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Quantum correlations of a two-dimensional electron gas with Rashba spin-orbit coupling
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We study the correlations of a two-dimensional electron gas with Rashba spin-orbit coupling (SOC). We
obtain the two-particle density matrix and use it to derive the exchange hole. We find a nontrivial correlation
for electrons with opposite spin projections that does not occur without Rashba SOC. The two-particle density
matrix allows us to further study the quantum correlations of the system. We use it to obtain the concurrence
and the entanglement of formation in order to quantify the entanglement of the electron spins. Additionally, we
calculate the quantum discord and compare it with the entanglement and classical correlations.
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I. INTRODUCTION

Entanglement is a key concept in quantum mechanics that
has been extensively studied in the context of quantum in-
formation and computing [1,2]. It has also emerged as a
significant phenomenon in many-body physics [3], encom-
passing various aspects such as quantum spin systems [4–6],
the Kondo effect [7,8], the fractional quantum Hall effect
[9–11], and spins of a noninteracting electron gas [12,13],
among others. Correlation functions are essential in describ-
ing the physical phenomena of many-body systems; therefore,
it is logical to investigate the connection between entangle-
ment and correlation functions.

Quantum discord [14,15] is another type of quantum corre-
lation that measures the difference between quantum mutual
information and classical correlations. This correlation has
been demonstrated to be useful for certain quantum technol-
ogy tasks [16,17], and it is also of theoretical interest, as it
characterizes quantum correlations using a different approach
than the traditional entangled versus separable state classi-
fication. It has also been useful for studying the degree of
correlation in some many-body systems [18–20].

Another topic of great interest is the Rashba effect [21–27],
which is a type of spin-orbit coupling (SOC) that occurs in
nanostructures that lack structural inversion symmetry. In the
growing research field of spintronics [28] the Rashba SOC is a
fundamental tool which allows precise control of the electron
spin using electric fields. Since this system shares the many-
body nature of electron gases, it is of basic interest to study
the correlations in this context.

An important concept in many-body physics is the ex-
change hole for fermions, which arises due to the Pauli
exclusion principle. This basic type of correlation exists even
in the absence of interaction between particles. The exchange
hole can be obtained from the two-particle density matrix of
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the system, as it results from the correlation between two elec-
trons. More recently, several correlation measures have been
developed in quantum information theory to study bipartite
two-level states [29]. In this paper, we investigate the tradi-
tional concept of the exchange hole in many-body physics,
as well as modern measures of correlation used in quantum
information theory, for a two-dimensional electron gas with
Rashba SOC.

This paper is organized as follows. In Sec. II we obtain the
two-particle density matrix of a two-dimensional electron gas
(2DEG) with Rashba SOC. In Sec. III we derive and calculate
the spin pair correlation function and the Hamiltonian eigen-
basis pair correlation function, and we discuss the possible
experimental detection of the described effects. In Sec. IV,
we further study the two-particle spin density matrix using
concurrence and the entanglement of formation in order to
quantify the entanglement between the spins of two electrons.
We also calculate the quantum discord of the electron spins
and compare it with entanglement and classical correlations.
Finally, Sec. V is devoted to the conclusions.

II. TWO-ELECTRON SPIN DENSITY MATRIX

Our system of interest is a two-dimensional electron gas
with Rashba SOC in the x-y plane. The one-particle Hamilto-
nian without Coulomb interaction is

Ĥ = − h̄2∇2

2m∗ + α(kyσx − kxσy), (1)

where α is the Rashba coupling constant and m∗ is the
effective mass of the electrons. The eigenenergies and eigen-
functions of this Hamiltonian are given by

E (k, γ ) = h̄2k2

2m∗ + γ kα, (2)

ψkγ (r) = 1√
2A

eik·r
(

γ ie−iϕ

1

)
. (3)

As expected, the Rashba SOC breaks spin degeneracy in the
energy [Eq. (2)], as two separate branches arise depending
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on the spin projection γ . Another characteristic feature of
the Rashba SOC is that the direction of spin quantization is
perpendicular to the momentum vector k.

To treat the many-particle problem it is convenient to
use the second quantization formalism. The diagonal second-
quantized Hamiltonian of a 2D electron gas with Rashba SOC
is given by

ĤR =
∑
kγ

[
h̄2k2

2m∗ + γ kα

]
ĉ†

kγ ĉkγ , (4)

where ĉ†
kγ creates a particle in an eigenstate of the one-particle

Hamiltonian [Eq. (1)].
We consider the case where the electronic density is suf-

ficiently high (n > m∗2α2/π h̄4) so that both energy branches
are populated with electrons. In this case the noninteracting
many-particle ground state is given by

|�0〉 =
k+

F∏
|k|

ĉ†
k+

k−
F∏

|k|
ĉ†

k−|0〉. (5)

Notice that this ground state has two Fermi surfaces, which
are two circles with radii k+

F and k−
F .

We will now calculate the two-particle density matrix. By
definition, its matrix element, up to a normalization constant,
is

ρss′;tt ′ = 〈�0|
̂†
t ′ (r′)
̂†

t (r)
̂s(r)
̂s′ (r′)|�0〉, (6)

where 
̂†
s (r) is the field operator that creates a particle at r

with spin projection s in the x̂ direction. The field operators
can be written as


̂s(r) =
∞∑

k=0

eik·r
√

2A
âks =

∑
k,k′,γ ′

eik·r
√

2A
〈φk,s|ψk′,γ ′ 〉ĉk′γ ′

=
∑

k,k′,γ ′

eik·r
√

2A

∫ ∞

0
dr′2φks(r′)∗ψk′γ ′ (r′)ĉk′γ ′

=
∑
k,γ ′

eik·r

2
√

2A
(γ ′ieiφk + s)ĉkγ ′, (7)

where â†
ks creates a particle in the state φk,s, which is an eigen-

state of an electron without Rashba SOC with momentum k
and spin projection s in x̂. In Eq. (7) we express the operator
âks in terms of the Rashba operators ĉk′γ ′ and their eigenstates
ψk′,γ ′ . Replacing the field operators in Eq. (6) using Eq. (7),
we obtain

ρss′;tt ′ =
∑
kγ

∑
k′γ ′

∑
l′σ ′

∑
lσ

1

26A2
e−i(k−l)·re−i(k′−l′ )·r′

× (t ′ − γ ieiφk )(t − γ ′ieiφk′ )

× (s + σ ′ie−iφ−l′ )(s′ + σ ie−iφl )

× (δklδk′l′δγσ δγ ′σ ′ − δkl′δk′lδγσ ′δγ ′σ ). (8)

Here we used the anticommutation relations of the creation
and annihilation operators {ĉ†

k,γ , ĉk′,γ ′ } = δkk′δγ γ ′ . Taking the
sums to the integral limit and normalizing with Tr(ρ) = 1,

we obtain

ρR = 1

4 − 2c

⎛
⎜⎜⎜⎜⎝

1 − f 2
1 f1 f2 − f1 f2 f 2

2

f1 f2 1 − f 2
2 − f 2

1 f1 f2

− f1 f2 − f 2
1 1 − f 2

2 − f1 f2

f 2
2 f1 f2 − f1 f2 1 − f 2

1

⎞
⎟⎟⎟⎟⎠, (9)

with c = f 2
1 + f 2

2 , and the spin basis B = {|↑↑〉, |↑↓〉,
|↓↑〉, |↓↓〉}, with the spin direction of quantization x̂. Here
f1 and f2 are defined by

f1 = 2[k+
F J1(k+

F |r − r′|) + k−
F J1(k−

F |r − r′|)]
|r − r′|[k+2

F + k−2
F

] , (10)

f2 = π
[
k+

F (H0J1 − H1J0)|k+
F |r−r′|

]
|r − r′|[k+2

F + k−2
F

]
− π

[
k−

F (H0J1 − H1J0)|k−
F |r−r′ |

]
|r − r′|[k+2

F + k−2
F

] . (11)

Jn are the Bessel functions of the first kind, and Hn are the
Struve functions of the first kind. Notice that if we set α = 0,
then k+

F = k−
F = kF , and

f̃1 = 2

|r − r′|kF
J1(kF |r − r′|),

f̃2 = 0. (12)

Using this in Eq. (9), we recover the known two-electron
density matrix with no Rashba SOC ρNR [12]:

ρNR = 1

4 − 2 f̃ 2
1

⎛
⎜⎜⎜⎜⎝

1 − f̃ 2
1 0 0 0

0 1 − f̃ 2
1 0

0 − f̃ 2
1 1 0

0 0 0 1 − f̃ 2
1

⎞
⎟⎟⎟⎟⎠. (13)

III. PAIR CORRELATION FUNCTIONS

A. Spin pair correlation function

The two-particle density matrix is related to the pair corre-
lation function Rss′ by ρss′;ss′ = (4 − 2c)Rss′ , where the factor
(4 − 2c) is included to keep the normalization. The usual
interpretation of Rss′ is that of a conditional probability of
finding an electron at (r, s) given that there is another one
at (r′, s′) [30,31]. Clearly, this conditional probability Rss′

depends on the distance between the electrons |r − r′|. When
s = s′, the electrons avoid each other due to the Pauli ex-
clusion principle. Each electron is surrounded by a region
where the probability of finding another electron with equal
spin is smaller than 1, which is known as the exchange hole.
This correlation produces the first-order energy correction for
the interacting electron gas, which can be interpreted as the
Coulomb interaction of the electrons with the positive charge
of the hole, reducing the overall energy of the system.

As an example to illustrate the effects studied in this work,
we use the values of Rashba coefficient and effective mass
corresponding to the surface alloy Bi/Ag(111) [32]. They are
α = 3.05 × 10−11 eV m and m∗ = 0.35m0, and we take an
electronic density of n = 6.25 × 1011 cm−2, with an associ-
ated radius r0 = (

√
πn)−1 = 7.14 × 10−7 cm.
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FIG. 1. Pair correlation function Rss′ versus the relative distance
of electrons for a 2DEG with (solid line) and without (dashed line)
Rashba SOC. In (a) the spins of electrons are parallel, while in (b) the
spins are antiparallel.

In Fig. 1(a), we present the traditional exchange hole for
two electrons with equal spin projection R↑↑ for a 2DEG
without Rashba SOC, RNR

↑↑ = 1 − f̃ 2
1 , and with Rashba SOC,

RRashba
↑↑ = 1 − f 2

1 . Note that the Rashba SOC seems to reduce
the size of the exchange hole. More striking is the correlation
R↑↓ [Fig. 1(b)], which in the case without Rashba is constant
and equal to 1 (no correlation). With Rashba SOC we find
a nontrivial correlation for two electrons with opposite spins
R(Rashba)

↑↓ = 1 − f 2
2 . This strange correlation appears because

the spin part of the one-particle solution of the Rashba Hamil-
tonian (4) depends on the direction of the momentum vector
k. This dependence on k prevents the field operator in Eq. (6)
from fully localizing the spin projection. That is because
when 
̂s(r) acts on the ground state, the sum in momentum
goes up to kγ

F since ĉkγ |�0〉 = 0 for |k| > kγ
F [see the last

line of Eq. (7)]. The truncated sum produces a state which
does not have complete uncertainty in momentum and, as a
consequence, does not have a completely determined position
and spin. The same happens without Rashba SOC, but in
this case the spin direction is always well defined, and thus,
the effect of this delocalization appears in only R↑↑. If we
consider a higher electronic density n, now kγ

F is also larger
to accommodate those new electrons. As a consequence the

FIG. 2. Hamiltonian eigenbasis pair correlation function Rγ γ ′

versus the relative distance of electrons for all combinations of γ

and γ ′ and also, for comparison, spin pair correlation function R↑↑
for a 2DEG with (solid line) and without (dashed line) Rashba SOC.

wave function of the electrons will be more localized, and
for both cases the exchange hole will be smaller. In the limit
of infinite density R(Rashba)

↑↓ = R(NR)
↑↓ = 1, and R↑↑ will be 1

everywhere except at the point where r = r′, respecting the
Pauli exclusion principle.

B. Hamiltonian eigenbasis pair correlation function

Another pair correlation function which at first sight seems
natural is

Rγ γ ′ = 〈�0|
̂†
γ ′ (r′)
̂†

γ (r)
̂γ (r)
̂γ ′ (r′)|�0〉, (14)

where 
̂†
γ (r) = ∑∞

k ψ
†
kγ

(r)c†
kγ

. Here γ is the quantum num-
ber that is used in Eq. (2) to label the two energy branches.
Calculating this function, we obtain

Rγ γ ′ = 1 − δγ γ ′
π2H2

0 J2
1 − 2π2H0H1J0J1 + π2H2

1 J2
0 + 4J4

1

kγ 2
F |r − r′|2 ,

(15)

where the Struve and Bessel functions are evaluated at kγ
F |r −

r′|. It is clear that there is no correlation for opposite values
of γ and γ ′ (R+− = R−+ = 1). Additionally, there are two
different nontrivial correlations, R++ and R−−, as shown in
Fig. 2. The density used for Fig. 2 was larger than the one used
in Fig. 1 in order to show them all together. The difference in
size between R++ and R−− arises from the fact that to con-
struct R++, one uses field operators that sum all the states with
γ = +, corresponding to all states in momentum space inside
a disk of radius k+

F , which is smaller than the disk used to
construct R−− (k+

F < k−
F ). Having fewer momentum states in

the sum corresponds to a more spread out state in position, re-
sulting in a larger overlap in the wave function of the electrons
and thus a larger exchange hole. This correlation function
exhibits a behavior similar to the one for a 2DEG without
Rashba SOC in the sense that it does not show correlations
for opposite values of γ . However, while it is mathematically
acceptable, it does not have the physical interpretation of the
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spin pair correlation function, which represents the probability
of finding an electron at a specific position and spin, given that
there is another electron at a different position with equal or
opposite spin. This is because the quantum number γ does
not contain any information about the spin state of an electron
created with 
̂†

γ (r).
There is also an issue with Rγ γ ′ concerning an important

sum rule that the pair correlation function must satisfy (see
Appendix 4 in Ref. [31]). The sum rule is given by∫

n(r)[R(r) − 1]dr =
∫

h(r)dr = −1, (16)

with h = n(R − 1) and

R =
∑
ss′

Rss′nsns′

n2
. (17)

We calculated this sum rule numerically for the pair correla-
tion function obtained from the density matrix in Eq. (9) and
for the one defined in Eq. (15); the results were −0.99993 and
−2.0279, respectively.

C. Experimental detection

In principle, the pair correlation function has measurable
effects. Although measuring R directly is difficult, one can
measure the static structure factor of the electron gas, which
is related to R by

S(q) = 〈n̂−qn̂q〉
N

= 1 + n
∫

(R(r) − 1)e−iq·rdr, (18)

and its spin-resolved counterpart,

Sss′ (q) = 〈n̂−q,sn̂q,s′ 〉
N

= ns

n
+ nsns′

n

∫
(Rss′ (r) − 1)e−iq·rdr. (19)

Both versions would differ from the 2DEG without Rashba
SOC; however, the spin-resolved one would have a significant
difference as S(NR)

↑↓ = 0, meaning there are no features, in
contrast to the case with Rashba SOC, for which we would
find some nontrivial structure in S(Rashba)

↑↓ . The problem with
measuring this quantity is that we have not accounted for the
correlations induced by the Coulomb interaction. These corre-
lations would considerably affect both S↑↑ and S↑↓. This effect
has to be taken into account in order to properly discriminate
the exchange and Coulomb correlations. They can be calcu-
lated using quantum Monte Carlo, as done in Ref. [33]. The
spin-resolved structure factor for a Fermi gas was measured
using Bragg spectroscopy [34]. However, to the best of our
knowledge, no experiment of this kind has been carried out
for a 2DEG with Rashba interaction. An experimental mea-
surement of the spin-resolved static structure factor could, in
principle, show the effects presented here.

IV. QUANTUM CORRELATION MEASURES

The pair correlation function is useful for understanding
the consequences of the exchange symmetry of electrons and
how correlations can arise even without interactions. How-
ever, it does not distinguish between classical and quantum

correlations, like entanglement or quantum discord. Under-
standing the nature of the correlations of identical fermions
is still a topic of active research [35].

In this section we apply modern quantum information
measures in order to explore the nature of the correlations
produced by the exchange symmetry. Correlation measures
in quantum information theory have been well developed for
two-qubit states. These states are described by a density ma-
trix mathematically equivalent to the one we obtained with
Eq. (6). Effectively, we trace the entire system except for
two electrons, which can be viewed as two qubits [3,12,36].
Thus, we can apply all the machinery developed in quantum
information to our system.

A. Entanglement

In order to calculate the entanglement of the density matrix
given in Eq. (9), we use the partial transposition criterion
[37,38]. This criterion states that a density matrix ρ of two
qubits is entangled iff ρT2 � 0, or, equivalently, ρT2 have
non-negative eigenvalues. The partial transpose is defined as
ρ

T2
ss′;tt ′ = ρst ′;ts′ . The result of applying this criterion is that

f 2
1 + f 2

2 � 1/2. As long as this relationship holds, entangle-
ment is present. This condition is valid for a region where
0 � |r − r′| � re. Consequently, any two electrons within a
disk of radius re will exhibit entanglement in spin.

To quantify the entanglement of the two electrons, we use
two related measures of entanglement: concurrence and the
entanglement of formation. The concurrence of a mixed state
ρ is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (20)

where λi are the square roots of the eigenvalues of ρρ̃ in
descending order. Here ρ̃ is the result of applying the spin-flip
operation to ρ,

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). (21)

Concurrence is a monotonic function which is zero iff the
state is separable. Also, an entangled state ρ has concurrence
greater than zero, and C(ρ) = 1 iff ρ is a maximally entangled
state.

Using concurrence, it is possible to obtain an exact formula
for calculating the entanglement of formation of a two-qubit
state,

E = h

(
1 +

√
(1 − C2)

2

)
, (22)

where h is the Shannon entropy. Entanglement of formation
is an entropic measure of entanglement which is more phys-
ically motivated than concurrence. It uses the singlet state
|�〉 = (|↑↓〉 − |↓↑〉)/

√
2 as an entanglement unit. The entan-

glement of any other state will then be defined by relating it
to this entanglement unit. For a complete explanation of these
measures see Refs. [38,39].

Now we compute these measures for the two-particle den-
sity matrix of the 2DEG with Rashba SOC. First, we calculate
the concurrence

C = max

{
0,

3|c − 1| − (c + 1)

2(c − 2)

}
, (23)
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FIG. 3. Quantum mutual information I (solid line), concurrence
C (dotted-dashed line), and entanglement of formation (EoF; dashed
line) versus the relative distance between electrons for a 2DEG with
Rashba SOC.

where c = f 2
1 + f 2

2 , as defined in Sec. II. With this result, it is
easy to obtain the entanglement of formation using Eq. (22).
These results are shown in Fig. 3.

Notice that we have obtained a finite value for the en-
tanglement distance re for both the concurrence and the
entanglement of formation. When the separation between
electron pairs becomes larger than this distance, entangle-
ment disappears. On the other hand, the exchange hole does
not exhibit a cutoff value; instead, Rss′ approaches unity as
the distance between electrons becomes infinitely large (see
Fig. 1). This observation indicates the presence of other types
of correlations besides entanglement.

To distinguish between entanglement and other correla-
tions, we utilized the quantum mutual information, defined as
I (ρAB) = S(ρA) + S(ρB) − S(ρAB). In general, the quantum
mutual information is a positive value, representing the differ-
ence between the sum of the uncertainties of each subsystem
and the uncertainty in the complete system. The quantum
mutual information becomes zero only when the joint state
can be expressed as a product state of each subsystem, i.e.,
when ρAB = ρA ⊗ ρB. In such cases, there are no correlations
between the subsystems. This positive quantity serves as a
measure of the shared information stored in the joint state ρAB,
indicating the amount of correlation between the subsystems.
The quantum mutual information results in our system:

I (ρ) = 2 +
(

1 + c

4 − 2c

)
log2

(
1 + c

4 − 2c

)

+ 3

(
1 − c

4 − 2c

)
log2

(
1 − c

4 − 2c

)
, (24)

and it is shown as a solid line in Fig. 3. We see that the quan-
tum mutual information vanishes as |r − r′| → ∞, similar to
what happens to the correlations associated with the exchange
hole (see Fig. 1). Indeed, in the case of the exchange hole, as
|r − r′| → ∞, the pair correlation functions Rss′ approach a

FIG. 4. Entanglement of formation versus the relative distance
between electrons for a 2DEG with (solid line) and without (dashed
line) Rashba SOC. The Rashba SOC seems to reduce the entangle-
ment of the spins of the electrons.

value of 1, which indicates the decay of correlations between
the two electrons at very large separations.

The concurrence and the entanglement of formation show
a maximum at |r − r′| = 0 (see Fig. 3). The state that cor-
responds to this maximum can be obtained directly from the
density matrix [Eq. (9)] and is |φ〉 = (|↑↓〉 − |↓↑〉)/

√
2, the

singlet state, which is a maximally entangled state for two
spins. When the distance between the electrons increases, the
triplet states start to appear in the density matrix, reducing
the overall entanglement, up to re, where entanglement dis-
appears. However, there are still correlations in the density
matrix after re, until |r − r′| → ∞. In this limit, the density
matrix becomes proportional to the identity; all states of the
basis are equally likely, and therefore, the correlations disap-
pear.

In the case without Rashba SOC, the condition for en-
tanglement of electron spins is given by f̃ 2

1 � 1/2. The
entanglement of formation was calculated, and a comparison
of this measure was made for both systems, as shown in
Fig. 4. The entanglement is smaller in the system with Rashba
SOC, and also the radius of entanglement re decreases. Like
what happens for the exchange hole, the difference between
entanglement for the two systems disappears when n → ∞
since f2 → 0, f1 → f̃1, and ρR → ρNR.

B. Quantum discord

Quantum discord Q(ρAB) is a kind of quantum correlation
that arises from the nature of measurements in quantum me-
chanics, which in general alter the state of the system. The
mutual information quantifies the correlations between the
components of a system and can be computed in two related
ways, both of which yield the same result in classical systems.
However, in quantum mechanics, the natural generalizations
of these two definitions often lead to conflicting results, giving
rise to quantum discord. The crucial distinction lies in the fact
that one extension, known as the quantum mutual information
I (ρAB), does not involve any measurement, whereas the other
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generalization, referred to as classical correlation C(ρAB), re-
quires a measurement in one subsystem.

Quantum discord is thus defined as Q(ρAB) = I (ρAB) −
C(ρAB). The classical correlations [14,40,41] are defined by

C(ρAB) = sup
{Bk}

I (ρAB|{Bk}), (25)

where {Bk} describe a von Neumann measurement for subsys-
tem B and I (ρAB|{Bk}) is the quantum mutual information in
terms of the conditional entropy of having measured k, that is,

I (ρ|{Bk}) = S(ρA) − S(ρ|{Bk}),

S(ρ|{Bk}) =
∑

k

pkS(ρk ), (26)

which depends on the density operator associated with the
measurement result k:

ρk = 1

pk
(I ⊗ Bk )ρ(I ⊗ Bk ), (27)

where pk = Tr[(I ⊗ Bk )ρ(I ⊗ Bk )] to keep normalization.
The maximization involved in calculating the classical cor-

relations [Eq. (25)] turns out to be complicated for a general
bipartite two-level state; however, some simpler cases have
been solved analytically [42,43]. For our system the density
matrix [Eq. (9)] has two parameters, f1 and f2. We already
have the quantum mutual information [Eq. (24)], so we need
to calculate the classical correlations [Eq. (25)] to get the
quantum discord.

First, we write the density matrix in terms of Pauli matri-
ces:

ρ = I

4
+ 1

4 − 2c

[− f 2
1 + f 2

2

2
(σx ⊗ σx + σz ⊗ σz )

− f 2
1 + f 2

2

2
σy ⊗ σy + f1 f2(−σx ⊗ σz + σz ⊗ σx )

]
.

(28)

Now we have to calculate the density matrix ρk after a
measurement on subsystem B and the probability pk to cal-
culate the classical correlations. Following the procedures in
Refs. [42,43], we obtain

C(ρ) = 1 − c

2 − c
log2

(
2 − 2c

2 − c

)
+ 1

2 − c
log2

(
2

2 − c

)
, (29)

and the quantum discord is given by

Q(ρ) = 2 +
(

1 + c

4 − 2c

)
log2

(
1 + c

4 − 2c

)
+ 3

(
1 − c

4 − 2c

)

× log2

(
1 − c

4 − 2c

)
− 1 − c

2 − c
log2

(
2 − 2c

2 − c

)

− 1

2 − c
log2

(
2

2 − c

)
. (30)

The quantum discord, concurrence, and classical correlations
Ccl are shown in Fig. 5. In contrast to entanglement (given
by the concurrence), quantum discord goes to zero smoothly
as a function of |r − r′|. The classical correlations are always

FIG. 5. Quantum discord Q (solid line), concurrence C (dashed
line), and classical correlation Ccl (dot-dashed line) versus the rela-
tive distance between electrons for a 2DEG with Rashba SOC.

smaller than quantum discord. The relationship between quan-
tum discord and entanglement is less clear, but it is interesting
that there are states which are separable (zero concurrence)
and still have nonzero quantum discord. The relations between
quantum discord, concurrence, and the classical correlations
are qualitatively the same as those obtained from a Werner
state [42–44], which is the state obtained from the density
matrix of a 2DEG without Rashba SOC [Eq. (13)].

V. CONCLUSIONS

We calculated the two-particle density operator for a two-
dimensional electron gas with Rashba spin-orbit coupling.
From this operator, we derived the pair correlation function
and compared it with the case without Rashba SOC. The
antisymmetrization of the wave function of electrons creates a
correlation between electrons of equal spin projection, which
is present in both cases. This correlation can be explained by
the fact that for both systems, electrons are not completely
localized in position, and if they are sufficiently close to one
another, their wave functions have a nonzero overlap. This
is known as the exchange hole, which is a basic concept in
many-body physics.

More strikingly, we found an additional correlation be-
tween electrons of opposite spin that occurs only in the system
with Rashba SOC. This correlation is less intuitive and is due
to the fact that the spin projection is not well defined. This
result could, in principle, be measured via the spin-resolved
static structure factor, which is directly related to the pair
correlation function.

To further understand the correlation described by the pair
correlation function and to quantify the entanglement of the
electron pair, we used concurrence and the entanglement of
formation, two measures employed in quantum information
theory. We obtained a condition for the entanglement of two
electron spins ( f 2

1 + f 2
2 � 1/2) which defines a disk with a

radius re. Any two electrons inside this disk will be entangled
in spin. We found that the entanglement is maximum when
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the relative distance between electrons is zero, and then it de-
creases as the distance between electrons becomes larger. The
entanglement of formation, as shown in Fig. 4, was calculated
for a 2DEG with and without Rashba SOC, and it shows a
reduction in the entanglement distance in the case with Rashba
SOC.

Finally, we calculated the quantum discord of the system,
which is a measure of quantum correlations fundamentally
different from entanglement. As shown in Fig. 5, concur-
rence is greater than quantum discord for small separations of
electrons, but for larger distances, quantum discord becomes
dominant, and it smoothly goes to zero as the electrons get
farther apart. The relationship between quantum discord, con-
currence, and classical correlations is qualitatively the same as
for a Werner state, which is the state obtained by the density

operator of a 2DEG without Rashba SOC [Eq. (13)]. We can
conclude that Rashba SOC quantitatively changes modern
correlation measures. On the other hand, the introduction of
Rashba SOC does not qualitatively change the correlations or
the relations among them. However, for the more traditional
exchange hole, we found an unexpected correlation for elec-
trons of different spin projections that does not appear in a
2DEG without Rashba SOC.
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