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Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to 
infectious diseases. Good hive management including the occasional application of antibiotics can help mit-
igate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control 
disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for dis-
ease management as well as to support hive health and sustainability within the apicultural industry. We draw 
attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such 
as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or 
partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest bene-
ficial microbes could be an effective method for improving disease resistance in honey bees. However, colony 
level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally 
designed to test defined microbial compositions against specific diseases of interest.
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Introduction

The European honey bee Apis mellifera is among the most commer-
cially important insects to human well-being; it is heavily utilized 
in crop pollination services, an agricultural role that is essential 
to sustaining a fresh and healthy food supply (Klein et al. 2007). 
Despite this role, the global population of honey bees suffer from 
high overwinter mortality and it has become increasingly difficult 
to manage these insects in a sustainable manner (Potts et al. 2010, 
Vanbergen and Initiative 2013, Daisley et al. 2022a). There is there-
fore worldwide interest in developing new tools and techniques that, 
if practical, can complement best practice in commercial and small-
scale beekeeping (Steinhauer et al. 2021).

One major factor that challenges bee vitality on a global scale is 
exposure to pests and pathogens, which require skilled monitoring 
and management to stave off loss of product or loss of whole colo-
nies (McMenamin and Genersch 2015). The control of contagious 
disease through prescribed application of antibiotics is well known in 

beekeeping but this practice, though well intended, can adversely af-
fect the bee’s own gut microbiome. The composition of the honey bee 
gut microbiome varies with caste, age, and environment (Martinson 
et al. 2012, Jones et al. 2018) but generally consists of a core set of 
relatively few (6–10) dominant phylotypes (Bonilla-Rosso and Engel 
2018) that, when unperturbed, represent a steady state of bee gut 
symbioses (Moran et al. 2012). Microbial imbalance can thus disrupt 
the bee’s ability to activate innate defenses, extract nutrients from 
feed or to detoxify environmentally acquired pollutants (Daisley et 
al. 2020a, Chmiel et al. 2021). Moreover, the routine application of 
antibiotics can in the long term generate resistant pathogens (Roberts 
1996, Piva et al. 2020, Obshta et al. 2023) and lead to further off-
target effects in the hive, such as trace pharmaceutical residue in wax 
and honey. Ironically, application of antibiotics can indirectly increase 
susceptibility to other diseases (Raymann et al. 2017, Daisley et al. 
2020a, Powell et al. 2021). For these reasons, access to antibiotics is 
increasingly restricted (Croppi et al. 2021).
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Probiotics represent a relatively new approach to disease man-
agement that may circumvent some of these issues and otherwise 
improve the health of managed honey bee colonies (Vásquez et al. 
2012, Alberoni et al. 2016, Alonso-Salces et al. 2017, Abdi et al. 
2023), provided the science behind this effort is sound and fully 
published in scientific journals (Chmiel et al. 2021, Damico et al. 
2023). For example, probiotics may bolster queen productivity, stim-
ulate innate immune responses in larvae or adults, or otherwise pro-
vide functional support to the bee’s own native microbiome (Daisley 
et al. 2020a). These beneficial effects may be especially helpful to 
beekeepers following dysbiosis from antibiotic treatment or an-
other disease-associated setback (Raymann et al. 2017, Daisley et al. 
2020c). Here we highlight progress relevant to the control of micro-
bial diseases in beekeeping, with a focus on American foulbrood and 
other gut-borne diseases that afflict honey bees. We draw attention 
to kefir and other fermented products as a potential source of bene-
ficial microbes with disease-fighting properties that might ultimately 
be integrated into apicultural management strategies.

Probiotic Approaches to Control Bee Disease

A myriad of disease-causing pests, parasites, and pathogens can 
impact honey bee survival (Hristov et al. 2020). From a microbial 
standpoint, the organisms primarily involved in colony loss in-
clude those of bacterial (e.g., Paenibacillus larvae, Melissococcus 
plutonius), fungal (e.g., Ascosphaera apis, Vairimorpha [Nosema] 
ceranae), and viral (e.g., deformed wing virus, acute bee paralysis 
virus, chronic bee paralysis virus) origin. Recent reviews have com-
prehensively characterized the global distribution (Pasho et al. 2021) 
and virulence mechanisms of these microbial pathogens (Boncristiani 
et al. 2021). So far, probiotic studies have mostly assessed the ef-
fect of oral supplementation (especially lactic acid bacteria) and fo-
cused on diseases that infect the honey bee intestinal tract such as 
American foulbrood (AFB), European foulbrood (EFB), chalkbrood, 
and Nosemosis.

American Foulbrood
American foulbrood is a larval disease caused by the spore-forming 
bacterium Paenibacillus larvae (Genersch, 2010). The onset of dis-
ease occurs when spores, once ingested by young bee larvae (first or 
second instar), germinate in the midgut and proliferate in their vege-
tative growth phase. Bacteria then invade the hemocoel and degrade 
the larvae into a brown, glue-like liquid (De Graaf et al. 2006, Yue et 
al. 2008). If symptoms are not recognized and colonies incinerated, 
the pathogen can remain an active source of new infections and 
can spread to distant hives (Lindström et al. 2008). Further, as host 
nutrients are exhausted and diseased comb dries out, the patho-
genic bacteria can encyst onto beekeeping equipment in the form of 
endospores that may lay dormant with the potential to re-activate 
for decades (Hasemann 1961). Paenibacillus larvae is therefore a sig-
nificant pathogen of honey bee larvae (Ebeling et al. 2016).

What factors trigger the onset of asymptomatic-to-symptomatic 
foulbrood in living hives can vary with genotype (ERIC types I-IV) 
and is somewhat enigmatic (Alvarado et al. 2013) but may include 
interactions between P. larvae and other microbes found in the bee 
gut or broader hive environment (Erban et al. 2017, Daisley et 
al. 2022b), as appears to be the case for pathogen Melissococcus 
plutonius and the onset of a similar disease, European foulbrood 
(Floyd et al. 2020). Bee management would ideally consider the 
broader microbial ecology of host symbionts and invasive patho-
genic strains within a larval or adult bee’s gut. This systems approach 

to bee management is consistent with an emerging theory in evolu-
tionary biology, the holobiont theory, which considers hosts – in this 
case, bees – and their co-adapted microbes “as one” under selection 
(Guerrero et al. 2013). The systems level approach makes biolog-
ical sense; bee guts are a stable environment full of nutrients that 
provide ample substrate for microbial symbioses (Gilliam 1997). 
Endogenous bee gut microbes play a role in digestion, detoxifica-
tion, nutrient conversion, and resistance to pests and pathogens 
(Raymann and Moran 2018). If the health of bee and gut microbes 
are functionally codependent, then probiotic supplementation that 
supports and restores this function seems an effective way to im-
prove bee health or otherwise mitigate the worst effects of disease 
(Vásquez et al. 2012, Alberoni et al. 2016, Alonso-Salces et al. 2017, 
Abdi et al. 2023, Ye et al. 2023).

Laboratory studies using lactic acid-producing bacteria have 
begun to test this hypothesis. One approach has been to use midgut 
extracts (e.g., Riessberger-Galle et al. 2001) or isolate single strains 
from the adult or larval honey bee’s native microbiome, then use 
in-lab screens to test for evidence of anti-pathogenicity against P. 
larvae (e.g., Evans and Armstrong 2005, Lee et al. 2009, Sabaté et 
al. 2009, Forsgren et al. 2010, Audisio et al. 2011, Killer et al. 2014, 
Arredondo et al. 2018, Bartel et al. 2019, Iorizzo et al. 2020b). The 
controlled study of individual strains helps to identify those that in-
hibit pathogen growth or that otherwise might increase survivorship 
of honey bee larvae that are reared and infected in vitro. Lab-based 
studies are necessarily removed from a natural hive and thus the 
“as one” aspect is suspended in favor of a deliberately separated ap-
proach. Culture assays on their own cannot assess any emergent gut 
microbiome community effects (e.g., McNally et al. 2014) nor any 
host-mediated effects (e.g., effects of immune system, microbiome 
dysbiosis, and nutrition; Daisley et al. 2022b) but are nonetheless 
efficient – at least 250 strains of mostly lactic acid bacteria have 
been screened for probiotic potential – and important first steps to-
ward whole-colony field trails that, when warranted, will prompt the 
eventual development of bee-tailored probiotic products.

Other studies have screened strains from nonnative sources, such 
as isolating probiotic strains from fermented food (Yoshiyama et 
al. 2013) or from plants (Flesar et al. 2010, González and Marioli 
2010), while others still combine strains from native and nonnative 
sources. Daisley et al. (2020b) showed using in vitro trials that a 
3-strain lactic acid bacterial mixture (Lactiplantibacillus plantarum 
Lp39, Lacticaseibacillus rhamnosus GR-1, and Apilactobacillus 
kunkeei BR-1), which was dubbed “LX3”, could reduce pathogen 
load and improve larval survival following deliberate infection 
with P. larvae. Moreover, this and a subsequent study (Daisley et 
al. 2020c) found that in-hive supplementation with LX3 containing 
the native L. kunkeii decreased pathogen load in larvae and in adult 
carriers, and was equally or more effective at doing so than antibi-
otic (oxytetracycline) treatment.

Other Gut-Borne Diseases
Chalkbrood is caused by a spore-forming fungus, Ascosphaera apis; 
an obligate specialist pathogen that infects honey bee larvae. The 
disease tends to afflict colonies that are already under nutritional or 
environmental stress and, while it does have serious consequences 
to beekeepers (Aronstein and Murray 2010), it does not usually kill 
whole colonies (Gilliam 1986). The development of chalkbrood dis-
ease is initiated when larvae ingest sexually produced spores, which 
then germinate in the lumen of the larval gut (Bamford and Heath 
1989). Fungal hyphae then penetrate the intestinal walls and cover 
the larva with a layer of (usually) white—hence, “chalk”—mycelium 
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(Aronstein and Murray 2010). New spores are formed on the cu-
ticle of the cadavers, which can spread within and between colonies. 
Research into microbial intervention as a control for chalkbrood is 
not as advanced as for (the more virulent) bacterial infections (Wood 
1998) but milder disease caused by fungal infections have nonethe-
less received focused attention (Vojvodic et al. 2012).

Screens for bacterial strains from adult worker guts that inhibit 
the chalkbrood pathogen have begun. Iorizzo et al. have shown 
a role for Lactobacillus kunkeei (Iorizzo et al. 2020a) and for 
Lactiplantibacillus plantarum (Iorizzo et al. 2021) to suppress A. 
apis growth in vitro. They tested multiple strains of each species, 
delivered in different types of preparations, to reveal that delivery 
of probiotic cells in pellet was especially efficacious against A. apis 
in culture. The authors suggest that these 2 strains (at least) hold 
promise as a microbial means to restore symbiotic communities of 
the intestine and exert a prophylactic action against chalkbrood in-
fection. Meanwhile, these and other studies (Omar et al. 2014, Bartel 
et al. 2019, Iorizzo et al. 2020a) suggest that lactic acid bacteria hold 
potential as probiotics to control chalkbrood disease.

Vairimorpha (Nosema) ceranae is an intracellular spore-forming 
microsporidian parasite (Tokarev et al. 2020) of bees. Adult honey 
bees become infected by consuming Vairimorpha spp. spores that 
then germinate in the ventriculus to infect epithelial cells within the 
midgut. Infection causes lesions, suppresses humoral and cellular 
defenses, and leads to a decrease in vitellogenin expression (Fries 
2010, Piano et al. 2017). Ptaszyńska et al. (2016) investigated the 
effect of Lactobacillus rhamnosus (a commercial probiotic) and in-
ulin (a prebiotic) on the survival rates of honey bees infected and 
uninfected with Nosema ceranae. They report that honey bees feed 

sugar syrup supplemented with the pro- and prebiotic were more 
susceptible to V. ceranae infection. This unexpected result is how-
ever juxtaposed with findings from other studies. Borges et al. (2021) 
tested the effect of several commercial probiotics on V. ceranae 
spore loads and honey bee survivorship, finding that the probiotic 
treatments tended to decrease V. ceranae infections. Other studies 
have tested endogenous strains in-hive to show dampening effects 
on parasite load (Corby-Harris et al. 2016) and positive effects on 
other parameters relevant to beekeepers, including queen produc-
tivity and honey yield (Audisio et al. 2015, Audisio 2017, Arredondo 
et al. 2023).

Fermentation in the Hive

Foods contaminated with pathogenic microorganisms are a common 
source of infection for many types of animals. In the human diet, 
deliberate fermentation with lactic acid-producing bacteria (e.g., 
Lactobacillus, Lactococcus, Streptococcus, Bifidobacterium, 
Leuconostoc spp.), can, however, prevent pathogenic infection, pro-
long food shelf-life, and confer other benefits to hosts that consume 
fermented foods (Table 1). Several approaches are possible, including 
lactic fermentation (e.g., yogurt, sauerkraut), yeast-lactic fermenta-
tion (e.g., kefir, sourdough bread), and mold-lactic fermentation (e.g., 
various cheeses), among others (Martins et al. 2013, Ranadheera et al. 
2017, Aspri et al. 2020). For honey bees, lactic-yeast fermentation is 
naturally initiated in hives to produce bee bread from foraged pollen. 
As a result of fermentation, flavonoid content of pollen can increase 
(Kaškonienė et al. 2018), and bees seem to employ fructophilic 
lactic acid bacteria, such as Apilactobacillus kunkeei, Fructobacillus 

Table 1. Properties of beneficial microorganisms isolated from diverse fermented products

Strain Origin Reported properties Reference

Lactobacillus plantarum, Lactobacillus 
fermentum, Lactobacillus delbrueckii

Water kefir and braga  
(a Romanian fermented  
beverage made of cereals)

Antibacterial activity against pathogenic  
bacteria: Listeria monocytogenes, Escherichia 
coli, Staphylococcus aureus, and Salmonella 
enterica.

(Angelescu et al. 
2019)

Lactobacillus plantarum CIDCA 83114, 
Lactobacillus kefir CIDCA 8348, 
Lactococcus lactis subsp lactis CIDCA 8221, 
Kluyveromyces marxianus CIDCA 8154, 
Saccharomyces cerevisiae CIDCA 8112

Milk kefir Prevention of invasion of cell Hep-2 by  
Shigella.

Protection of Vero cells from Clostridium 
difficile toxins.

(Bolla 2011)

Lactobacillus plantarum CIDCA 8327,  
Lactobacillus kefir CIDCA 8348, 
Kluyveromyces marxianus CIDCA 8154

Cheese fermented with kefir 
grains

In vitro inhibition of Escherichia coli and  
Salmonella enterica strains.

Inhibitory effect and ability to protect 
enterocytes of adhesion and invasion of  
Salmonella enteritidis.

(Londero 2012)

Lactobacillus brevis, Lactobacillus pentosus, 
Lactobacillus plantarum

Traditional fermenting Mo-
roccan green olives

Antifungal activity against Penicillium sp.
Inhibition zones against Candida pelliculosa.
Antibacterial effect against gram-positive and 

gram-negative bacteria.

(Abouloifa et al. 
2020)

Lactobacillus plantarum 81, Lactobacillus 
plantarum 90

Fermentation process of 
“Cupuaçu” (Theobroma 
grandiflorum)

Production of diffusible inhibitory compounds 
and co-aggregation.

Anti-inflammatory pattern of immunological 
response.

(Ornellas et al. 
2017)

Lactobacillus plantarum M-13 Kalarei (indigenous cheese-like 
fermented milk product)

Antibacterial activity against Campylobacter  
sp. J1, S. aureus P07, B. cereus PS1,  
Klebsiella sp. KS19, E. faecalis FS03, S. 
pneumoniae P1.

(Gupta and Bajaj 
2017)

Lentilactobacillus hilgardii, Lentilactobacillus 
buchneri, Saccharomyces cerevisiae

Water kefir Antimicrobial activity against P. larvae and  
A. apis.

(Rodríguez et al. 
2023)
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fructosus, Lactobacillus plantarum, and Leuconostoc mesenteroides, 
as evidenced by their detection in beebread (Ispirli and Dertli 2021). 
Further, the slow-growing yeast Metschnikowia spp. can breakdown 
sucrose and other disaccharides found in nectar, making it easier 
for bees to digest (Martin et al. 2022). The gram-negative bacteria 
Gilliamella apicola can also breakdown sugars and help to detoxify 
diet (Zheng et al. 2016), and natural fermentation chambers in hive 
can promote social transmission of beneficial microbes within the 
plant-pollinator network (Anderson et al. 2013).

It is apparent that aspects of food processing by honey bees is de-
pendent on beneficial microbes. This co-adapted balance can, how-
ever, be upset by exposure to agrochemicals or other environmental 
toxins, leading to a scenario of “missing microbes” in honey bees 
characterized by impaired digestion and immunity (Maes et al. 2016, 
Daisley et al. 2020a). Kakumanu et al. (2016) showed that beneficial 
lactic acid bacteria (namely Lactobacillus spp. and related taxa in 
Lactobacillales) and yeasts (Metschnikowia spp. and related taxa in 
Saccharomycetes) were depleted after in-hive exposure to a common 
fungicide (chlorothalonil) as well as insecticide (coumaphos). Given 
the extent of pesticide exposure in agroecosystems (Traynor et al. 
2021), it is likely that the homeostasis of plant-pollinator-microbe 
interactions has been negatively impacted at a systems level. 
Accordingly, the supplementation of microbes from fermented foods 
to offset these negative impacts and promote digestive function in 
honey bees is a promising area of research.

Approaches to Support or Restore Healthy Pollen 
Fermentation
The screening of functional food items to improve bee health has so 
far been predominantly limited to investigations on bee bread. Di 
Cagno et al. (2019) developed a protocol to ferment bee-collected 
pollen and showed that a simple starter culture of Apilactobacillus 
kunkeei and Hanseniaspora uvarum could effectively emulate the 
spontaneous yeast-lactic fermentation of bee bread. Functionally, 
these starter strains increased digestibility and bioavailability of 
nutrients while minimizing the uncontrolled growth of contaminant 
microbes in the raw pollen samples. Others have also evaluated 
more complex starters (containing various fructophilic lactic acid 
bacteria) for purposes of controlled beebread fermentation and 
the practical maintenance of honey bee stocks in apiculture (Ispirli 
and Dertli 2021). Although both approaches are promising, large 
scale field studies are needed to confirm their benefit and ultimate 
feasibility.

Indirectly, several probiotic studies also support the idea that 
the fermentation of pollen or pollen-substitutes may produce de-
sirable effects on colony level health. For example, Maruscakova et 
al. (2020) found that supplementing a pollen suspension containing 
Lactobacillus brevis could improve immune function and micro-
bial balance in the hive. Similarly, a probiotic yeast study revealed 
that supplementing honey bees with pollen broth fermented by 
Aureobasidium melanogenum led to an upregulation of nutrition-
related gene expression (Hsu et al. 2021). It is often difficult to in-
terpret the exact mechanism of benefit in probiotic studies though, 
as the nutritional composition of the fermentation matrix is not 
typically analyzed. Daisley et al. (2023) did show however that 3 
strains of lactic acid bacteria could improve protein digestibility 
of a pollen patty supplement (2–20% increase in 11 amino acids) 
and that these changes were ultimately associated with significant 
colony level growth-promoting effects. Thus, the evaluation of nu-
trient composition has potential to reveal mechanistic insight and 
should be considered in future honey bee probiotic and fermented 
food studies.

Water Kefir—A Potential Source of Beneficial 
Microbes for Optimizing Nectar Processing
Plant-derived nectar constitutes a large portion of the honey bee diet, 
but its consumption poses a major risk in terms of disease transmis-
sion to the hive. Compared to studies on pollen and beebread, there 
has been little investigation on optimizing nectar fermentation to 
reduce disease risk. One reason could be the inherent challenges of 
studying nectar microbiomes, which can change rapidly, as well as 
the inability to track or control all nectar sources accessible by honey 
bees in each environment. Nonetheless, sucrose syrup mixtures are 
a common supplement used in beekeeping that are meant to emu-
late nectar and prevent starvation of honey bees during lean periods. 
Although readily consumed by the bees, sucrose syrup lacks many 
of the chemical characteristics of nectar, is prone to spoilage, and 
has potential to stimulate growth of pathogens in the hive. Thus, 
this common form of supplemental feed is a prime candidate for 
fermentation via the inoculation of beneficial microbes. One po-
tential source proposed as a suitable starter culture is water kefir 
(Fernández et al. 2017, Del Prado 2019, Rodríguez et al. 2019) – a 
fermented solution of water, sugar, and dried fruits (Fig. 1). During 
fermentation, the microbial community uniquely forms what are 
known as kefir “grains”, which are macroscopic structures formed 
primarily by lactic acid bacteria and yeasts. These grains resist con-
tamination and can be used for inoculation of subsequent batches 
thereby supporting sustainable production of the water kefir.

Water kefir and plant nectar share some intriguing parallels in 
terms of their nutritional profile, microbiota composition, and rel-
evance to honey bees (Table 2). In terms of nutrient content, water 
kefir and plant nectar are rich sources of vitamins (e.g., vitamin 
C), secondary metabolites (e.g., polyphenols, quercetin), and other 
micronutrients (Nicolson 2022, Constantin et al. 2023). Additionally, 
both are low in proteins and lipids but high in carbohydrates, par-
ticularly simple sugars that are easily digested by bees. Sucrose (table 
sugar) typically serves as the primary energy source for the micro-
bial communities in water kefir, which is broken down into glucose 
and fructose – key monosaccharides that are vital for sustaining 
flight and overall metabolic activities of honey bees. A common 
practice in beekeeping is to catalyze this breakdown by performing 
nonenzymatic hydrolysis of sucrose syrups (i.e., inverted sugar 
syrup) via application of excessive heat and acidic conditions, but 
this process creates toxic compounds such as hydroxymethylfurfural 
that can be harmful to bee health (Frizzera et al. 2020). Thus, enzy-
matic conversion via microbial metabolism represents a viable alter-
native with a range of additional health benefits.

Regarding microbiome profiles, both plant nectar and water 
kefir harbor a dynamic consortia of lactic acid bacteria and yeasts 
that collaboratively ferment sugars and transform plant secondary 
compounds into a range of bioactive microbial metabolites. Though 
highly variable, total yeast loads in nectar and water kefirs are ap-
proximately 108 and 107 CFU/ml, where bacterial loads can reach 
1010 and 108 CFU/ml, respectively (Lynch et al. 2021, Martin et al. 
2022). Both also exhibit low pH from the presence of organic acids 
and alcohols produced during fermentation. Nectars vary greatly in 
their pH but are generally acidic, with apricot (Prunus armeniaca) 
nectar, for example, possessing a pH of 3.4–3.6 (Reale et al. 2020). 
Whereas water kefir produced from dried apricots, or figs, has a pH 
of ~3.45–3.53 (Tireki 2022, Zannini et al. 2022). Notably, these 
estimates are in line with the pH of 3.56–3.66 for honey (Živkov 
Baloš et al. 2023).

Given these similarities and potential to improve honey bee di-
gestion, water kefir holds promise to replace or augment standard 
sucrose syrups used in beekeeping. There is also potential to 
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mine water kefir for the isolation of strains exhibiting probiotic 
properties of interest. Rodríguez et al. (2023) showed that several 
strains of lactic acid bacteria isolated from water kefir (including 
Lentilactobacillus hilgardii and Lentilactobacillus buchneri) could 
inhibit growth of the honey bee larval pathogen, P. larvae and A. 
apis, under in vitro conditions. However, further studies under field 
trial conditions are needed to determine whether these effects can 
have an impact on honey bee disease outcomes at the colony level.

Potential Issues With Microbial Manipulations
Caution is warranted when isolating select strains exhibiting a spe-
cific beneficial trait, as opposed to multi-strain communities present 
in fermented bee food items, such as beebread and water kefir. Good 
et al. (2014) showed, for example, that honey bees avoided nectar ex-
perimentally inoculated with Asaia astilbis, Erwinia tasmaniensis, or 

Lactobacillus kunkeei, whereas foraging preference was unaffected 
by inoculation with the yeast, Metschnikowia reukaufii. Presumably, 
this avoidance behavior was to do with the rapid alterations of 
nectar chemistry caused by bacterial inoculation, as opposed 
to yeast which grow more slowly (Good et al. 2014). Pozo et al. 
(2021) demonstrated in bumble bees that the yeast Wickerhamiella 
bombiphila and the bacteria Rosenbergiella nectarea had a strong 
effect in terms of stimulating colony growth, whereas another yeast 
(Torulaspora delbrueckii) or a combination of yeast and bacteria 
showed less of a benefit on colonies. Other studies likewise provide 
good examples of bacterial manipulations that show no beneficial 
effects (Johnson et al. 2014, Stephan et al. 2019) or even negative 
impacts (Andrearczyk et al. 2014) on bee health. Further, feeding 
nonnative bacteria can trigger immune responses (Evans and Lopez 
2004), which may or may not be beneficial. The role for probiotics 

Fig. 1. Production of water kefir. Kefir grains are added to a solution of water, sugar, dry fruits, and lemon and fermented at 23 °C ± 2 for 2 days. After filtering, a 
carbonated, acidic, slightly alcoholic beverage is obtained. Strains of lactic acid bacteria and yeasts can be isolated from water kefir.
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to support bee gut microbial health is promising (Motta et al. 2022) 
but each study needs to be carefully interpreted, and overall future 
studies are needed to confirm a benefit in these approaches before 
applying them in commercial beekeeping practices (Damico et al. 
2023).

Concluding Remarks

Honey bees play a crucial role in crop pollination and sustaining 
our food supply but face challenges such as high overwinter mor-
tality rates and the adverse effects of antibiotics used for disease con-
trol. Probiotics, especially lactic acid bacteria and select yeasts, are 
emerging as a promising alternative to antibiotics for management 
of bee diseases. Probiotics can enhance bee health through several 
mechanisms such as boosting immune responses and supporting the 
endogenous microbiome. Fermented products such as beebread and 
kefir also represent sources of potentially novel beneficial microbes 
to improve bee nutrition, resilience, and survival. Honey bees nat-
urally rely on fermentation to process pollen and nectar, but expo-
sure to agrochemicals can disrupt this balance through depleting the 
symbiotic microbial communities involved, leading to digestive and 
immunity issue. By incorporating fermented foods and water kefir 
into beekeeping practices, beekeepers may potentially mitigate these 
negative impacts and promote the overall health of honey bee colo-
nies, although further field studies are urgently needed to validate the 
efficacy of these approaches.
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