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Ordinal Patterns serve as a robust symbolic transformation technique, enabling

the unveiling of latent dynamics within time series data. This methodology in-

volves constructing histograms of patterns, followed by the calculation of both en-

tropy and statistical complexity — an avenue yet to be fully understood in terms

of its statistical properties. While asymptotic results can be derived by assuming

a Multinomial distribution for histogram proportions, the challenge emerges from

the non-independence present in the sequence of ordinal patterns. Consequently,

the direct application of the Multinomial assumption is questionable. This study

focuses on the computation of the asymptotic distribution of permutation en-

tropy, considering the inherent patterns’ correlation structure. Furthermore, the

research delves into a comparative analysis, pitting this distribution against the

entropy derived from a Multinomial law. We present simulation algorithms for

sampling time series with prescribed histograms of patterns and transition proba-

bilities between them. Through this analysis, we better understand the intricacies

of ordinal patterns and their statistical attributes.
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The methodology of ordinal patterns introduced by Bandt and Pompe has

been extensively applied to study the latent dynamics of time series via their

entropy, named permutation entropy. However, there are no theoretical re-

sults about the permutation entropy’s distribution, which must consider the

correlation effect between patterns. In this work, we prove that the asymp-

totic distribution of the permutation entropy is Normal. Since the expression

of the asymptotic variance is more complex as the embedding dimension in-

creases, we compare this result with the Multinomial sample entropy, which

assumes independence. A hypothesis test is then derived, and it is applied

to distinguish meteorological time series of distinct locations, as well as to

differentiate biological signals such as ECGs.

I. INTRODUCTION

Signal analysis through ordinal patterns has been widely used since they were pre-

sented in Bandt and Pompe 2 . In this seminal article, the authors proposed a way of

analyzing time series using ordinal patterns rather than the actual values. Their approach

consists of transforming typically small and overlapping windows of m observations

(m is called “embedding dimension,” and the corresponding values are called ”words”)

into their ordinal patterns, i.e., the set of indexes that sort the values in the window.

The time series x = (x1, x2, . . . , xn+m−1) is transformed into the sequence of patterns

π = (π1, π2, . . . , πn), with πj ∈ Πm = {π(1), π(2), . . . , π(m!)} where π(i), i = 1, . . . ,m!, is

the set of possible patterns provided the values in x have no ties. The analysis is then

carried on π rather than on the original values x.

This approach has several interesting features, among them:

1. The sequence of patterns π is invariant to monotonically increasing transformations

of x.

2. The ordinal patterns are less sensitive to outliers than the original values.

Such robustness is one of the reasons why the Bandt & Pompe symbolization approach

has become a trendy and successful way of analyzing time series1.

The marginal3 analysis of ordinal patterns proceeds by computing the histogram of

proportions q̂ of the patterns observed in π:

q̂i =
#{πj ∈ π : πj = π(i)}

n
, for every 1 ≤ i ≤ m!.

Time series with different underlying dynamics often exhibit different histograms. Ex-

treme cases are strictly monotonic series that produce a single pattern and white noise

that produces histograms with approximately equal proportions.
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The entropy, in general, and the Shannon entropy are very sensitive to these differ-

ences. It also provides insightful information about the predictability of the series. For

these reasons, the Shannon entropy of the histogram of ordinal patterns, called “Shan-

non Permutation Entropy” (or “Permutation Entropy,” for short), plays a central role

in this kind of analysis2. Given q = (q1, q2, . . . , qm!) the probability vector of the ordinal

patterns, the Permutation Entropy is defined by

S(q) = −
m!∑
i=1

qi ln qi, (1)

and its normalized version is

H(q) =
S(q)

lnm!
. (2)

The Permutation Entropy, along with the Statistical Complexity, define the “Entropy-

Complexity Plane,” a closed manifold in which time series become points whose position

reveals the type of underlying dynamics.

However, the full potential of the marginal analysis of Ordinal Patterns has not been

fully exploited. Leyva et al. 9 state that one of the longstanding problems is attaching

confidence regions to points in the Entropy-Complexity plane.

Chagas et al. 5 obtained empirical confidence regions for the points that white noise

produces in the Entropy-Complexity plane. The findings were derived from simulations,

and to extend the same approach to different time series, users need to generate addi-

tional simulations under the underlying model. Rey et al. 11 obtained the asymptotic

distribution of certain types of entropies of histograms under the Multinomial law and

developed a hypothesis test for comparing histograms of different numbers of bins. In

order to use these results with the Permutation Entropy, the authors introduced a sim-

plification: the patterns in π are independent. However, Elsinger 6 showed that ordinal

patterns are not independent.

In this work, we obtain the asymptotic distribution of the permutation entropy con-

sidering ordinal patterns dependence. This distribution is a Normal law whose variance is

larger than the variance of the asymptotic model under the independence simplification,

i.e., with bins that obey a Multinomial distribution. When comparing meteorological

time series, we assess the impact of using the latter instead of the better-adjusted for-

mer model. We present simulation algorithms for sampling time series with prescribed

histograms of patterns and transition probabilities between them.

Elsinger 6 computed the transition probabilities from state πi at time t to state πj at

time t + 1 We use these expressions to calculate the Permutation Entropy asymptotic

distribution. Then, we assess the committed error when simplifying that the ordinal

patterns are independent.

This paper unfolds as follows. Section II recalls the main properties of ordinal patterns

distribution, the asymptotic entropy distribution, and the dependency structure for the
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embedding dimension m = 3. In Section III, we compare asymptotic variances for actual

and simplified models. In Sections IV and V, the results of applying the computed

asymptotic variances to simulated and actual time series are shown. We conclude the

article in Section VI. In Appendix A, the conditional probabilities of ordinal patterns

transitions are computed.

II. ORDINAL PATTERNS DISTRIBUTION

Let x = (x1, x2, . . . , xn+m−1) be a real-valued time series without ties of length T = n+

m−1, and transform it into the series of symbols π = (π1, π2, . . . , πn) of patterns observed

over words of size m (the embedding dimension). Let xm(t) = (xt, xt+1, . . . , xt+m−1) be

a part of x, for t = 1, 2, . . . , n. The subsequence xm(t) is πi-type if xt+i1 ≤ xt+i2 ≤ · · · ≤ xt+im and

is−1 ≤ is if xt+is−1 = xt+is ,
(3)

where (i1, i2, . . . , im) is a permutation of the numbers 0, 1, . . . ,m−1, and s ∈ {1, 2, . . . ,m}.
Since each sequence xm(t) is associated with a symbol, we obtain a sequence of ordinal

patterns from the time series x given by (ψ1, ψ2, . . . , ψn). This sequence can be modeled

as a realization of the ordinal pattern process whose possible states belong to Πm. Notice

that, for i = 1, 2, . . . ,m!, xm(t) is πi-type if and only if ψt = πi.

The indicator function 1πi
(t) is defined by

1πi
(t) =

1 if xm(t) is πi-type,

0 otherwise.
(4)

Let Z = (Z1, Z2, . . . , Zm!) be the vector of random variables that count the number of

occurrences of πi in n trials, i.e., for i = 1, 2, . . . ,m!:

Zi =
n∑

t=1

1πi
(t). (5)

Due to the overlapping between xm(t) and xm(t+h) for h = 1, 2, . . . ,m− 1, the ordinal

patterns ψt and ψt+h are dependent for all t = 1, 2, . . . , n and h = 1, 2, . . . ,m − 1. On

the contrary, ψt and ψt+h are independent if h ≥ m and the stationary ordinal pattern

process is (m− 1)-dependent. For i = 1, 2, . . . ,m!, let qi be the probability of observing

the state πi, denote the vector of probabilities as q = (q1, q2, . . . , qm!), and express as

Dq = Diag(q1, q2, . . . , qm!) the associated diagonal matrix. The transition probability of

reaching state πj at time t+ ℓ from state πi at time t, for ℓ = 1, 2, . . . ,m− 1, is denoted

by q
(ℓ)
ij . We collect these transition probabilities in the matrix Q(ℓ) whose elements are

q
(ℓ)
ij = Pr(ψt = πi ∧ ψt+ℓ = πj).
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From Yamashita Rios de Sousa and Hlinka 12 , we know that the expected value of Zi

is given by:

E(Zi) = nqi, i ∈ {1, . . . ,m!}, (6)

and that the covariance between Zi and Zj is given by:

Cov(Zi, Zj) = nδijqj − n2qiqj +
m−1∑
ℓ=1

(n− ℓ)q(ℓ)ij q
(ℓ)
ji , i, j ∈ {1, . . . ,m!}, (7)

where δij is the Kronecker delta function.

A. Asymptotic Distribution of the Permutation Entropy

Let Xn = (X1,n, X2,n, . . . , XK,n), with n ∈ N, be a sequence of independent and iden-

tically distributed K-variate vectors of random variables. Suppose that as n tends to

infinity,
√
n(X1,n−θ1, X2,n−θ2, . . . , XK,n−θK) converges in distribution to the multivari-

ate Normal law N (0, SX) where SX is the covariance matrix. Consider h1, h2, . . . , hK
real-functions continuously differentiable in a neighborhood of the parameter point θ =

(θ1, θ2, . . . , θK), such that the matrix of partial derivatives M defined by Mij = ∂hi/∂θj
for 1 ≤ i, j ≤ K is non-singular in this neighborhood. The multivariate version of the

Delta Method, cf. Lehmann and Casella 8 , states that

√
n
[
h1(Xn)−h1(θ), h2(Xn)−h2(θ), . . . , hK(Xn)−hK(θ)

] D−−−→
n→∞

N
(
0,MSXM

T
)
. (8)

The maximum likelihood (ML) estimator of qi is the relative frequency q̂i = Zi/n,

1 ≤ i ≤ m!. We will apply the Delta method to the sequence:

Xn = (q̂1,n, q̂2,n, . . . , q̂m!,n) =

(
Z1

n
,
Z2

n
, . . . ,

Zm!

n

)
. (9)

By Yamashita Rios de Sousa and Hlinka 12, Eq. (30), if Wn = 1√
n
(Z − nq) then

Wn
D−−−→

n→∞
N
(
0,Σ

)
, (10)

where

Σ = Dq − (2m− 1)qqT +
m−1∑
ℓ=1

(
Q(ℓ) +Q(ℓ)T

)
. (11)

The diagonal elements are

Σii = (Dq)ii−(2m−1)(qqT)ii+
m−1∑
ℓ=1

(
Q(ℓ)+Q(ℓ)T

)
ii
= qi−(2m−1)q2i +2

m−1∑
ℓ=1

Q
(ℓ)
ii , (12)
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and, if i ̸= j, then

Σij = (Dq)ij−(2m−1)(qqT)ij+
m−1∑
ℓ=1

(
Q(ℓ)+Q(ℓ)T

)
ij
= −(2m−1)qiqj+

m−1∑
ℓ=1

(
Q

(ℓ)
ij +Q

(ℓ)
ji

)
.

(13)

To verify the hypothesis of the Delta Method, notice that,

Wn =
1√
n
(Z − nq) = n√

n

(Z
n
− q

)
=
√
n(q̂ − q) =

√
n(Xn − q). (14)

Let Ωi = {(x1, x2, . . . , xm!) ∈ Rm! : xi > 0 ∧ xs ≥ 0 for s = 1, 2, . . . ,m! and s ̸= i},
for i = 1, 2, . . . ,m!. Finally, we define the functions involved in the Delta Method for

i = 1, 2, . . . ,m!, as hi : Ωi → R:

hi(q1, q2, . . . , qm!) = qi ln qi, (15)

which verify, for 1 ≤ i, j ≤ m!, that

∂hi
∂qj

=

ln qi + 1 if i = j,

0 otherwise.
(16)

If qi = 0, the function hi is omitted. Let B be the matrix of partial derivatives, which is

diagonal. Using the result given by Eq. (8), we obtain the limit joint distribution:

√
n
[
h1(q̂1)− h1(q1), h2(q̂2)− h2(q2), . . . , hm!(q̂m!)− hm!(qm!)

] D−−−→
n→∞

N (0,Σq), (17)

where Σq = BΣBT. The matrix of partial derivatives is diagonal, for 1 ≤ i, j ≤ m!,

then it holds that

(Σq)ij =
m!∑
r=1

(BΣ)irB
T
rj =

m!∑
r=1

m!∑
s=1

Bis(Σ)srB
T
rj = Bii(Σ)ijB

T
jj

=

(ln qi + 1)2Σii if i = j,

(ln qi + 1)(ln qj + 1)Σij if i ̸= j.
(18)

Since the Shannon entropy is a linear combination of the functions {h1, h2, . . . , hm!}
with all scalars equal to −1, following Lehmann and Casella 8 , we have that:

√
n[S(q̂)− S(q)] D−−−→

n→∞
N
(
0, σ2

q

)
, (19)

where

σ2
q =

m!∑
i=1

(Σq)ii + 2
m!−1∑
i=1

m!∑
j=i+1

(Σq)ij =
m!∑
i=1

(ln qi + 1)2
[
qi − (2m− 1)q2i + 2

m−1∑
ℓ=1

Q
(ℓ)
ii

]

− 2
m!−1∑
i=1

m!∑
j=i+1

(ln qi + 1)(ln qj + 1)

[
(2m− 1)qiqj −

m−1∑
ℓ=1

(
Q

(ℓ)
ij +Q

(ℓ)
ji

)]
. (20)
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Eqs. (19) and (20) are our core result: the asymptotic variance of the Shannon entropy

of ordinal patterns considering their correlation structure. It is worth noticing that,

for practical purposes, given n sufficiently large, we can use that S(q) has a Normal

distribution with mean equal to S(q̂) and variance equal to σ2
q/n.

In addition, for α ∈ (0, 1) and n sufficiently large, the (1−α)100% confidence interval

of S(q) is given by

S(q̂)± zα
2
σq/
√
n. (21)

where zα
2
is the α/2-quantile of a standard normal random variable.

In the case of the normalized Permutation Entropy, the result given in Eq. (19) yields

to √
n[H(q̂)−H(q)]

D−−−→
n→∞

N
(
0, σ2

q/(lnm!)2
)
, (22)

B. Embedding Dimension m = 3

In this section, we focus on the case m = 3. The possible ordinal patterns are shown

in Figure 1.

π1 = (0, 1, 2)

•

•

•

xt xt+1 xt+2

π2 = (0, 2, 1)

•

•

•

xt xt+1 xt+2

π3 = (1, 0, 2)

•

•

•

xt xt+1 xt+2

π4 = (1, 2, 0)

•

•

•
xt xt+1 xt+2

π5 = (2, 0, 1)

•

•

•

xt xt+1 xt+2

π6 = (2, 1, 0)

•

•

•
xt xt+1 xt+2

FIG. 1: Ordinal patterns for m = 3.

For ℓ = 1, if x3(t) = (xt, xt+1, xt+2) is πi-type then x3(t+1) = (xt+1, xt+2, xt+3) could

be πj-type for only three possible values of j depending on the position of xt+3 in the

sorted sequence. Table I shows all the possible one-step transitions between symbols.

As a consequence of the forbidden transitions, q
(1)
ij = 0 for (i, j) ∈ (I1× I2)∪ (I3× I4),

where I1 = {1, 3, 5}, I2 = {3, 5, 6}, I3 = {2, 4, 6} and I4 = {1, 2, 4}. On the remaining

cases, notice that q
(1)
ij = Pr(ψt = πi∧ψt+1 = πj) = Pr(ψt = πi) Pr(ψt+1 = πj | ψt = πi) =

qi Pr(ψt+1 = πj | ψt = πi). We compute the conditional probabilities (see Appendix A

for details):

Pr(ψt+1 = πj | ψt = πi) =


0.50 if (i, j) ∈ {(1, 5), (2, 3), (3, 6), (4, 1), (5, 4), (6, 2)},
0.25 if (i, j) ∈ {(1, 1), (1, 3), (2, 1), (2, 5), (3, 2), (3, 4),

(4, 3), (4, 5), (5, 2), (5, 6), (6, 4), (6, 6)}.
(23)
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TABLE I: Possible ordinal pattern transitions for m = 3 and ℓ = 1. Red dots represent

common observations in two subsequent patterns; blue dots are the possible next

values.

ψt ψt+1

π1

•

•

•

xt xt+1 xt+2

π1

•

•

•

xt+1 xt+2 xt+3

π2

•

•

•

xt+1 xt+2 xt+3

π4

•

•

•
xt+1 xt+2 xt+3

π2

•

•

•

xt xt+1 xt+2

π3

•

•

•

xt+1 xt+2 xt+3

π5 •

•

•

xt+1 xt+2 xt+3

π6 •

•

•
xt+1 xt+2 xt+3

π3

•

•

•

xt xt+1 xt+2

π1

•

•

•

xt+1 xt+2 xt+3

π2

•

•

•

xt+1 xt+2 xt+3

π4

•

•

•
xt+1 xt+2 xt+3

π4

•

•

•
xt xt+1 xt+2

π3

•

•

•

xt+1 xt+2 xt+3

π5 •

•

•

xt+1 xt+2 xt+3

π6 •

•

•
xt+1 xt+2 xt+3

π5 •

•

•

xt xt+1 xt+2

π1

•

•

•

xt+1 xt+2 xt+3

π2

•

•

•

xt+1 xt+2 xt+3

π4

•

•

•
xt+1 xt+2 xt+3

π6 •

•

•
xt xt+1 xt+2

π3

•

•

•

xt+1 xt+2 xt+3

π5 •

•

•

xt+1 xt+2 xt+3

π6 •

•

•
xt+1 xt+2 xt+3

Thus, we conclude that:

Q(1) =



0.25q1 0.25q1 0 0.50q1 0 0

0 0 0.25q2 0 0.25q2 0.50q2
0.25q3 0.50q3 0 0.25q3 0 0

0 0 0.25q4 0 0.50q4 0.25q4
0.50q5 0.25q5 0 0.25q5 0 0

0 0 0.50q6 0 0.25q6 0.25q6


. (24)

Let us now compute the transitions for ℓ = 2 (see Appendix A for details), i.e.
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Asymptotic Distribution PE

q
(2)
ij = Pr(ψt = πi ∧ ψt+2 = πj) = Pr(ψt = πi) Pr(ψt+2 = πj | ψt = πi) = qi Pr(ψt+2 = πj |
ψt = πi). The conditional probabilities are:

Pr(ψt+2 = πj | ψt = πi) =



0.30 if (i, j) ∈ {(1, 4), (1, 6), (2, 4), (2, 6), (5, 1), (5, 3), (6, 1), (6, 3)},
0.20 if (i, j) ∈ {(3, 2), (3, 4), (4, 2), (4, 5)},
0.15 if (i, j) ∈ {(1, 2), (1, 5), (2, 2), (2, 5), (3, 1), (3, 3), (3, 4), (3, 6),

(4, 1), (4, 3), (4, 4), (4, 6), (5, 1), (5, 5), (6, 1), (6, 5)},
0.05 if (i, j) ∈ {(1, 1), (1, 3), (2, 1), (2, 3), (5, 4), (5, 6), (6, 4), (6, 6)}.

(25)

And then

Q(2) =



0.05q1 0.05q1 0.15q1 0.15q1 0.30q1 0.30q1
0.15q2 0.15q2 0.20q2 0.20q2 0.15q2 0.15q2
0.05q3 0.05q3 0.15q3 0.15q3 0.30q3 0.30q3
0.30q4 0.30q4 0.15q4 0.15q4 0.05q4 0.05q4
0.15q5 0.15q5 0.20q5 0.20q5 0.15q5 0.15q5
0.30q6 0.30q6 0.15q6 0.15q6 0.05q6 0.05q6


. (26)

These are the only transition matrices required to obtain the asymptotic variance of the

Permutation Entropy.

III. COMPARISON WITH THE MULTINOMIAL MODEL

Consider a series of n independent trials in which only one of theK mutually exclusive

events is observed with probability p1, p2, . . . , pK , respectively, such that pi ≥ 0 and∑K
i=1 pi = 1. Let N = (N1, N2, . . . , NK) be the vector of random variables that count

the number of occurrences of these events in the n trials, with
∑K

i=1Ni = n. Then, if

the events are independent, the joint distribution of N is

Pr
(
N = (n1, n2, . . . , nK)

)
= n!

K∏
i=1

pni
i

ni!
, (27)

where ni ≥ 0 and
∑K

i=1 ni = n. This model is the Multinomial distribution with n trials

and probability vector p = (p1, p2, . . . , pK).

Chagas et al. 4 , using the multivariate Delta method, proved that

√
n[S(p̂)− S(p)] D−−−→

n→∞
N
(
0, ν2p

)
, (28)

where

ν2p =
K∑
i=1

pi(1− pi)(ln pi + 1)2 − 2
K−1∑
j=1

K∑
i=j+1

pjpi(ln pj + 1)(ln pi + 1). (29)
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Asymptotic Distribution PE

The vector of permutation probabilities q = (q1, q2, . . . , qm!) stems from dependent

states and, thus, Eqs. (28) and (29) are the result of a simplification of the problem.

However, an interesting question is assessing the independence assumption’s cost, which

implies a Multinomial distribution. Considering K = m!, the asymptotic means given

in Eq. (19) and (28) are both zero, but the variances are different. After some calculus,

it can be observed the following relation between the asymptotic variances:

σ2
q = ν2q −

m!∑
i=1

(ln qi + 1)2
[
(2m− 2)q2i − 2

m−1∑
ℓ=1

Q
(ℓ)
ii

]
−

2
m!−1∑
i=1

m!∑
j=i+1

(ln qi + 1)(ln qj + 1)

[
(2m− 2)qiqj −

m−1∑
ℓ=1

(
Q

(ℓ)
ij +Q

(ℓ)
ji

)]
. (30)

In the case of white noise where all the qi are equal, ν2q vanishes, but σ2
q does not.

IV. EXPERIMENTS WITH SIMULATED DATA

Throughout this section, we consider m = 3 as the embedding dimension and x a

time series of length T = n + 2. Let N = (N1, N2, . . . , N6) be the vector of symbols’

frequency, where Ni is the number of symbols of type π(i). Note that N is a particular

case of the vector of random variables Z, defined in Eq. (5). Thus, the total number of

symbols is n =
∑6

i=1Ni. In this case, the probability function of the permutations is

q = (q1, q2, . . . , q6) where qi = Ni/n for i = 1, 2, . . . , 6.

In the following, we consider n as a multiple of 6. If x is a white noise time series,

then Ni = n/6 and qi = 1/6 for all i = 1, 2, . . . , 6.

We propose variations of the vector of frequencies given by the following models.

1. One is One (OiO): there exist j, j′ ∈ {1, 2, . . . , 6}, j ̸= j′ such that Nj = 1,

Nj′ = n/3− 1, and Ni = n/6 for i ̸= j, j′.

2. Half and Half (HaH): there exist three components of the vector N equal to Ni =

n/6+a and the other three are equal to Ni = n/6−a, where a ∈ {1, 2, . . . , n/6−1}.

3. Linear (Lin): let n be a multiple of 21; i.e., n = 21b, the components of the vector

N are b, 2b, 3b, 4b, 5b, 6b, not necessarily in this order.

Algorithms 1, 2, and 3 can be used to generate time series with models OiO, HaH,

and Lin, respectively, depending on two parameters, α ∈ R and ϵ > 0. Figure 2 shows

time series of length 128 generated by these algorithms using the following parameters:

• Model OiO: n = 126, α = 0, ϵ = 0.01;

• Model HaH: n = 126, α = 0, a = 7;
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Asymptotic Distribution PE

• Model Lin: b = 6, α = 20, ϵ = 0.01.

Algorithm 1: Time series generation under the OiO model.

Input: n multiple of 6, α ∈ R, ϵ > 0

Output: Time series x length T = n+ 2

x1 ← α + 0.5;

x2 ← α;

x3 ← α + 0.75;

x4 ← α + 1;

x5 ← α + 0.25;

for i = 6, 7, . . . , 2n/3 + 2 do

switch i do

case i ≡ 0(4) do

xi ← α + 0.75;

case i ≡ 1(4) do

xi ← α + 0.25;

case i ≡ 2(4) do

xi ← α + 0.5;

case i ≡ 3(4) do

xi ← α;

for j = 0, 1, . . . , n/3− 1 do

x2T/3+3+j ← α + 0.375− jϵ;
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Asymptotic Distribution PE

Algorithm 2: Time series generation under the HaH model.

Input: n multiple of 6, α ∈ R, a ∈ {1, 2, . . . , n/6− 1}
Output: Time series x length T = n+ 2

x1 ← α;

x2 ← α + 0.5;

β ← α;

L = n/6 + a;

for i = 1, 2, . . . , L do

x3i ← β + 1;

x3i+1 ← β + 0.75;

x3i+2 ← β + 1.25;

β ← x3i+2;

γ ← x3L+1 − 0.25;

for i = 1, 2, . . . , L− 2a do

x3L+3i ← γ;

x3L+3i+1 ← γ − 0.75;

x3L+3i+2 ← γ − 0.5;

γ ← x3L+3i+1 − 0.25;
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Algorithm 3: Time series generation under the Lin model.

Input: b positive integer, α ∈ R, ϵ > 0

Output: Time series x of length T = 21b+ 2

x1 ← α;

x2 ← α− 2;

β ← (x1 + x2)/2;

for i = 0, 1, . . . , b− 1 do

x21i+3 ← β;

x21i+4 ← (x21i+2 + x21i+3)/2;

x21i+5 ← x21i+3 + 0.5;

x21i+6 ← x21i+4 − 0.5;

x21i+7 ← x21i+5 + 0.5;

x21i+8 ← x21i+6 − 0.5;

x21i+9 ← (x21i+7 + x21i+8)/2;

x21i+10 ← x21i+8 − 0.5;

for j = 1, 2, . . . , 7 do

x21i+10+j ← x21i+10 + jϵ;

x21i+18 ← x21i+16 − 0.5;

for ℓ = 1, 2, . . . , 5 do

x21i+18+ℓ ← x21i+18 + ℓϵ;

β ← (x21i+22 + x21i+23)/2;

0.00

0.25

0.50

0.75

1.00

0 50 100
t

x t

0.0

0.3

0.6

0.9

1.2

0 50 100
t

x t

0.4

0.6

0.8

1.0

0 50 100
t

x t

FIG. 2: Examples of time series generated by Algorithms 1 (left), 2 (middle),

and 3 (right).

Table II shows the resulting vectors N and q, corresponding to the simulated time

series. These results are close to the theoretical values.

The asymptotic Permutation Entropy distribution is Normal, whose mean only de-

pends on the vector of permutation probabilities. Then, the mean value is the same for

the actual distribution of the ordinal patterns or the simplified distribution. However,

the asymptotic variance is different. As we can notice by Eqs. (20) and (29), the expres-

sion of the asymptotic variance under the actual distribution of the ordinal patterns is

computationally more involved. Figure 3 shows the values of the asymptotic standard
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TABLE II: Vectors of frequencies and probabilities of the time series shown in Figure 2.

Model N1 N2 N3 N4 N5 N6 q1 q2 q3 q4 q5 q6

OiO 1 21 21 21 21 41 0.0079 0.1667 0.1667 0.1667 0.1667 0.3254

HaH 28 28 28 14 14 14 0.2222 0.2222 0.2222 0.1111 0.1111 0.1111

Lin 36 6 12 24 18 30 0.0476 0.1905 0.0952 0.2381 0.1429 0.2857

deviations for the simulated data in function of the value of n for the actual distribution

of the ordinal patterns and the Multinomial distribution. The difference between them

is smaller as n increases. Moreover, the difference between σ2
q/n and ν2q/n is less than

10−3 for n ≥ 3000 and the model OiO, and for n ≥ 1000 and the models HaH and Lin.

Thus, the ordinal pattern transitions dependence might be sacrificed for the benefit of

the computational cost.
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0.000
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n
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FIG. 3: Asymptotic standard deviations σq/n and νq/n for the models OiO (left),

HaH (middle), and Lin (right).

V. EXPERIMENTS WITH ACTUAL DATA

This section shows the practical application of asymptotic variance as a valuable

tool for distinguishing various dynamics within a set of time series data. Building on

the technical insights introduced in Section IIA, we illustrate its utility by employing

a hypothesis test, initially proposed in Chagas et al. 4 , to contrast different time series

dynamics while assuming the Multinomial model. Leveraging our primary result con-

cerning the asymptotic distribution as defined in (19), we improve that test to encompass

the actual ordinal pattern distribution, incorporating correlation. We then apply this

approach to analyzing meteorological data and biological signals. The results suggest

that this method is promising for classification across diverse research fields grounded in

time-series analysis.
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A. Meteorological time-series

In the present study, we used observations of the following meteorological char-

acteristics: minimum and maximum daily temperatures (in Fahrenheit degrees) and

daily precipitation. The values were measured in Dublin Phoenix Park (Ireland), Ed-

inburgh Royal Botanic Garden (Scotland), and Miami International Airport (United

States of America). These datasets are available at the Climate Data Online website

(https://www.ncei.noaa.gov/cdo-web/), which is supported by the National Oceanic

and Atmospheric Administration (NOAA). We consider the period from 8 August 1992

to 30 December 2019. These daily observations and the frequencies of their ordinal pat-

terns are shown in Fig. 4. It is worth mentioning that tied data present in these time

series are treated using the sequential order. It means that, for example, the sequences

xt = xt+1 < xt+2 and xt < xt+1 = xt+2 are π1-type. The confidence intervals of these

series using the actual distribution of the ordinal patterns and the Multinomial model

are shown in Figure 5, and their lengths are presented in Table III. Since the asymptotic

variances are more significant if we consider the ordinal pattern correlation, these con-

fidence intervals are wider than the ones obtained assuming independence. Notice that

the confidence intervals under the Multinomial model are roughly half the size of the

intervals considering the correlation structure. Such difference may impact the compar-

ison of time series, leading to the rejection of the hypothesis that there is no difference

when, in fact, there is not enough evidence for that.

TABLE III: Confidence intervals under the true and the Multinomial models of the

minimum (top) and maximum (middle) daily temperatures and daily precipitations

(bottom) in Dublin, Edinburgh, and Miami, from 8 August 1992 until 30 December

2019.

Confidence interval length Length

Feature City Mean H True Multinomial difference

Minimum temperature Dublin 0.97680 0.00023 0.00012 0.00011

Edinburgh 0.97946 0.00022 0.00011 0.00011

Miami 0.95747 0.00030 0.00016 0.00014

Maximum temperature Dublin 0.96755 0.00027 0.00014 0.00013

Edinburgh 0.97159 0.00025 0.00013 0.00012

Miami 0.91806 0.00040 0.00022 0.00018

Daily precipitation Dublin 0.92396 0.00040 0.00021 0.00018

Edinburgh 0.90310 0.00044 0.00024 0.00020

Miami 0.78393 0.00058 0.00034 0.00025
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FIG. 4: Minimum (first row) and maximum (second row) daily temperatures, and daily

precipitations (third row) in Dublin, Edinburgh, and Miami, from 8 August 1992 until

30 December 2019. Histograms of the ordinal patterns (last row) of the minimum and

maximum temperatures and precipitations, from left to right.

Dublin and Edinburgh have similar temperate oceanic climates with similar precipi-

tation and temperature regimes. Conversely, the weather conditions in Miami, a tropical

monsoon climate, differ significantly. Table IV shows the p-values of the test that state

the same underlying process as the null hypothesis, assuming the actual distribution of

the ordinal patterns (with correlation) and the Multinomial model (with independence).
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FIG. 5: Confidence intervals under the true (cyan) and the Multinomial (violet) models

of the minimum (left) and maximum (middle) daily temperatures, and daily

precipitations (right) in Dublin, Edinburgh, and Miami, from 8 August 1992 until 30

December 2019.

It can be seen that the decisions of the tests are the same, assuming independence or

not, except for the case of daily precipitation in Dublin and Edinburgh, where the null

hypothesis is rejected at 5% of significance under the Multinomial model. However, they

are not rejected at the same level when considering the correlation among patterns.

TABLE IV: Results of p-values for testing the same dynamic of the meteorological time

series.

Data Model Dublin / Edinburgh Dublin / Miami Edinburgh / Miami

Minimum True 0.7379 4.41× 10−2 1.95× 10−2

Temperature Multinomial 0.5192 1.51× 10−4 1.03× 10−5

Maximum True 0.6627 4.99× 10−5 7.89× 10−6

Temperature Multinomial 0.4098 2.67× 10−13 6.66× 10−16

Precipitation

True 0.1603 8.88× 10−16 4.22× 10−11

Multinomial 0.0102 0.0000 0.0000

B. Biologogical signals

In order to assess the versatility of our approach across various contexts, we conducted

an analysis using a dataset of electrocardiograms (ECGs) sourced from the PhysioNet

platform of the Computational Physiology Laboratory at the Massachusetts Institute of

Technology, available at https://physionet.org/. This dataset encompasses ECGs de-

picting normal sinus rhythm7 and ECGs from patients exhibiting cardiac arrhythmias10.

To illustrate some of the potential benefits of applying our theoretical findings, we

randomly selected ten signals from this repository. Five ECGs corresponded to normal
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rhythm, while the remaining five were associated with arrhythmia. For clarity and

brevity, we standardized the nomenclature of these signals, as presented in Table V.

The subsequent hypothesis test was conducted using the initial 10 000 observations

from each signal, and the results are visualized in Figure 6.

TABLE V: Selected ECG signals.

ECG Group PhysioNet id Our id

Normal rhythm

16265 N1

16273 N2

16420 N3

16786 N4

19830 N5

Arrhythmia

109 A1

116 A2

208 A3

212 A4

222 A5

We applied two tests, one considering the actual model of the ordinal patterns and the

other one under the Multinomial model that assumes independence. The null hypothesis

of our tests states that two time series share the same dynamic. Each ECG record was

compared with the rest of the signals. The decisions are shown in Table VI: “NR”

denotes not a rejection, and “R” is a rejection. It can be noticed that when the actual

model was used, all the ECG with normal rhythm were grouped in the same class. The

same held for the ECG with arrhythmia. Moreover, the null hypothesis was rejected in

most comparisons between a signal with regular rhythm and one with arrhythmia. On

the other hand, when the test was applied assuming independence, the errors of Type I

and Type II increased.

VI. CONCLUSIONS

In this work, we computed the Shannon entropy asymptotic distribution of the or-

dinal patterns obtained from a time series. The overlapping sequences that define the

ordinal patterns induce their serial dependence. Thus, the asymptotic distribution ex-

pression requires a large amount of computational effort. We compared these results with

the Shannon entropy asymptotic distribution of ordinal patterns under the Multinomial

model, which assumes independence. Both asymptotic distributions are Normal with the

same asymptotic mean. We studied the relationship between the asymptotic variances.
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FIG. 6: Selected ECG from PhysioNet database. Normal rhythm: N1, N2, N3, N4, and

N5 (left column from top to bottom). Arrhythmia: A1, A2, A3, A4, and A5 (right

column from top to bottom).
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TABLE VI: Decisions of applying the test under the true model (left) and the

Multinomial model (right); “NR” denotes there is no significant statistical evidence to

reject the null hypothesis, and “R” means that there is.

True Model Multinomial Model

N1 N2 N3 N4 N5 A1 A2 A3 A4 A5 N1 N2 N3 N4 N5 A1 A2 A3 A4 A5

N1 NR NR NR NR NR R R NR NR R N1 NR R R R R R R R R NR

N2 NR NR NR NR R R R R R N2 NR NR NR NR NR NR NR NR NR

N3 NR NR NR R R NR R R N3 NR R R NR NR R R NR

N4 NR NR R R R R R N4 NR NR NR NR NR NR R

N5 NR R R R R NR N5 NR NR NR NR NR R

A1 NR NR NR NR NR A1 NR NR NR NR R

A2 NR NR NR NR A2 NR NR NR R

A3 NR NR NR A3 NR NR R

A4 NR NR A4 NR R

A5 NR A5 NR

We found that: (i) the variance of the actual model is larger than the variance of the

Multinomial model, and (ii) the two variances coincide for a suitable selection of the

time series lengths.

For an embedding dimension equal to 3, we found the explicit expression of the asymp-

totic distribution. We quantified the difference between the asymptotic variances with

serial correlation (the actual model) and under independence (the Multinomial model)

We applied hypothesis tests with and without the independence assumption to mete-

orological time series from three locations, two with similar regimes and a third one

with different climate conditions. Only in one case, concerning the daily precipitation,

does the decision differ. Finally, we applied the same tests to ECG signals with reg-

ular rhythm and arrhythmia. In this case, the independence assumption yields more

cases with a wrong decision on whether to reject the null hypothesis. Accordingly, our

theoretical result is a suitable tool for classifying time series.

Appendix A CONDITIONAL PROBABILITIES

This section presents a detailed computation of the conditional probabilities used in

Section IIA. The results are obtained for ℓ = 1 and m = 3.

• If ψt = π1, xt ≤ xt+1 ≤ xt+2, then there are three possibilities:

■ xt+3 ≤ xt+1 ≤ xt+2, i.e. ψt+1 = π4, provided that xt+3 ≤ xt ≤ xt+1 ≤ xt+2 or

xt ≤ xt+3 ≤ xt+1 ≤ xt+2. Thus, Pr(ψt+1 = π4 | ψt = π1) = 1/2.
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■ xt+1 ≤ xt+3 ≤ xt+2, i.e. ψt+1 = π2, provided that xt ≤ xt+1 ≤ xt+3 ≤ xt+2.

Thus, Pr(ψt+1 = π2 | ψt = π1) = 1/4.

■ xt+1 ≤ xt+2 ≤ xt+3, i.e. ψt+1 = π1, provided that xt ≤ xt+1 ≤ xt+2 ≤ xt+3.

Thus, Pr(ψt+1 = π1 | ψt = π1) = 1/4.

• If ψt = π2, xt ≤ xt+2 ≤ xt+1, then there are three possibilities:

■ xt+3 ≤ xt+2 ≤ xt+1, i.e. ψt+1 = π6, provided that xt+3 ≤ xt ≤ xt+2 ≤ xt+1 or

xt ≤ xt+3 ≤ xt+2 ≤ xt+1. Thus, Pr(ψt+1 = π6 | ψt = π2) = 1/2.

■ xt+2 ≤ xt+3 ≤ xt+1, i.e. ψt+1 = π5, provided that xt ≤ xt+2 ≤ xt+3 ≤ xt+1.

Thus, Pr(ψt+1 = π5 | ψt = π2) = 1/4.

■ xt+2 ≤ xt+1 ≤ xt+3, i.e. ψt+1 = π3, provided that xt ≤ xt+2 ≤ xt+1 ≤ xt+3.

Thus, Pr(ψt+1 = π3 | ψt = π2) = 1/4.

• If ψt = π3, xt+1 ≤ xt ≤ xt+2, then there are three possibilities:

■ xt+3 ≤ xt+1 ≤ xt+2, i.e. ψt+1 = π4, provided that xt+3 ≤ xt+1 ≤ xt ≤ xt+2.

Thus, Pr(ψt+1 = π4 | ψt = π3) = 1/4.

■ xt+1 ≤ xt+3 ≤ xt+2, i.e. ψt+1 = π2, provided that xt+1 ≤ xt ≤ xt+3 ≤ xt+2 or

xt+1 ≤ xt+3 ≤ xt ≤ xt+2. Thus, Pr(ψt+1 = π2 | ψt = π3) = 1/2.

■ xt+1 ≤ xt+2 ≤ xt+3, i.e. ψt+1 = π1, provided that xt+1 ≤ xt ≤ xt+2 ≤ xt+3.

Thus, Pr(ψt+1 = π1 | ψt = π3) = 1/4.

• If ψt = π4, xt+2 ≤ xt ≤ xt+1, then there are three possibilities:

■ xt+3 ≤ xt+2 ≤ xt+1, i.e. ψt+1 = π6, provided that xt+3 ≤ xt+2 ≤ xt ≤ xt+1.

Thus, Pr(ψt+1 = π6 | ψt = π4) = 1/4.

■ xt+2 ≤ xt+3 ≤ xt+1, i.e. ψt+1 = π5, provided that xt+2 ≤ xt ≤ xt+3 ≤ xt+1 or

xt+2 ≤ xt+3 ≤ xt ≤ xt+1. Thus, Pr(ψt+1 = π5 | ψt = π4) = 1/2.

■ xt+2 ≤ xt+1 ≤ xt+3, i.e. ψt+1 = π3, provided that xt+2 ≤ xt ≤ xt+1 ≤ xt+3.

Thus, Pr(ψt+1 = π3 | ψt = π4) = 1/4.

• If ψt = π5, xt+1 ≤ xt+2 ≤ xt, then there are three possibilities:

■ xt+3 ≤ xt+1 ≤ xt+2, i.e. ψt+1 = π4, provided that xt+3 ≤ xt+1 ≤ xt+2 ≤ xt.

Thus, Pr(ψt+1 = π4 | ψt = π5) = 1/4.

■ xt+1 ≤ xt+3 ≤ xt+2, i.e. ψt+1 = π2, provided that xt+1 ≤ xt+3 ≤ xt+2 ≤ xt.

Thus, Pr(ψt+1 = π2 | ψt = π5) = 1/4.

■ xt+1 ≤ xt+2 ≤ xt+3, i.e. ψt+1 = π1, provided that xt+1 ≤ xt+2 ≤ xt ≤ xt+3 or

xt+1 ≤ xt+2 ≤ xt+3 ≤ xt. Thus, Pr(ψt+1 = π1 | ψt = π5) = 1/2.
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• If ψt = π6, xt+2 ≤ xt+1 ≤ xt, then there are three possibilities:

■ xt+3 ≤ xt+2 ≤ xt+1, i.e. ψt+1 = π6, provided that xt+3 ≤ xt+2 ≤ xt+1 ≤ xt.

Thus, Pr(ψt+1 = π6 | ψt = π6) = 1/4.

■ xt+2 ≤ xt+3 ≤ xt+1, i.e. ψt+1 = π5, provided that xt+2 ≤ xt+3 ≤ xt+1 ≤ xt.

Thus, Pr(ψt+1 = π5 | ψt = π6) = 1/4.

■ xt+2 ≤ xt+1 ≤ xt+3, i.e. ψt+1 = π3, provided that xt+2 ≤ xt+1 ≤ xt+3 ≤ xt or

xt+2 ≤ xt+1 ≤ xt ≤ xt+3. Thus, Pr(ψt+1 = π3 | ψt = π6) = 1/2.

Analogously to the previous computations, we proceed as follows for ℓ = 2.

• If ψt = π1, xt ≤ xt+1 ≤ xt+2, then there are six possibilities:

■ xt+2 ≤ xt+3 ≤ xt+4, i.e. ψt+2 = π1, provided that xt ≤ xt+1 ≤ xt+2 ≤ xt+3 ≤
xt+4. Thus, Pr(ψt+1 = π1 | ψt = π1) = (1/4) · (1/5) = 1/20.

■ xt+2 ≤ xt+4 ≤ xt+3, i.e. ψt+2 = π2, provided that xt ≤ xt+1 ≤ xt+2 ≤ xt+4 ≤
xt+3. Thus, Pr(ψt+1 = π2 | ψt = π1) = (1/4) · (1/5) = 1/20.

■ xt+3 ≤ xt+2 ≤ xt+4, i.e. ψt+2 = π3, provided that xt+3 ≤ xt ≤ xt+1 ≤ xt+2 ≤
xt+4, xt ≤ xt+3 ≤ xt+1 ≤ xt+2 ≤ xt+4 or ≤ xt ≤ xt+1 ≤ xt+3 ≤ xt+2 ≤ xt+4.

Thus, Pr(ψt+1 = π3 | ψt = π1) = (3/4) · (1/5) = 0.15.

■ xt+4 ≤ xt+2 ≤ xt+3, i.e. ψt+2 = π4, provided that xt+4 ≤ xt ≤ xt+1 ≤ xt+2 ≤
xt+3, xt ≤ xt+4 ≤ xt+1 ≤ xt+2 ≤ xt+3 or xt ≤ xt+1 ≤ xt+4 ≤ xt+2 ≤ xt+3.

Thus, Pr(ψt+1 = π4 | ψt = π1) = (1/4) · (3/5) = 0.15.

■ xt+3 ≤ xt+4 ≤ xt+2, i.e. ψt+2 = π5, provided that xt+3 ≤ xt+4 ≤ xt ≤ xt+1 ≤
xt+2, xt+3 ≤ xt ≤ xt+4 ≤ xt+1 ≤ xt+2, xt+3 ≤ xt ≤ xt+1 ≤ xt+4 ≤ xt+2,

xt ≤ xt+3 ≤ xt+4 ≤ xt+1 ≤ xt+2, xt ≤ xt+3 ≤ xt+1 ≤ xt+4 ≤ xt+2, or

≤ xt ≤ xt+1 ≤ xt+3 ≤ xt+4 ≤ xt+2. Thus, Pr(ψt+1 = π5 | ψt = π1) = 3!/20.

■ xt+4 ≤ xt+3 ≤ xt+2, i.e. ψt+2 = π6, provided that xt+4 ≤ xt+3 ≤ xt ≤ xt+1 ≤
xt+2, xt+4 ≤ xt ≤ xt+3 ≤ xt+1 ≤ xt+2, xt+4 ≤ xt ≤ xt+1 ≤ xt+3 ≤ xt+2,

xt ≤ xt+4 ≤ xt+3 ≤ xt+1 ≤ xt+2, xt ≤ xt+4 ≤ xt+1 ≤ xt+3 ≤ xt+2 or

≤ xt ≤ xt+1 ≤ xt+4 ≤ xt+3 ≤ xt+2. Thus, Pr(ψt+1 = π6 | ψt = π1) = 3!/20.

• If ψt = π2, xt ≤ xt+2 ≤ xt+1, then there are six possibilities:

■ xt+2 ≤ xt+3 ≤ xt+4, i.e. ψt+2 = π1, there are 3 ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π1 | ψt = π2) = 3/20.

■ xt+2 ≤ xt+4 ≤ xt+3, i.e. ψt+2 = π2, there are 3 ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π2 | ψt = π2) = 3/20.

■ xt+3 ≤ xt+2 ≤ xt+4, i.e. ψt+2 = π3, there are 2 ways to locate xt+3 and 2 ways

to locate xt+4 Thus, Pr(ψt+1 = π3 | ψt = π2) = 1/5.
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■ xt+4 ≤ xt+2 ≤ xt+3, i.e. ψt+2 = π4, there are 2 ways to locate xt+3 and 2 ways

to locate xt+4. Thus, Pr(ψt+1 = π4 | ψt = π2) = 1/5.

■ xt+3 ≤ xt+4 ≤ xt+2, i.e. ψt+2 = π5, there are 3 ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π5 | ψt = π1) = 3/20.

■ xt+4 ≤ xt+3 ≤ xt+2, i.e. ψt+2 = π6, there are 3 ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π6 | ψt = π1) = 3/20.

• If ψt = π3, xt+1 ≤ xt ≤ xt+2, then there are six possibilities:

■ xt+2 ≤ xt+3 ≤ xt+4, i.e. ψt+2 = π1, there is only one way to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π1 | ψt = π3) = 1/20 = 1/20.

■ xt+2 ≤ xt+4 ≤ xt+3, i.e. ψt+2 = π2, there is only one way to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π2 | ψt = π3) = 1/20.

■ xt+3 ≤ xt+2 ≤ xt+4, i.e. ψt+2 = π3, there are 3 ways to locate xt+3 and only

one way to locate xt+4 Thus, Pr(ψt+1 = π3 | ψt = π3) = 3/20.

■ xt+4 ≤ xt+2 ≤ xt+3, i.e. ψt+2 = π4, there are 3 ways to locate xt+4 and only

one way to locate xt+3. Thus, Pr(ψt+1 = π4 | ψt = π3) = 3/20.

■ xt+3 ≤ xt+4 ≤ xt+2, i.e. ψt+2 = π5, there are 3! ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π5 | ψt = π3) = 3!/20.

■ xt+4 ≤ xt+3 ≤ xt+2, i.e. ψt+2 = π6, there are 3! ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π6 | ψt = π3) = 3!/20.

• If ψt = π4, xt+2 ≤ xt ≤ xt+1, then there are six possibilities:

■ xt+2 ≤ xt+3 ≤ xt+4, i.e. ψt+2 = π1, there are 3! ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π1 | ψt = π4) = 3!/20.

■ xt+2 ≤ xt+4 ≤ xt+3, i.e. ψt+2 = π2, there are 3! ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π2 | ψt = π4) = 3!/20.

■ xt+3 ≤ xt+2 ≤ xt+4, i.e. ψt+2 = π3, there is only one way to locate xt+3 and 3

ways to locate xt+4 Thus, Pr(ψt+1 = π3 | ψt = π4) = 3/20.

■ xt+4 ≤ xt+2 ≤ xt+3, i.e. ψt+2 = π4, there 3 ways to locate xt+3 and only one

way to locate xt+4. Thus, Pr(ψt+1 = π4 | ψt = π4) = 3/20.

■ xt+3 ≤ xt+4 ≤ xt+2, i.e. ψt+2 = π5, there is only one way to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π5 | ψt = π4) = 1/20.

■ xt+4 ≤ xt+3 ≤ xt+2, i.e. ψt+2 = π6, there is only one way to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π6 | ψt = π4) = 1/20.

• If ψt = π5, xt+1 ≤ xt+2 ≤ xt, then there are six possibilities:

23

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
71

50
8



Asymptotic Distribution PE

■ xt+2 ≤ xt+3 ≤ xt+4, i.e. ψt+2 = π1, there are 3 ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π1 | ψt = π5) = 3/20.

■ xt+2 ≤ xt+4 ≤ xt+3, i.e. ψt+2 = π2, there are 3 ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π2 | ψt = π5) = 3/20.

■ xt+3 ≤ xt+2 ≤ xt+4, i.e. ψt+2 = π3, there are 2 ways to locate xt+3 and 2 ways

to locate xt+4 Thus, Pr(ψt+1 = π3 | ψt = π5) = 1/5.

■ xt+4 ≤ xt+2 ≤ xt+3, i.e. ψt+2 = π4, there are 2 ways to locate xt+3 and 2 ways

to locate xt+4. Thus, Pr(ψt+1 = π4 | ψt = π5) = 1/5.

■ xt+3 ≤ xt+4 ≤ xt+2, i.e. ψt+2 = π5, there are 3 ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π5 | ψt = π5) = 3/20.

■ xt+4 ≤ xt+3 ≤ xt+2, i.e. ψt+2 = π6, there are 3 ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π6 | ψt = π5) = 3/20.

• If ψt = π6, xt+2 ≤ xt+1 ≤ xt, then there are six possibilities:

■ xt+2 ≤ xt+3 ≤ xt+4, i.e. ψt+2 = π1, there are 3! ways to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π1 | ψt = π6) = 3!/20.

■ xt+2 ≤ xt+4 ≤ xt+3, i.e. ψt+2 = π2, there are 3! ways to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π2 | ψt = π6) = 3!/20.

■ xt+3 ≤ xt+2 ≤ xt+4, i.e. ψt+2 = π3, there are 3 ways to locate xt+4 and only

one way to locate xt+3 Thus, Pr(ψt+1 = π3 | ψt = π6) = 3/20.

■ xt+4 ≤ xt+2 ≤ xt+3, i.e. ψt+2 = π4, there are 3 ways to locate xt+3 and only

one way to locate xt+4. Thus, Pr(ψt+1 = π4 | ψt = π6) = 3/20.

■ xt+3 ≤ xt+4 ≤ xt+2, i.e. ψt+2 = π5, there is only one way to locate xt+3 ≤ xt+4.

Thus, Pr(ψt+1 = π5 | ψt = π6) = 1/20.

■ xt+4 ≤ xt+3 ≤ xt+2, i.e. ψt+2 = π6, there is only one way to locate xt+4 ≤ xt+3.

Thus, Pr(ψt+1 = π6 | ψt = π6) = 1/20.
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