical precision. Finally, together with the initial injection rate, it gives some
insight on the dependence of A H, with the tilt angle x. It is worth emphasizing
that this limit is purely theoretical since ARs become dispersed after 5 to 8 months
and are no longer distinguishable from the network field. On such long time scales
other mechanisms such as: magnetic field cancellation, diffusion and meridional
flows have to be taken into account. As in Section 4.4, we consider separately the
injection of helicity by twist and writhe.

The injection of writhe depends on the relative rotation of the polarities around
each other. Let’s recall that the axis going through the mean polarity positions
(defined by r, and r_) is tilted by an angle y with respect to the equator, that R
is the radius of the polarities and that S is the distance separating the polarities.
For magnetic polarities limited to a finite extension, & R, and less extended than
their mutual separation (R <« §), there is a tilt angle x; so that for |x| > x; all
the positive flux has no common latitude with the negative flux (e.g., x = y; in
Figure 4(b)). In such a case, the differential rotation can bring the more poleward
polarity fully backward (or eastward) from the other one. A simple analytical ex-
pression of the writhe helicity can be derived in this case. As in Section 4.4, let us
restrict the analysis to an initial B,, distribution which has a mirror symmetry with
respect to the axis defined by r, and r_. For a bipole tilted towards the pole with
X > xi, any vector r — r’ and its symmetric one will rotate on average, in the limit
t — 00, by an angle w — x. For a bipole tilted towards the equator with x < —y;
the same analysis gives a mean rotation of —x. From Equation (11), the injection
of writhe helicity is
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lim AH, v = —sign(@) (1= 2) @2 for ;< x <7/2, (22)
t—00 T

lim AH, lysine = sign(@)2®* for —7/2 < x < -, (23)
t—00 T

where @ is the magnetic flux of B, for one polarity. For round magnetic polarities
limited to a radius R and separated by S, the limit case for y = y; is given by

sin x; = 2R/S. (24)

On the other hand, for low tilt (|x| < x;), the injected writhe helicity decreases
(only part of the leading, i.e., initially more westward, polarity is rotated to the
east of the other polarity). For example, if x = 0 initially, only half of the leading
polarity will be able to move to the east (rotating by 180°) while the other half will
stay in front. In this case,

lim AH, |wime(x = 0) = —sign(Q)®?/2, (25)
—o0

just the average of Equation (22) and Equation (23) results, if taken for x = O.
These results have been found numerically for the dipole and source configurations
in the limit of a long shearing period (see Figure 7 for = 1000 Tcarington)- In these
examples non-zero values of B, are present indeed in all the ‘photospheric’ plane,
but the low field regions have a negligible contribution to the helicity. As expected
from Equation (24), the range for the tilt angle [—x;, x;] decreases with the ratio
R/S (see Figure 7). These results show that, even when the shear is very large, the
writhe helicity is numerically computed with high enough precision.

Next, we analyze the injection of twist helicity. Let us consider a polarity which
has initially (+ = 0) a mirror symmetry with respect to south—north axis (parallel
to ity), and let us compute the total AH, |wis injected in the limit 1 — oco. Any
vector R = r — r’ will rotate at this limit by an angle = — y, where y is the initial
orientation of R with respect to the east—west direction (y = cos”! i, - R/R).
The symmetric of R, R, with respect to south—north axis will rotate by y, i.e.
the average rotation of R and R; is 90°. So, a polarity which has initially a mirror
symmetry with respect to the north—south axis is rotated up to one fourth of a
turn by the differential rotation. It results from Equation (11) that the twist helicity
injection for both polarities is

2
lim AH, = sign(Q)g . (26)
1—00 twist 2

The numerical results (see Figure 7 for # = 1000 Tcarington) are close to this value.

It is noteworthy that the mirror symmetry supposed above is only strictly true for

the studied configurations (bipole and 2 sources) when y = =4 90°. The remaining

slight difference between the expected and numerical values comes from the finite
discretisation (which is selected to represent the spatial resolution of observations).
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The discretisation error is stronger in the direction of vectors r — r’ when they are
inside a given polarity, so the error is larger for the twist than for the writhe. This
test has been done on a very deformed model magnetogram and so it is expected to
provide a large over-estimation of the discretisation errors present for the injection
of helicity during a few Carrington rotations.
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