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Abstract: In the extension of Maxwell equations based on the Aharonov–Bohm Lagrangian, the e.m.
field has an additional degree of freedom, namely, a scalar field generated by charge and currents that
are not locally conserved. We analyze the propagation of this scalar field through two different media
(a pure dielectric and an ohmic conductor) and study its property over a frequency range where the
properties of the media are frequency-independent. We find that an electromagnetic (e.m.) scalar
wave cannot propagate in a material medium. If a scalar wave in vacuum impinges on a material
medium it is reflected, at most exciting in the medium a pure “potential” wave (which we also call a
“gauge” wave) propagating at c, the speed of light in vacuum, with a vector potential whose Fourier
amplitude is related to that of the scalar potential by ωA0 = kφ0, where ω2 = c2|k|2.

Keywords: extended electrodynamics; gauge symmetry; fields theory; electromagnetic waves; ohmic
conductors; dielectrics

1. Introduction

The extension of Maxwell equations according to the Lagrangian proposed by Aharonov
and Bohm has been widely studied in recent years, both theoretically and from the point of
view of possible applications. This extension is quite natural and was actually introduced
with various motivations and technical approaches, even before the work by Aharonov
and Bohm [1–8]. For recent reviews and developments, see [9–21].

The extended theory is also called “scalar electrodynamics”, because a crucial role
is played in it by a scalar field which is not present in Maxwell theory and represents in
fact a further degree of freedom of the e.m. field. The uniqueness of the extended theory,
under the usual assumptions of regularity and relativistic invariance, has been proven by
Woodside [6]. The Aharonov–Bohm action is characterized by a reduced gauge invariance
(see [9]) and has been investigated until now only at the classical level, except (under some
restrictive assumptions) in the work by Jimenez and Maroto [22]. Energy and momentum
conservation has been studied in detail in [17].

The scalar field, which in this work will be denoted by S, can be expressed in terms of
the e.m. potentials as S = µ0ε0∂tφ +∇ ·A. Due to the reduced gauge invariance, S cannot
be set identically to zero like in Maxwell theory, but its occurrence is rare because its source
is the “extra-current” I = ∂tρ +∇ · J, a quantity which is different from zero only where
charge is not locally conserved.

For classical sources, within a particle-like description of charge and current where
it is always possible to “count” the particles crossing a given surface in a given time,
violations of local charge conservation are inconceivable. For quantum sources, however,
the concept of exact localization of particles is replaced by the concept of probability
expressed through a wavefunction, and the expectation values of physical quantities are
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subjected to uncertainties, also in macroscopic wavefunctions like those of, e.g., tunnelling
Josephson junctions [17].

Moreover, even though in the solutions of the Schrödinger equation with a local
potential and in free quantum field theory the local conservation of probability is guar-
anteed, several physical systems are described by Schrödinger equations with non-local
potentials [23–30] or by renormalized quantum field theories where anomalies cannot be
excluded [31–33]. Some first-principles numerical calculations of the currents in molec-
ular devices have shown anomalies in local conservation, whose interpretation is still
unclear [34–39]. Certain anomalies might be dismissed as artefacts of the mathematical
models, but then, how is it possible in quantum mechanics to speak of a reality beyond
mathematical models?

The conclusion is, in our opinion, that the generation of an e.m. scalar field S by
quantum systems is rare but cannot be excluded. This process is described by the extended
theory in vacuum in a relativistically invariant way and does not involve any violation
of causality. A detailed calculation of the radiation field generated by anomalous sources
oscillating at high frequency in extended electrodynamics has been performed in [18].

The next big question is: what happens when the scalar field encounters some medium
and propagates in it? The answer is not simple, because the behavior of a scalar field is
markedly different from the familiar behavior of electric and magnetic fields. Moreover,
the presence of a scalar field usually implies (in vacuum) the presence of a longitudinal
component in propagating electric fields. A simple-minded approach to this issue can lead
to paradoxes, as we will show in the following (Section 2.3). For a full description one
must take into account the propagation equations of the potentials φ, A, and the startling
conclusion is the following (Section 2.4): the scalar field cannot enter a medium in which
local conservation of charge holds, and correspondingly the longitudinal component of E
also vanishes in the medium. This is true both for insulating dielectrics and for conductors
in which j = σE, at least in the range of frequencies where the conductivity σ can be
regarded as independent from the frequency. Only a “pure potential” wave propagates
in the medium, with zero scalar field and zero longitudinal electric field. In Section 3 we
compute in detail reflection and transmission of all field components at a vacuum-material
interface, obtaining the usual Fresnel relations plus the conditions for the potential waves.
Finally, Section 4 contains our conclusions and outlook.

2. Aharonov–Bohm Electrodynamics in a Material Medium

In Section 2.1 of this Section we recall the extended field equations in vacuum, in the
presence of free charges. The non-Maxwellian scalar field S which appears in the equations
can only be generated by charge and currents which are not locally conserved (Equation (9)).
Therefore we shall suppose that somewhere outside the medium there exist such sources for
S. On the other hand, we assume that in the medium which the propagating fields encounter,
local conservation does hold true, both for the free charges and currents (ρ, j) and for
the molecular charges and currents (ρm, jm), related to polarization and magnetization
in the medium. This assumption allows to reduce the complexity of the problem to an
acceptable level. One could, more generally, estimate the higher order corrections due to
the possible failure of local conservation also inside the medium; such corrections turn out
to be very small.

In Section 2.2, we write the extended field equations in a medium and their general
solution in plane waves, which exhibits an apparent paradox concerning the longitudinal
electric component EL0. The paradox is resolved in Section 2.4, where we solve the equa-
tions for the potentials φ, A, distinguishing between the case of a pure dielectric without
losses and the case of an ohmic conductor. We show that in both cases, one has in the
medium S = 0 and consequently EL0 = 0.
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2.1. Extended Field Equations in Vacuum

In this section, we write the field equations of the extended Aharonov–Bohm electro-
dynamics in vacuum, in the presence of free charges and currents (ρ, j) which do not satisfy
everywhere the continuity relation ∂tρ +∇ · J = 0. These equations look like extended
Maxwell equations in the sense that they contain a scalar field S giving rise to an additional
scalar source ∂tS for ∇ · E in the first Equation (1a) and to an additional vector source
∇S for ∇× B in the fourth Equation (1d). From the second and third Equations (1b,c),
which are unchanged compared to Maxwell’s formulation, it follows that E and B can be
expressed in terms of the potentials φ, A in the usual way (1e) and (1f). Finally, one defines
S as S = µ0ε0∂tφ +∇ ·A (Equation (1g)). It is understood that the Lagrangian of the field
is here the Aharonov–Bohm Lagrangian with reduced gauge invariance, so that, in general,
it is not easy to choose the gauge in such a way as to obtain S = 0. (See the Appendix A for
the Lagrangian in covariant form and also for covariant expressions of the field equations
and of the residual gauge invariance).

The extended equations valid in vacuum are, in summary,

∇ · E =
ρ

ε0
− ∂S

∂t
, (1a)

∇ · B = 0, (1b)

∇× E = −∂B
∂t

, (1c)

∇× B = µ0ε0
∂E
∂t

+ µ0j +∇S, (1d)

E = −∇φ− ∂A
∂t

, (1e)

B = ∇×A, (1f)

S = µ0ε0
∂φ

∂t
+∇ ·A. (1g)

The energy–momentum density tensor of the field has been derived in [17]. For
instance, the energy density is given by

u =
1

µ0

(
1

2c2 |E|
2 +

1
2
|B|2 + 1

c2 φ∂tS−A · ∇S− 1
2

S2
)

, (2)

with the corresponding energy flux being

Su =
1

µ0
(E× B− φ∇S + A∂tS). (3)

2.2. Extended Field Equations in a Medium

Let us consider a medium with molecular charge density ρm and molecular current
density jm connected to the magnetization field M and the polarization field P by the
usual relations

ρm = −∇ · P, jm = ∇×M + ∂tP (4)

These expressions satisfy by construction local conservation:

∂tρm +∇ · jm = 0 (5)

We suppose that the molecular parts of the charge density and of the current density
are well defined, as distinguished from the free parts, since we are in the absence of
ionization processes.

Summarizing, in this subsection we use the following hypothesis: (1) validity of
Aharonov–Bohm electrodynamics; (2) inclusion of the charge and current sources, both
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molecular and free, using standard textbook relations for linear, homogeneous, isotropic
media. We recall, and stress, that those relations imply local charge conservation. From
these hypotheses, we are going to derive the equations for the electromagnetic fields and
scalar in a material medium.

After including the sources (4) in Equation (1a,d), and defining in the familiar way the
auxiliary vectors D and H as

D = ε0E + P, (6)

H = B/µ0 −M, (7)

we obtain the field equations

∇ ·D = ρ− ε0
∂S
∂t

, (8a)

∇ · B = 0, (8b)

∇× E = −∂B
∂t

, (8c)

∇×H =
∂D
∂t

+ j +
1

µ0
∇S. (8d)

plus the equation for S (consistent with the local conservation of the molecular sources):

µ0ε0
∂2S
∂t2 −∇

2S = µ0

(
∂ρ

∂t
+∇ · j

)
. (9)

Using the usual constitutive relations for a homogeneous, isotropic medium

D = εE, B = µH (10)

one has the system

∇ · E =
ρ

ε
− ε0

ε

∂S
∂t

, (11a)

∇ · B = 0, (11b)

∇× E = −∂B
∂t

, (11c)

∇× B = µε
∂E
∂t

+ µj +
µ

µ0
∇S. (11d)

As already discussed at the beginning of this section, we note that in accordance with
Equation (9), the scalar field has sources only where the free charge is not locally conserved.
In particular, in the present work, we suppose that S does not have any sources in the
material medium considered.

Our approach is consistent with our assumption that S is not generated in the medium
but can have sources outside the medium. In principle, if S is non-interacting, then one can
suitably re-define ρ and j. However, in our approach this is not possible in general, because
we admit that S can have other sources (outside the medium) and, therefore, is not free.
Therefore it makes sense to prove, as we do in the following, that in the medium S is not
only free but actually zero.

2.3. Wave Solution for the Electric Field in a Conductive Medium and the Dissipation Paradox

In this subsection, we further use the standard relation between free current and
electric field through the conductivity of the medium, stressing again that this current is
conserved (its divergence is associated to a time varying charge density, as dictated by the
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charge continuity equation), and we look for propagating wave solutions for the electric
field.

Let us suppose that there is an ohmic linear relation between current density and
electric field, namely

j = σE (12)

and that local conservation also holds, as previously discussed, for any free charges in the
medium, namely

∂tρ +∇ · j = 0 (in the medium) (13)

By eliminating the magnetic and scalar fields among these equations, one obtains
the relation

∇2E + µεω2E = −iωµσE−
(

i
σ

ωε

µε

µ0ε0
+

µε

µ0ε0
− 1
)
∇(∇ · E). (14)

The usual transverse mode ET = ET0 exp(ik · x), with k · ET0 = 0, satisfies

∇ · ET = 0,

∇× ET = ik× ET ,

so that the corresponding dispersion relation is

k2 = µεω2
(

1 + i
σ

εω

)
. (15)

Note that in a good conductor at microwave frequencies σ
εω � 1, implying a strong

dissipation of the transverse mode. The consideration of microwave frequency here is only
for convenience of possible experiments and in order to be in a regime dominated by the
electrical conductivity (the opposite limit corresponding to a dielectric). At much larger
frequencies, about the electron plasma frequency, the conductivity is strongly frequency-
dependent.

By replacing into Equation (14) a longitudinal mode with Fourier amplitude EL0
proportional to k, one obtains the relation(

ω2 − k2

µ0ε0

)(
1 + i

σ

εω

)
k · EL0 = 0,

from which, under the assumption that k · EL0 6= 0, would result the dispersion relation
k2 = µ0ε0ω2. This result is rather surprising because it shows no decay, while a decay
should be present, since the power dissipated per unit volume is j · E = σ|E|2, which
has a positive time average. The answer to this paradox can be obtained considering the
equations for the potentials (Section 2.4), which show that there is actually no electric
field (so that the assumption k · EL0 6= 0 is incorrect), and no scalar field either, in the
longitudinal mode in a material medium. It turns out that this mode is a “pure potential”,
or “gauge” wave, with zero fields, and zero power. The same happens in a dielectric
without losses; by this, we mean a material with real permittivity, or in other words, the
regime considered corresponds to the transparent region of dielectrics.

2.4. Equations for the Potentials and Solution of the Paradox

We can derive from the system (8) the equations satisfied by the potentials, using that

E =
1
ε0
(D− P) = −∇φ− ∂A

∂t
,

B =
1

µ0
(H + M) = ∇×A,

S = µ0ε0
∂φ

∂t
+∇ ·A,
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resulting in

µ0ε0
∂2φ

∂t2 −∇
2φ =

1
ε0
($−∇ · P), (16a)

µ0ε0
∂2A
∂t2 −∇

2A = µ0

(
j +∇×M +

∂P
∂t

)
, (16b)

as one could have expected from the fact that the sources of E and B are the total (free plus
molecular) charge and current densities.

From these equations, again with the constitutive relations D = εE, B = µH, one
readily obtains

µ0ε0
ε0

ε

∂2φ

∂t2 −∇
2φ =

ρ

ε
+
(

1− ε0

ε

) ∂

∂t
(∇ ·A), (17a)

µε
∂2A
∂t2 −∇

2A = µj +
(

µ

µ0
− 1
)
∇(∇ ·A)

+µε
( ε0

ε
− 1
)
∇
(

∂φ

∂t

)
. (17b)

If we apply these equations to a dielectric without losses, the amplitudes of the Fourier
modes satisfy(

k2 − µ0ε0
ε0

ε
ω2
)

φ0 =
(

1− ε0

ε

)
ω(k ·A0),(

k2 − µεω2
)

A0 =

(
1− µ

µ0

)
(k ·A0)k + µε

( ε0

ε
− 1
)

ωkφ0.

The transverse mode corresponds to an ordinary transverse electromagnetic wave in
the gauge φ = 0, ∇ ·A = 0, propagating at the speed of light in the medium: k2 = µεω2.

The longitudinal mode has the dispersion relation of a wave in vacuum:
k2 = µ0ε0ω2. However, the remarkable point is that the Fourier amplitude of the scalar:
S0 = i(k ·A0 − µ0ε0ωφ0), turns out to be zero for the corresponding longitudinal mode,
and, consequently, also the longitudinal electric field is zero.

In the case of a conducting medium with the locally conserved current j = σE, the
equations for the Fourier amplitudes are

(
k2 − µ0ε0

ε0

ε
ω2
)

φ0 =
(

1− ε0

ε

)
ω(k ·A0) + i

σ

ε

(
k ·A0 −

k2

ω
φ0

)
,(

k2 − µεω2
)

A0 =

(
1− µ

µ0

)
(k ·A0)k + µε

( ε0

ε
− 1
)

ωkφ0

+iµσ(ωA0 − kφ0).

The corresponding transverse mode is of course (15), and the longitudinal one the
previously found paradoxical relation k2 = µ0ε0ω2, but again, as in the case of the dielectric,
one has S0 = 0, and zero longitudinal electric field (and thus no dissipation, resolving
the paradox).

In both, dielectric and conductor, the dispersion relation of the longitudinal mode,
k2 = µ0ε0ω2, corresponds to a wave of pure potentials, with zero fields, in which the vector
and scalar potentials are related by ωA0 = kφ0, with corresponding S0 = k · EL0 = 0. We
will denote this wave of pure potentials a “gauge” wave.

These results indicate that a scalar field wave cannot propagate in a material medium
in which local conservation of charge holds. If such a wave in vacuum converges on a
medium it should be reflected, at most exciting in the medium a gauge wave propagating at
the speed of light in vacuum. Ordinary transverse waves propagating in the material and in
vacuum are, in general, also generated, as studied in some detail in the following Section.
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3. Reflection and Transmission of Waves at the Vacuum-Material Interface
3.1. Incident Scalar Wave

We consider a scalar field wave in vacuum incident on a material surface at an angle
θi, relative to the external normal. We consider the scalar wave to have scalar and vector
potentials φi and Ai, so that for the Fourier mode amplitudes we have

S0i = −iωφ0i + iki ·A0i,

with corresponding longitudinal electric field E0i = −ikiφ0i + iωA0i.
At the interface we must consider the presence of the incident wave (i), reflected ones

(r), and transmitted ones (t). As discussed above, the longitudinal transmitted one must be
a “gauge” wave, with

ωA0t = ktφ0t.

We must, in general, allow for the generation of usual transverse radiation by the
induced currents (free and/or of polarization). We know from the results in the previous
Section that the transverse radiation in the medium has only a potential vector, which for
the Fourier amplitude of the transmitted wave we denote A0t, with wave–vector kt, of
angle θt. Without loss of generality, we consider the reflected normal radiation also to be
determined by only a transverse potential vector (The most general transverse mode in
vacuum can be considered as the superposition of a wave with only a transverse vector
potential, and a gauge wave, with a longitudinal vector potential and a scalar potential
whose Fourier amplitudes are related by ωA0 = kφ0. The same can be said of any other
mode that has the dispersion relation k2 = µ0ε0ω2, since the addition of the gauge wave
does not change the corresponding fields (this is the reason of the name chosen for this
wave)), whose Fourier amplitude is denoted as A0r, with wave-vector kr, and angle θr. The
reflected radiation also has a longitudinal component, in which a possible gauge component
of the transverse reflected wave can be included.

Since the frequency ω is the same for all waves, and all longitudinal, as well as the
normal radiation in vacuum, have the same dispersion relation: k2 = µ0ε0ω2, the matching
condition at the interface, which requires the equality of the components parallel to the
surface of all wave-vectors, indicates that the angles between wave-vectors and surface
normal are all equal for these four waves; that is, θr = θr = θi, the usual law of reflection,
and θt = θi (no refraction of the longitudinal transmitted wave). On the other hand, the
transverse transmitted wave has the dispersion relation k2 = µεω2, so that the matching
condition is in this case √

µε sin θt =
√

µ0ε0 sin θi, (18)

the usual Snell law.
The continuity of the potentials at the interface requires (c is the speed of light

in vacuum)

A0i + A0r + A0r = A0t + A0t, (19a)

φ0i + φ0r = φ0t = cA0t, (19b)

where A0t refers to the amplitude of the component of the vector potential, which is in the
direction of its wave-vector:

A0t = A0t
kt

|kt|
.

Additional boundary conditions are the continuity of the tangential component of the
electric field, resulting from Equation (11c), and the continuity of the normal component of
B, which is identically satisfied as it is zero at both sides. Finally, from Equation (8) we have,
for a dielectric, the continuity of the normal component of D, and that of the tangential
component of H. For a conductor, the same equations indicate that the normal component
of E in vacuum must be equal to Σ/ε0, with Σ the surface charge density at the interface,
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and that the tangential component of B in vacuum is equal to µ0KT , with KT the tangential
component of the surface current density at the interface. Note that Σ and KT are related
by (∇T represents the tangential derivative)

∂Σ
∂t

+∇TKT = 0.

Of course, in the case of a conductor there is no transmitted normal radiation (A0t = 0).
We refer to Figure 1 for the explicit expressions of the boundary conditions. The vector

potentials of the longitudinal modes have components in the direction of their respec-
tive wave-vectors, and those of the transverse modes have components in the directions
explicitly denoted in the figure.

q
i q

r

q
t

q
t

k
i

k
r

k
t

k
t

A
r

A
t

Figure 1. Sketch of the incident (i), reflected (r), and transmitted (t) waves at the interface
between vacuum (below) and material medium (above). The overline denotes the transverse
component parameters.

In the case of a dielectric medium the set of boundary conditions is then written as:

A0i sin θi + A0r sin θi + A0r cos θi = A0t sin θi − A0t cos θt,

A0i cos θi − A0r cos θi + A0r sin θi = A0t cos θi + A0t sin θt,

(cA0i − φ0i + cA0r − φ0r) sin θi + cA0r cos θi = −cA0t cos θt,

(−cA0i + φ0i + cA0r − φ0r) cos θi − cA0r sin θi = − ε

ε0
cA0t sin θt,

A0t sin θi =
µ

µ0
A0r sin θt,

φ0i + φ0r = φ0t,

which is to be completed with the Snell law (18).



Symmetry 2023, 15, 1119 9 of 15

For the case of a conductor we have A0t = 0, and the boundary conditions are

A0i sin θi + A0r sin θi + A0r cos θi = A0t sin θi,

A0i cos θi − A0r cos θi + A0r sin θi = A0t cos θi,

(cA0i − φ0i + cA0r − φ0r) sin θi + cA0r cos θi = 0,

ik(−cA0i + φ0i + cA0r − φ0r) cos θi − ikcA0r sin θi =
Σ0

ε0
,

ikA0r = µ0KT0,

φ0i + φ0r = φ0t,

to be completed by
cΣ0 = KT0 sin θi.

The solution of these systems results in all Fourier amplitudes given in terms of those
of the incident wave, φ0i and A0i.

For the case of a dielectric we give the expressions of the generated wave amplitudes
for the case of high-frequency waves, in particular optical frequencies, so that the mag-
netization is negligible (µ ' µ0), and the refraction index is thus given by n =

√
ε/ε0:

φ0r = (φ0i − cA0i)

(
n2 − 1

)
sin2 θi

n2 cos2 θi + cos θi

√
n2 − sin2 θi

, (20a)

φ0t = cA0t = φ0i + φ0r, (20b)

A0r = A0i − φ0i/c + φ0r/c, (20c)

A0r = (φ0i/c− A0i)
2n2 sin θi

n2 cos θi +
√

n2 − sin2 θi

, (20d)

A0t =
A0r

n
, (20e)

In the case of a conductor we have

φ0r = (φ0i − cA0i) tan2 θi, (21a)

φ0t = cA0t = φ0i + φ0r, (21b)

A0r = (A0i − φ0i/c + φ0r/c), (21c)

A0r = 2(φ0i/c− A0i) tan θi. (21d)

The extra source I involved in the reflection and transmission of the longitudinal wave
can be easily determined from the wave equation of the scalar field

µ0ε0
∂2S
∂t2 −∇

2S = µ0 I,

integrated in the conventional pill-box to give for the Fourier amplitudes (k = |ki| = |kr|)

µ0Γ0 = ik cos θi(S0i − S0r)

= −k2 sin θi

(
A0i −

φ0i
c
− A0r +

φ0r

c

)
,

where the Fourier amplitude Γ0 is related to that of the extra source by Γ0 = I0δ, with δ
the depth of the region occupied by the non-conserved current. The remarkable result is
that for both, dielectric and conductor, the required extra source is zero. This means that
the ordinary sources in the medium are sufficient to generate the mode conversion of the
incident scalar wave, leading to no propagation of a scalar wave in the bulk of the medium.
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The only possible longitudinal mode transmitted is a gauge wave, as shown by the second
equation in each of relations (20) and (21).

3.2. Incident Transverse Field Wave

For the usual Maxwell transverse field wave, the fields satisfy the Fresnel relations
for reflected and transmitted waves, in the case of a dielectric, and the reflected field laws
in case of a conductor. In Aharonov–Bohm electrodynamics, we must also consider the
behavior of the corresponding potentials. For this, we must take into account that the
potentials of a transverse field wave correspond to a superposition of a pure transverse
vector potential and a gauge wave. We thus denote the incident wave potentials Fourier
amplitudes by A0i, for the transverse vector potential, and φ0i = cA0i for the potentials of
the gauge wave. Correspondingly, the reflected transverse field wave have a transverse
vector potential amplitude A0r, and gauge part with potentials φ0r = cA0r. In case of a
dielectric, there is also a transmitted transverse field wave, with transverse vector potential
A0t, and gauge component with potentials φ0t = cA0t.

The polarization of the incident wave must also be taken into account. We thus divide
the problem into one with a polarization with magnetic field parallel to the interface, and
another with electric field parallel to the interface. See Figure 2 for the conventions used in
the case with B parallel to the interface. As before, the transverse component of the vector
potentials are in the directions indicated in the figure, while their longitudinal components
are in the direction of their corresponding wave-vectors.
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Figure 2. Convention used for the case of a dielectric with a transverse incident wave whose
polarization corresponds to the magnetic field parallel to the interface (normal to the plane of
the figure).

We consider first the case of a dielectric.
For a polarization with the magnetic field of the wave parallel to the interface, the

conditions of continuity of potentials and of the fields, as determined by Equation (8), are
then written as

−A0i cos θi + A0i sin θi + A0r sin θi + A0r cos θi = A0t sin θi − A0t cos θt,

A0i sin θi + A0i cos θi − A0r cos θi + A0r sin θi = A0t cos θi + A0t sin θt,

A0i cos θi − A0r cos θi = A0t cos θt,

µ
(

A0i + A0r
)

sin θt = µ0 A0t sin θi,
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which, for the case of high-frequency waves (µ ' µ0, n =
√

ε/ε0), result in :

A0r = A0i
n2 cos θi −

√
n2 − sin2 θi

n2 cos θi +
√

n2 − sin2 θi

,

A0t = A0i
2n cos θi

n2 cos θi +
√

n2 − sin2 θi

,

A0r =
φ0r

c
= A0i

(
n2 − 1

)
sin θi

n2 cos θi +
√

n2 − sin2 θi

,

A0t =
φ0t

c
= A0i + A0r.

For a polarization with the electric fields parallel to the interface, we refer to Figure 3
for the conventions used in this case,

A0i + A0r = A0t,

A0i − A0r = A0t,

A0i + A0r = A0t,

µ0 A0t sin θi cos θt = µ
(

A0i − A0r
)

cos θi sin θt,

resulting in

A0t =
φ0t

c
= A0i,

A0r =
φ0r

c
= 0,

A0r = A0i
cos θi −

√
n2 − sin2 θi

cos θi +
√

n2 − sin2 θi

,

A0t = A0i
2 cos θi

cos θi +
√

n2 − sin2 θi

.

q
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Figure 3. Convention used for the case of a dielectric with a transverse incident wave whose
polarization corresponds to the electric field parallel to the interface (normal to the plane of the figure).
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For a conductor, in the case of polarization with the magnetic field parallel to the
interface the continuity conditions give

−A0i cos θi + A0i sin θi + A0r sin θi + A0r cos θi = A0t sin θi,

A0i sin θi + A0i cos θi − A0r cos θi + A0r sin θi = A0t cos θi,

A0i − A0r = 0,

with the result

A0t =
φ0t

c
= A0i + A0i tan θi,

A0r =
φ0r

c
= A0i tan θi,

A0r = A0i.

If the polarization of the wave is with the electric fields parallel to the interface the
boundary conditions are

A0i + A0r = A0t,

A0i − A0r = A0t,

A0i + A0r = 0,

with the result

A0t =
φ0t

c
= A0i,

A0r =
φ0r

c
= 0,

A0r = −A0i.

The transverse vector potential components in the relations obtained in this Subsection
correspond to fields that satisfy the above mentioned known laws for the Maxwell trans-
verse waves: Fresnel relations for a dielectric medium, and reflection laws for a conductor.
The most remarkable result is the generation of transmitted and reflected gauge waves
when a Maxwell transverse wave interacts with a dielectric or a conductor.

4. Conclusions

In this work, we have analyzed with some detail the interaction of different waves,
possible in the extended electrodynamics of Aharonov–Bohm, with material media in which
the local conservation of current (free and/or molecular) holds. A particularly interesting
result is the difficulty of the transmission through those media of the longitudinal modes
that, according to that theory, are possible in vacuum. Only the so-called “gauge waves”
propagate in the medium, as shown in Section 3.1.

We have regarded the scalar field as a possible additional degree of freedom because,
even though it is determined by the scalar and vector potentials, its dynamical equation
has as a source an additional scalar quantity, that determines the degree of local non-
conservation of charge.

In our treatment of the sources in the material medium, we have used conventional,
accepted expressions used in the literature. We thus made clear that we are studying
Aharonov–Bohm electrodynamics in conventional media, and that this is only the first, natu-
ral step in dealing with a still unconventional theory. In fact, the existence of non-conserved
sources is still a controversial matter. We anticipate to study those non-conventional
sources in future works. In the present work, we limit ourselves to conventional me-
dia in order not to introduce additional hypotheses, still not completely accepted by the
scientific community.
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It is important to mention that the gauge wave is not just a pictorial representation
of the reduced gauge freedom of the theory, as could be used, for instance, to represent
the addition of such a wave to another type of wave in order to effect an allowed change
of its gauge, without change of the wave fields (electric, magnetic and scalar). According
to the theory, a gauge wave can be generated and detected by itself. In other words, the
theory allows pure gauge waves, without another accompanying type of wave, as physical
entities that can in principle be generated and detected.

As can be seen from Equations (20) and (21), when such a pure gauge wave reaches
a medium (that is, the only incident potentials satisfy φ0i = cA0i) it is fully transmitted
without generation of additional waves. This is, of course, consistent with it not interacting
with media in which local conservation of charge holds.

Concerning the generation of a gauge wave, from the results for a transverse wave
incident in a medium, we see that a normal transverse wave can generate a gauge wave
when it interacts with that medium. Consider, for instance, the potentials of a normal
transverse wave generated by an oscillating elementary dipole p(t) (assumed at the origin
of coordinates). These potentials have been computed in [17]:

φ(x, t) =
µ0c
4πr

.
p(t− r/c) · n,

A(x, t) =
µ0

4πr
.
p(t− r/c),

where r = |x|, and n = x/r.
As discussed in [17], unlike in the Maxwell theory, the wave equations for the poten-

tials are uniquely determined in the Aharonov–Bohm theory. The residual gauge freedom
of the theory (see the Appendix A) allows to add sourceless wave solutions to satisfy
boundary conditions when it is more practical to work in terms of these conditions than
in terms of the actual sources that give rise to the potentials. The conclusion is that no
actual gauge freedom exists in AB theory if the sources are fully known. The limited gauge
freedom left is in fact a flexibility of the theory that allows to work in terms of boundary
conditions when, from a practical point of view, the actual sources are difficult to determine.

From the previous equations, we see that for a given propagation direction n, there is
a field-transverse wave consisting in the superposition of a transverse vector potential (I is
the identity matrix)

A⊥(x, t) =
µ0

4πr
.
p(t− r/c) · (I− nn),

and a gauge wave with

A‖(x, t) =
φ(x, t)

c
=

µ0

4πr
.
p(t− r/c) · n.

In particular, we see that in the direction of the dipole, a pure gauge wave is emitted,
while at right angles, what is emitted is a pure transverse vector potential. For intermediate
angles a mixture of components is involved. Interaction of the waves emitted at these
intermediate angles with a medium would thus generate gauge waves, additional to those
emitted in the direction of the dipole.

In this context, we would like to point out again that what one denotes as the
gauge freedom of Aharonov–Bohm electrodynamics has a different meaning from that
in Maxwell’s. In the latter theory, even if all electromagnetic sources are known, one is
still free to select different gauges. In the former theory, however, if all sources are known
(in the example above the only source is an elementary dipole), the gauge is completely
determined. The reduced gauge freedom allows only to include “incoming” potentials (as
boundary conditions) generated by sources other than those in the region considered. In
this way, the gauge wave components determined in the example of the dipole are unique,
a consequence of the theory that lends further support to the “reality” of the gauge wave.
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As for the detection of a pure gauge wave, from the results in [17], one concludes
that this type of wave can only interact with media in which the extra source I is not zero,
resulting in a power per unit volume w = −Iφ, exchanged between the wave and the
medium supporting the extra current, that could be detected as changes in currents and
voltages in the circuit. Collective quantum effects are likely required for this [20].

Since specific examples of such a circuit require detailed models of media in which
charge is not locally conserved, an area in which much theoretical and experimental work
is needed, we postpone the discussion of the matter to a future work.

Author Contributions: Conceptualization: F.M., G.M.; formal analysis: F.M., G.M.; writing: F.M.,
G.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Open Access Publishing Fund of the Free University of
Bozen-Bolzano.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated or analysed during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Covariant form of the A.-B. Lagrangian and of the Field Equations

The Aharonov–Bohm Lagrangian in SI units is, including an interaction term

LA.−B. = −
1

4µ0
FµνFµν − λ

2µ0
(∂µ Aµ)2 + Aµ jµ, (A1)

where Fµν = ∂µ Aν − ∂ν Aµ as usual.
The reduced gauge transformations are of the form

Aµ → Aµ + ∂µχ, with ∂µ∂µχ = 0 (A2)

The covariant field equations can be written in the form

∂µFµν = µ0(jν + iν) (A3)

iν = −∂ν(∂2)−1(∂α jα), (A4)

where ∂2 represents the d’Alembert operator (∂µ∂µ). Notice that the field equations do not
depend on the parameter λ.

In summary, the Aharonov–Bohm Lagrangian has a reduced gauge symmetry com-
pared to the Maxwell Lagrangian, but fully preserves the relativistic covariance.
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