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We study non-Gaussian signatures on the cosmic microwave background~CMB! radiation predicted within
inflationary models with non-vacuum initial states for cosmological perturbations. The model incorporates a
privileged scale, which implies the existence of a feature in the primordial power spectrum. This broken-scale-
invariant model predicts a vanishing three-point correlation function for the CMB temperature anisotropies~or
any other odd-numbered-point correlation function! whilst an intrinsic non-Gaussian signature arises for any
even-numbered-point correlation function. We thus focus on the first non-vanishing moment, the CMB four-
point function at zero lag, namely the kurtosis, and compute its expected value for different locations of the
primordial feature in the spectrum, as suggested in the literature to conform with observations of large scale
structure. The excess kurtosis is found to be negative and the signal to noise ratio for the dimensionless excess
kurtosis parameter is equal touS/Nu.431024, almost independently of the free parameters of the model. This
signature turns out to be undetectable. We conclude that, subject to current tests, Gaussianity is a generic
property of single field inflationary models. The only uncertainty concerning this prediction is that the effect of
back reaction has not yet been properly incorporated. The implications for the trans-Planckian problem of
inflation are also briefly discussed.

DOI: 10.1103/PhysRevD.66.083502 PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

The theory of inflation is presently the most appeali
candidate for describing the early universe. Inflation ess
tially consists of a phase of accelerated expansion wh
took place at a very high energy scale. One of the m
reasons for such an appeal is the fact that inflation is de
rooted in the basic principles of general relativity and fie
theory, which are well-tested theories. It is because all
forms of energy gravitate in general relativity that one
them, the pressure, which can be negative in field theory
able to cause the acceleration in the expansion of the
verse. In addition, when the principles of quantum mech
ics are taken into account, inflation provides a natural exp
nation for the origin of the large scale structures and
associated temperature anisotropies in the cosmic microw
background~CMB! radiation@1#.

Inflation makes four key predictions:~i! the curvature of
the spacelike sections vanishes, i.e. the total energy den
relative to the critical density, isV051; ~ii ! the power spec-
trum of density fluctuations is almost scale invariant, i.e.
spectral index isnS.1; ~iii ! there is a background of primor
dial gravitational waves~which is also scale invariant!; and
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~iv! the statistical properties of the CMB are Gaussian.
this article we focus on the last prediction and investig
whether it is a robust and generic property of inflationa
models. The statistical properties of the CMB will be me
sured with high accuracy by the Microwave Anisotrop
Probe~MAP! and Planck satellites@2#. So far the preliminary
measurements of the three- and four-point correlation fu
tions @3–5# seem to be consistent with Gaussianity.

The fact that the statistical properties of the CMB a
Gaussian can be directly traced back to the common assu
tion that the quantum fluctuations of the inflaton field a
placed in the vacuum state@6#. Therefore, in order to answe
the above question, one has to investigate which kind
non-Gaussianity shows up if the vacuum state assumptio
relaxed@7–10#. In particular, one crucial point is to stud
whether this modification yields a detectable signal for futu
CMB or large-scale structure observations. Let us also no
that there exist other mechanisms to produce n
Gaussianity within the framework of inflation. Some of the
have been studied in Refs.@11,12#.

Assuming that the quantum state of the perturbations
non-vacuum state immediately leads to the following dif
culty: non-vacuum initial states imply, in general, a lar
energy density of inflaton field quanta, not of a cosmologi
term type@13#. In other words, generically, if the initial stat
is not the vacuum then there is a back-reaction problem
could upset the inflationary phase. However, as we will arg
below, one cannot directly conclude that this would prev
©2002 The American Physical Society02-1
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inflation from occurring altogether because, without a d
tailed calculation, it is difficult to guess what the bac
reaction effect on the background would be. Such a deta
calculation is in principle possible by means of the form
ism developed in Ref.@14#. To our knowledge, such a com
putation has never been performed. The calculation of s
ond order effects is clearly a complicated issue and is still
subject of discussions in the literature, see@15# for example.
Moreover, there exist situations where it can be avoided,
this is in fact the case if the number of e-folds is not t
large. In this article, we will not address the general ques
mentioned above but will rather concentrate on the m
modest aim of calculating the non-Gaussianity in a c
where the back-reaction problem is not too severe, hopin
this way to capture some features of the real situation.

There exist other arguments to study the non-Gaussia
that arises from a non-vacuum state. One of these is
so-called trans-Planckian problem of inflation@16#: the quan-
tum fluctuations are typically generated from sub-Planck
scales and therefore the predictions of inflation depend
fact on hidden assumptions about the physics on len
scales smaller than the Planck scale. However, it has rece
been shown that inflation is robust to some changes of
standard laws of physics beyond the Planck scale. More
cisely, inflation is robust to a modification of the dispersi
relation, at least if those changes are not too drastic, in p
tice if the Wentzel-Kramer-Brillouin~WKB! evolution of the
cosmological perturbations is preserved. However, mode
trans-Planckian physics by a change in the dispersion r
tion is clearlyad hoc. Therefore, it is interesting to conside
other possibilities; for example, one could imagine that
inflaton field emerges from the trans-Planckian regime i
non-vacuum state. Non-Gaussianity would then be, in
case, a signature of non-standard physics and it seems
interesting to quantify this effect. Let us note that simi
ideas have been suggested in Ref.@17# in a slightly different
context. Let us also remark that it has been shown recent
Ref. @18# that placing the cosmological perturbations in
non-vacuum state would lead to possible observable effe
for instance a modification of the consistency check of in
tion.

Another motivation for calculating non-Gaussianity wh
the initial state is not the vacuum is that this model could
used to test the methods that are being developed to d
non-Gaussianity in the future CMB maps. There have b
approaches based on thenth order moments or the cumulan
of the temperature distribution@19#, the n-point correlation
functions or their spherical harmonic transforms@20#, and
also works based on the detection of gradients in the wav
space@21#, to mention just a few methods. In the last a
proach, namely the wavelet analysis of a signal@21#, the test
maps which were employed were characterized by a n
skewed non-Gaussian distribution. Therefore, any n
Gaussianity was indicated by a non-zero excess kurtosi
the coefficients associated with the gradients of the sig
As we will show, this is exactly our case. This wavelet ana
sis of a signal was then applied@22# to search for the CMB
non-Gaussian signatures. More precisely, these author
vestigated the detectability of a non-Gaussian signal indu
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by secondary anisotropies, while assuming Gauss
distributed primary anisotropies. Their method@22# is unable
to detect such non-Gaussianity for the MAP-like instrume
tal configuration while it can do it for Planck-like capabil
ties.

From the theoretical point of view the simplest way
generalize the vacuum initial state, which contains no pr
leged scale, is to consider an initial state with abuilt-in char-
acteristic scale,kb @8#. Here, we will consider a non-vacuum
state which is simpler and more generic than the one con
ered in this previous work. Several observables can be u
to constrain the parameter space. A first possibility is to
the CMB anisotropy multipole moments to constrain t
number of quantan around the privileged scale. It has bee
shown in Ref.@8# that, typically, this number cannot be larg
and in the present article we will always consider thatn is a
few. With the recent release of the BOOMERanG@23#,
MAXIMA @24# and DASI @25# data, which revealed the ex
istence of a first acoustic peak in the angular power spect
at ,;200, followed by a second acoustic peak located a,
;500 and an evidence for a third peak, one can hope
obtain stronger constraints onkb andn very soon. Of course
another observable which can also be used is the matter
sity power spectrum. We will compare the predictions of o
model for different cosmologies with the result of recent o
servations below.

The model we are studying here belongs to a class wi
broken scale invariant~BSI! power spectrum for the matte
density. Such a primordial spectrum could also be genera
@26# during an inflationary era where the inflaton potential
endowed with steps, e.g., induced by a spontaneous sym
try breaking phase transition. The main motivation beh
this class of models comes from Abell-ACO galaxy clus
redshift surveys which indicate@27# that the matter power
spectrum seems to contain large amplitude features close
scale of 100h21 Mpc ~see however@28#!. In support of this
finding are the preliminary results of the recently releas
@29,30# power spectrum analysis of the redshift surveys
quasistellar objects~QSOs!. Using the 10k catalogue from
the 2dF QSO Redshift Survey@31#, it has been tentatively
identified @29# a ‘‘spike’’ feature at a scale'90h21 Mpc
('65h21 Mpc) assuming a Lambda contributionVL50.7
and an ordinary matter contributionVm50.3 ~respectively,
VL50 andVm51.0). Provided this feature is confirmed,
might also have originated from acoustic oscillations in t
tightly-coupled baryon-radiation fluid prior to decouplin
Using theCMBFAST code it was found@29# that this spike in
the spectrum is seen at a>25 percent smaller wave numbe
than the second acoustic peak, while higher values of
baryon contributionVb may be needed to fit the amplitude o
this feature. If we interpret this feature as originating fro
the primordial spectrum then, in order to be consistent w
observations, the preferred scalekb must lie way below the
horizon today, possibly at a scale corresponding to the t
of the power spectrum@27# or at the scale matching the firs
acoustic peak of the CMB temperature anisotropies@32#.
One then sees that the presently available data already
stricts the parameter space for the quantitieskb andn @33#.

For the class of models which contain a preferred scal
2-2
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generic prediction is that the three-point correlation funct
vanishes~as well as any higher-order odd-point function!,
whereas the following relation:

K S dT

T D 4L 53K S dT

T D 2L 2

, ~1!

which is typical of Gaussian statistics, is no longer satisfi
Moreover, similar relations, but involving higher-order eve
point functions, which are also typical of Gaussian statist
are violated as well. Since the third-order moment~the skew-
ness! vanishes, a first step is to calculate the fourth-or
statistics~the kurtosis!. It is interesting to perform this cal
culation for very large @Cosmic Background Explore
~COBE! size# angular scales, for which one can be confide
that the source of non-Gaussianity is primordial. On
other hand, if the non-Gaussian signature was calculate
intermediate scales, a stronger signal would be obtain
however, in that case the secondary sources would be m
difficult to subtract and thus the transparency of the eff
would be compromised. To quantify the relevant amplitu
of the signal, the excess kurtosis should be compared wit
cosmic variance. This was computed, e.g., in Ref.@34#, for a
Gaussian field. Although, strictly speaking, one should co
pute the cosmic variance for the actual case and not rely
mildly non-Gaussian analysis, the actual smallness of
obtained signal largely justifies our approach.

We organize the rest of the paper as follows. In Sec. II,
discuss in detail the argument developed in Ref.@13# regard-
ing the back-reaction problem. We show that any theory w
a non-vacuum initial state has to face this issue. Howe
we also argue that it is not clear at all whether inflation w
be prevented in this context. In Sec. III, we discuss o
choice of a non-vacuum initial state for cosmological pert
bations of quantum-mechanical origin and we give some
sic formulas for the two-point function. We calculate th
CMB angular correlation function and the associated ma
power-spectrum for our choice of non-vacuum initial stat
comparing the latter against current observations. In Sec
we calculate the angular four-point correlation function a
the related CMB excess kurtosis, while in Sec. V we disc
our results explicitly and present a full numerical calculati
of the normalized excess kurtosis for a typical case. In
section we also compare this non-Gaussian signal with
corresponding cosmic variance. We round up with our c
clusions in Sec. VI. We end the paper with three appendi
In Appendix A we give the four-point correlation function
of the creation and/or annihilation operators. In Appendix
we review some definitions and properties of the Wignerj
function. Finally, in Appendix C we present an analytic
estimate of the excess kurtosis parameter. In this paper
use units such thatc51.

II. INITIAL STATE FOR THE COSMOLOGICAL
PERTURBATIONS AND THE BACK-REACTION

PROBLEM

In this section we discuss the relevance of non-vacu
initial states for cosmological quantum perturbations. T
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argument of Ref.@13# is based on the calculation of the e
ergy density of the perturbed inflaton scalar field in a giv
non-vacuum initial state. Since the perturbed inflaton and
Bardeen potential are linked through the Einstein equatio
it is clear that they should be placed in the same quan
state. Let us consider a quantum scalar field living in a~spa-
tially flat! Friedmann-Lemaıˆtre-Roberston-Walker back
ground. The expression of the corresponding operator re

w~h,x!5
1

a~h!

1

~2p!3/2E d3k
1

A2k
@mk~h!ck~h i!e

ik•x

1mk* ~h!ck
†~h i!e

2 ik•x#, ~2!

where ck(h i) and ck
†(h i) are the annihilation and creatio

operators~respectively! satisfying the commutation relatio
@ck ,cp

†#5d(k2p), and wherea(h) is the scale factor de
pending on conformal timeh. The equation of motion for
the mode functionmk(h) can be written as@35–37#

mk91S k22
a9

a Dmk50, ~3!

where ‘‘primes’’ stand for derivatives with respect to confo
mal time. The above is the characteristic equation of a pa
metric oscillator whose time-dependent frequency depe
on the scale factor and its derivative. The energy density
pressure for a scalar field are given by the following expr
sions:

r5
1

2a2
w821V~w!1

1

2a2
d i j ] iw] jw, ~4!

p5
1

2a2
w822V~w!2

1

6a2
d i j ] iw] jw. ~5!

Let us now calculate the energy and pressure in a state c
acterized by a distributionn(k) ~giving the numbern of
quanta with comoving wave numberk) for a free ~i.e. V
50) field. Let us denote such a state byun(k)&. Using some
simple algebra it is easy to find

^n~k!urun~k!&5
1

8p2a4E0

1`dk

k
k2Fmk8mk8* 2

a8

a

3~mkmk8* 1mk* mk8!1S a82

a2
1k2D mkmk* G

12
1

8p2a4E0

1`dk

k
k2n~k!Fmk8mk8* 2

a8

a

3~mkmk8* 1mk* mk8!1S a82

a2
1k2D mkmk* G ,

~6!
2-3
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^n~k!upun~k!&5
1

8p2a4E0

1`dk

k
k2Fmk8mk8* 2

a8

a

3~mkmk8* 1mk* mk8!1S a82

a2
2

k2

3 D mkmk* G
12

1

8p2a4E0

1`dk

k
k2n~k!Fmk8mk8* 2

a8

a

3~mkmk8* 1mk* mk8!1S a82

a2
2

k2

3 D mkmk* G .

~7!

We can evaluate these quantities in the high-frequency
gime and takemk.exp@2ik(h2hi)#, whereh i is some given
initial conformal time. We get

^n~k!urun~k!&5
1

4p2a4E0

1`dk

k
k412

1

4p2a4E0

1`dk

k
k4n~k!,

~8!

^n~k!upun~k!&5
1

4p2a4

1

3E0

1`dk

k
k4

12
1

4p2a4

1

3E0

1`dk

k
k4n~k!. ~9!

Several comments are in order at this point. First, the lo
limit of the integral is certainly not zero because at so
fixed time,k→0 corresponds to modes outside the horiz
So if we evaluate the previous integral at timeh then we
should only integrate over those modes whose waveleng
smaller than the Hubble radius. But in the infrared sector,
integral is finite and so the contributions of those modes w
be small. Therefore, in practice we can keep a vanish
lower bound. Secondly, the first term of each expressio
the contribution of the vacuum, i.e., is present even ifn(k)
50. This is clearly divergent in the ultraviolet regime. A
this point, one should adopt a regularization procedure~in
curved space-time!. Once this infinite vacuum contribution i
subtracted out, our renormalized expressions for the den
and pressure in theun(k)& state read

^n~k!urun~k!&5
1

2p2a4E0

1`dk

k
k4n~k!, ~10!

^n~k!upun~k!& 5
1

2p2a4

1

3E0

1`dk

k
k4n~k!. ~11!

For a well-behaved distribution functionn(k) this result is
finite. Thirdly, the perturbed inflaton~scalar! particles behave
as radiation, as clearly indicated by the equation of statp
5(1/3)r and as could have been guessed from the begin
08350
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since the scalar field studied is free. To go further, we nee
specify the functionn(k). If we assume that the distributio
n(k) is peaked around a valuekb , it can be approximated by
a constant distribution ofn quanta, withn(kb).n, in the
interval@kb2Dk,kb1Dk# centered aroundkb . If the interval
is not too large, i.e.Dk!kb then, at first order inDk/kb , we
get

^n~k!urun~k!&.
n

p2

Dk

kb

kb
4

a4
5

n

p2

Dk

kb
H inf

4 e4Ne, ~12!

where Ne is the number ofe-folds counted backfrom the
time of exit, see Fig. 1. The time of exit is determined by t
conditionkphys[k/a.H inf , whereH inf is the Hubble param-
eter during inflation. It is simply related to the scale of infl
tion, M inf , by the relationH inf.M inf

2 /m
Pl
. We have also as-

sumed that, during inflation, the scale factor behaves
a(t)}exp(Hinf t). From Eq. ~12!, we see that the back
reaction problem occurs when one goes back in time si
the energy density of the quanta scales as.1/a4. In this
case, the number of e-foldsNe increases and the quantit
^n(k)urun(k)& raises. This calculation is valid as long a
^n(k)urun(k)&,r inf5m

Pl

2H inf
2 . When these two quantitie

are equal, the energy density of the fluctuations is equa
the energy density of the background and the linear the
breaks down. This happens forNe5Nbr such that

Nbr.
1

2
lnS mPl

H inf
D , ~13!

where we have assumednDk/(p2kb).O(1). Interestingly
enough, this number does not depend on the scalek but only
on the Hubble radius during inflationH inf . This means that
for each scale considered separately, the back-reaction p
lem starts to be important after the same number of e-fo
Ne5Nbr counted back from horizon exit~this is why in Fig.
1, one hasN1

br5N3
br for the two different scalesl1 andl3).

If, for instance, we consider the case where inflation ta
place at grand unified theory~GUT! scales, M inf
.1016 GeV, thenH inf.1013 GeV and one obtainsNbr.7 in
agreement with the estimates of Ref.@13#. If the distribution
n(k) is not strongly peaked around a particular scale bu
rather spread over a large interval, it is clear that the imp
tant mode of the problem is, very roughly speaking, t
populated smallest scale~i.e. .l1 in Fig. 1!. In the follow-
ing, this scale is denoted bylpop. The value of this scale
clearly depends upon the form of the distributionn(k). As it
can be seen in Fig. 1,lpop is the scale for which the back
reaction problem shows up first, as we go backward in tim
since the other modes with larger wavelengths have not
penetrated deeply into the horizon and therefore do not
face a back-reaction problem. As a consequence, this s
determines the total number of e-folds during inflation wit
out a back-reaction problem.

Once the numberNbr has been calculated, the total num
ber of e-folds during inflation without a back-reaction pro
lem is a priori fixed. It remains to be checked whether th
number is still sufficient to solve the usual problems of t
hot big bang model. We now turn to this question. L
2-4
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FIG. 1. Sketch of the evolution of the physical size in an inflationary universe where the cosmological perturbations are pla
non-vacuum state characterized by the distributionn(k).
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N* (l) be the number of e-folds, for a given scalel, be-
tween horizon exit during inflation and the beginning of t
radiation era; see Fig. 1. The total number of e-folds of
flation without a back-reaction problem is thenNinf[Nbr

1N* . The numberN* is given byN* (l)5 ln(a0 /a* )2Nr
2Nm, wherea0 and a* (l) are the scale factor at prese
time and at first horizon crossing, respectively. The quanti
Nr andNm are the number of e-folds during the radiation a
matter dominated epochs. The ratioa0 /a* is given by
(l/,H)H inf /H0, where,H is the present day Hubble radiu
andH0 is the present value of the Hubble parameter given
H0 /mPl.10261. The quantitiesNr and Nm are given byNr
5 ln(Trh /Teq) andNm. ln(zeq).9. Trh is the reheating tem
perature which can be expressed asTrh.(GmPl)

1/2 whereG
is the decay width of the inflaton. For consistency, one m
have M inf>Trh . Teq is the temperature at equivalence b
tween radiation and matter and its value readsTeq.5
31029 GeV .5310228mPl . The quantityN* (l) can be
expressed as

N* ~l!. lnS l

,H
D1F log10S H inf

mPl
D2 log10S Trh

mPl
D129G3 ln 10.

~14!

From now on, in order to simplify the discussion, we assu
that the decay width of the inflaton field is such thatTrh
.M inf . Under these conditions, the usual problems
solved if the number Ninf is such that Ninf(lpop)
. ln(lpop/,H)1293 ln 10.241 ln zend, where the quantity
zend is the redshift at which the standard evolution~hot big
bang model! starts. It is linked to the reheating temperatu
08350
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by the relation log10(zend).321 log10(Trh /mPl). This gives a
constraint on the scale of inflation, namely

log10S H inf

mPl
D,2 log10S lpop

,H
D22.5. ~15!

It is known that inflation can take place between t
TeV scale and the Planck scale which amounts
232, log10(H inf /mPl),0. We see that the constraint give
by Eq. ~15! is not too restrictive. In particular, if we tak
lpop50.1,H andH inf51013 GeV, it is satisfied. However, if
we decrease the scalelpop, the constraint becomes mor
restrictive. The constraint derived in the present article
pears to be less restrictive than in Ref.@13# because we do
not assume that all scales are populated.

Another condition must be taken into account. We ha
seen that the duration of inflation without a back-react
problem is determined by the evolution oflpop. However, at
the time at which the back-reaction problem shows up, o
must also check that all the scales of astrophysical inte
today were inside the horizon so that physically meaning
initial conditions can be chosen. This property is one of
most important advantages of the inflationary scenario. If
say that the largest scale of interest today is the horizon,
condition is equivalent to

N* ~,H!,N* ~lpop!1Nbr⇒Nbr. lnS ,H

lpop
D . ~16!
2-5
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This condition is also not very restrictive, especially for lar
scales. As previously, the condition can be more restrictiv
one wants to populate smaller scales.

Before concluding this section, a last comment is in ord
What is actually shown above is that, roughlyNbr e-folds
before the relevant mode left the horizon, we face a ba
reaction problem, as the energy density of the perturba
^n(k)urun(k)& becomes of the same order of magnitude
the backgroundr. So, before concluding that non-vacuu
initial states may or may not turn off the inflationary phas
one should calculate the backreaction effect, i.e., extend
present framework to second order as it was done in R
@14#. To our knowledge, this analysis is still to be performe
Moreover, even if we take the most pessimistic position, t
is, one in which we assume that the back reaction of
perturbations on the background energy density prevents
inflationary phase, there still exist models of inflation whe
the previous difficulties do not show up. Therefore, in t
most pessimistic situation, there is still a hope to recon
non-vacuum initial states with inflation. Admittedly, the pric
to pay is a fine-tuning of the free parameters describing
flation and/or the non-vacuum state.

III. TWO-POINT CORRELATION FUNCTION FOR
NON-VACUUM INITIAL STATES

A. General expressions

We now turn to consider the non-vacuum states for
cosmological perturbations of quantum mechanical orig
Let D(s) be a domain in momentum space, such that ifk is
between 0 ands, the domainD(s) is filled by n quanta,
while otherwiseD contains nothing. Let us note that th
domain is slightly different from the one considered in R
@8#. The stateuC1(s,n)& is defined by

uC1~s,n!&[ )
kPD(s)

~ck
†!n

An!
u0k& ^

pP” D~s!

u0p&

5 ^
kPD~s!

unk& ^
pP” D~s!

u0p&. ~17!

The stateunk& is an n-particle state satisfying, at conforma
time h5h i : ckunk&5Anu(n21)k& and ck

†unk&5An11u(n
11)k&. We have the following property:1

^C1~s,n!uC1~s8,n8!&5d~s2s8!dnn8 . ~18!

It is clear from the definition of the stateuC1& that the tran-
sition between the empty and the filled modes is sharp
order to ‘‘smooth out’’ the stateuC1&, we consider a state
uC2& as a quantum superposition ofuC1&. In doing so, we
introduce an,a priori, arbitrary functiong(s;kb) of s. The
definition of the stateuC2(n,kb)& is

uC2~n,kb!&[E
0

1`

dsg~s;kb!uC1~s,n!&, ~19!

1This normalization is in agreement with Eq.~2.25! of Ref. @38#.
08350
if

r.

k-
n
s

,
he
f.
.
t
e
he

e

-

e
.

.

In

whereg(s;kb) is a given function which defines the priv
leged scalekb . We assume that the state is normalized a
therefore*0

1`g2(s;kb)ds51. In the stateuC1(s,n)&, for
any domainD one has@8#

^C1~s,n!ucpcquC1~s,n!&5^C1~s,n!ucp
†cq

†uC1~s,n!&50,
~20!

^C1~s,n!ucpcq
†uC1~s,n!&5nd~qPD!d~p2q!1d~p2q!,

~21!

^C1~s,n!ucp
†cquC1~s,n!&5nd~qPD!d~p2q!. ~22!

In these formulas,d (qPD) is a function that is equal to 1 i
qPD and 0 otherwise. These relations will be employed
the sequel for the computation of the CMB temperatu
anisotropies for the different non-vacuum initial states.

B. Two-point correlation function of the CMB temperature
anisotropy

The spherical harmonic expansion of the cosmic mic
wave background temperature anisotropy, as a function
angular position, is given by

dT

T
~e!5(

,m
a,mW,Y,m~e! ~23!

with

a,m5E dVe

dT

T
~e!Y,m* ~e!. ~24!

The W, stands for the,-dependent window function of the
particular experiment. In the work presented here, we
interested in a non-Gaussian signature of primordial orig
We are thus focusing on large angular scales, for which
main contribution to the temperature anisotropy is given
the Sachs-Wolfe effect, implying

dT

T
~e!.

1

3
F@h lss,e~h02h lss!#, ~25!

where F(h,x) is the Bardeen potential, whileh0 and h lss
denote respectively the conformal times now and at the
scattering surface. Note that the previous expression is o
valid for the standard cold dark matter model~SCDM!. In
the following, we will also be interested in the case wher
cosmological constant is present (LCDM model! since this
seems to be favored by recent observations. Then, the
grated Sachs-Wolfe effect plays a non-negligible role
large scales and the expression giving the temperature
tuations is not as simple as the previous one.

In the theory of cosmological perturbations of quantu
mechanical origin, the Bardeen variable becomes an op
tor, and its expression can be written as@8#

F~h,x!5
,Pl

,0

3

4pE dk@ck~h i! f k~h!eik•x

1ck
†~h i! f k* ~h!e2 ik•x#, ~26!
2-6
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where ,Pl5(G\)1/2 is the Planck length. In the following
we will consider the class of models of power-law inflatio
since the power spectrum of the fluctuations is then explic
known. In this case, the scale factor readsa(h)
5,0uhu11b, where b<22 is a priori a free parameter
However, in order to obtain an almost scale-invariant sp
trum,b should be close to22. In the previous expression o
the scale factor, the quantity,0 has the dimension of a lengt
and is equal to the Hubble radius during inflation ifb5
22. The parameter,0 also appears in Eq.~26!. The factor
3/(4p) in that equation has been introduced for future co
venience: the factor 3 will cancel the 1/3 in the Sachs-Wo
formula and the factor 1/(4p) will cancel the factor 4p ap-
pearing when the complex exponentials are expresse
terms of Bessel functions and spherical harmonics. T
mode functionf k(h) of the Bardeen operator is related to t
mode functionmk(h) of the perturbed inflaton through th
perturbed Einstein equations. In the case of power-law in
tion and in the long wavelength limit, the functionf k(h) is
given in terms of the amplitudeAs and the spectral indexns
of the induced density perturbations by

k3u f ku25Ask
ns21. ~27!

Using the Rayleigh equation and the completeness rela
for the spherical harmonics we have

exp@ i ~h02h lss!k•e#

54p(
,m

i , j ,@k~h02h lss!#Y,m* ~k!Y,m~e!,

~28!

where j , denotes the spherical Bessel function of order,.
Equations~24!, ~25!, ~26!, and~28! imply

a,m5
,Pl

,0
eip,/2E dk@ck~h i! f k~h!1c2k

† ~h i! f k* ~h!#

3 j ,@k~h02h lss!#Y,m* ~k!. ~29!

At this point we need to somehow restrict the shape of
domain D. We assume that the domain only restricts t
modulus of the vectors, while it does not act on their dire
tion. Then, from Eq.~29!, one deduces

^C1~s,n!ua,1m1
a,2m2
* uC1~s,n!&

5d,1,2
dm1m2

,Pl
2

,0
2E0

1`dk

k
j ,1

2 @k~h02h lss!#k
3u f ku2

3@112nd~kPD!#

5
,Pl

2

,0
2 @C,1

12nD,1

(1)~s!#d,1,2
dm1m2

, ~30!

with
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D,
(1)~s![E

0

s

j ,
2@k~h02h lss!#k

3u f ku2
dk

k
~31!

5
p

2
AsE

0

s

J,11/2
2 ~k!kns23dk[

p

2
AsD̄,

(1)~s!,

~32!

whereJ,(z) is an ordinary Bessel function of order,. In the
last equality and in what follows we takeh02h lss51. The
amplitudeAs and the spectral indexns are defined by Eq.
~27!. Thus, the multipole momentsC,

(1) , in the stateuC1&,
are given by

C,
(1)~s!5C,12nD,

(1)~s!, ~33!

whereC, is the ‘‘standard’’ multipole, i.e., the multipole ob
tained in the case where the quantum state is the vacu
i.e., n50. Let us calculate the same quantity in the st
uC2&. Performing a similar analysis as the above one,
find

^C2~n,kb!ua,1m1
a,2m2
* uC2~n,kb!&

5d,1,2
dm1m2

,Pl
2

,0
2 F E

0

1`

j ,1

2 @k~h02h lss!#k
3u f ku2

dk

k

12nE
0

1`

dsg2~s;kb!

3E
0

s

j ,1

2 @k~h02h lss!#k
3u f ku2

dk

k G . ~34!

Defining g2(s;kb)[dh/ds @we will see below that this
function h, actuallyh(kb), cannot be arbitrary# and integrat-
ing by parts leads to

^C2~n,kb!ua,1m1
a,2m2
* uC2~n,kb!&

5d,1,2
dm1m2

,Pl
2

,0
2E0

1`

j ,1

2 @k~h02h lss!#k
3u f ku2

3H 112nh~`!F12
h~k!

h~`!G J dk

k
~35!

5
,Pl

2

,0
2 @C,1

12nD,1

(2)#d,1,2
dm1m2

, ~36!

with

D,
(2)[h~`!E

0

1`

j ,
2@k~h02h lss!#F12

h~k!

h~`!Gk3u f ku2
dk

k
~37!

5
p

2
AsE

0

1`

J,11/2
2 ~k!h̄~k!kns23dk[

p

2
AsD̄,

(2) ,

~38!

where h̄(k)[h(`)@12h(k)/h(`)#. To perform this calcu-
lation, we have not assumed anything onh(`) or h(0). We
2-7
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see that the relationg2(k)[dh/dk requires the functionh(k)
to be monotonically increasing withk. It is interesting that,
already at this stage of the calculations, very stringent c
ditions are required on the functionh(k) which is therefore
not arbitrary. This implies that the functionh̄(k) which ap-
pears in the correction to the multipole moments is alw
positive, vanishes at infinity and is monotonically decreas
with k. An explicit profile for h̄(k) is given below. In addi-
tion, the state uC2(n,kb)& must be normalized, which
amounts to taking, see Sec. III,*0

`g2(s;kb)ds51. Using the
definition of the functiong2, we easily find

h~`!2h~0!51⇒h̄~0!51. ~39!

The total power spectrum of the Bardeen potential can
written as

k3uFku2}Ask
ns21H 112nh~`!F12

h~k!

h~`!G J
5Ask

ns21@112nh̄~k!#. ~40!

The exact proportionality coefficient is derived below. O
servations indicate thatns.1 and for simplicity we will take
ns51. Then, if the functionh(k) is chosen such that it con
tains a preferred scale, see the Introduction, and such th
is approximatively constant on both sides, the model
comes very similar to the one presented in Ref.@7# for, in the
notation of that article,p.1. In Ref. @7# the allowed range
of parameters is 0.8,p,1.7 with an especially good agree
ment for the inverted stepp,1. In our case, another differ
ence consists in the fact that the oscillations in the spect
studied in Ref.@7# are not present due to the monotony co
dition on the functionh(k). In the following, in order to
perform concrete calculations, we will choose an analyti
form for h̄(k) which mimics the behavior of the spectru
considered in Ref.@7# with p.1. Interestingly enough, we
will see that the final result does not strongly depend on
values of the free parameters that describe the functionh̄(k).
As we have seen previously, we can write the multipole m
ments in the stateuC2& as

C,
(2)5C,12nD,

(2) . ~41!

Substituting the well-known expression for theC,’s and the
definition of D,

(2) given by Eq.~38!, one finds that the coef
ficientsC,

(2) are given by

C,
(2)5As

p

2 H 1

232ns

G~32ns!G@,1~ns21!/2#

G2@~42ns!/2#G@,2~ns25!/2#

12nD̄,
(2)J . ~42!

As a next step, one has to normalize the spectrum or, in o
words, we need to determine the value ofAS. We choose to
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use the value ofQrms-PS5T0@5C2
(2)W 2

2/(4p)#1/2(,Pl /,0)
;18mK with T052.7 K measured by the COBE satellit
The quadrupole is then

C2
(2)5As

p

2 H 1

232ns

G~32ns!G@21~ns21!/2#

G2@~42ns!/2#G@42~ns21!/2#

12nD̄2
(2)J

⇒AS5
8

5W 2
2

Qrms-PS
2

T0
2

,0
2

,Pl
2 F 1

6p
12nD̄2

(2)G21

, ~43!

where, in order to establish the last relation, and herea
we have assumedns51. The measurements are often e
pressed in terms of band powersdT, defined by

dT,5A,~,11!

2p

,Pl
2

,0
2

C,
(2). ~44!

For ns51, Eq. ~43! can be simplified and the band powe
defined by Eq.~44! lead to

dT,5
Qrms-PS

T0

1

W2
A12

5
A112np,~,11!D̄,

(2)

1112npD̄2
(2)

.

~45!

The n dependence in the above expression is the correc
due to the non-vacuum initial state. One can easily check
if n50 the corresponding band powers are constant at la
scales, a property which is well known.

Finally, we calculate the two-point correlation function
zero lag in the stateuC2&. Using Eqs.~24!, ~36!, ~41!, the
second moment,m2, of the distribution is given by

m2[ K FdT

T
~e!G2L 5

,Pl
2

,0
2 (

,

2,11

4p
C,

(2)W ,
2 . ~46!

Once we have reached this point, an obvious first thing to
is to check that the two-point correlation function calculat
above is consistent with present observations.

C. Comparison with observations

Among the available observations that one can use
check the predictions of theoretical models, two are key
cosmology: the CMB anisotropy and the matter-dens
power spectra. Since the initial spectrum is very similar
the one considered in Ref.@7#, it is clear that the multipole
moments and the matter power spectrum will also be sim
to the ones obtained in that article. This already guaran
that there will be no clash with the observations. Therefo
we will not study in detail all the predictions that can b
done from the two-point correlation function since our ma
purpose in this article is to calculate the non-Gaussian
which is a clear specific signature of a non-vacuum state~in
Ref. @7#, the CMB statistics are Gaussian!. Here, we just
calculate the matter power spectrum to demonstrate th
fits reasonably well the available astrophysical observati
2-8
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for some values of the free parameters. In addition, this
lustrates well the fact that, using the available observatio
we can already put some constraints on the free parame
In Ref. @8#, although the model considered was slightly d
ferent, the multipole moments were computed and show
be in agreement with the data if the number of quanta
few. Therefore, having given all these reasons, it seems l
cal to concentrate in the present article on the matter po
spectrum.

1. Choice of the weight function

We first need to choose the functionh(k) such that it
satisfies the conditions described above. A simple ansatz

h~k!5A1B tanhS a ln
k

kb
D . ~47!

In this equation,kb represents the privileged~comoving!
wave number anda is a parameter which controls the shar
ness of the functionh(k). The argument of the hyperboli
tangent is expressed in terms of the logarithm of the w
number in order to guarantee thatkP@0,1`@ , see, e.g., Ref
@32#. A and B are two coefficients that we are going to fi
now. We haveh(0)5A2B andh(`)5A1B. Therefore, the
requirement that the state be normalized translates into
conditionB51/2. In fact, it is easy to see thath̄(k) does not
depend onA. The functionh̄(k) can be written as

h̄~k!5
1

2 F12tanhS a ln
k

kb
D G . ~48!

We can easily check thath̄(0)51 and thath̄(`)50. To
make the connection with the literature, note that we are
taking a051 today. Rather,a052,H'6000h21 Mpc which
implies that a preferred scale located at 0.004h Mpc21 @32#
corresponds to a comovingkb524 in our case, while a pre
ferred scale located at 0.052h Mpc21 @27# yieldskb5312 in
our units. In order to illustrate the different forms of th
initial spectrum, the functionh̄(k) is represented in Fig. 2.

FIG. 2. The functionh̄(k) for a52 ~continuous line!, a55
~dotted line! anda510 ~dashed line!.
08350
l-
s,
rs.

to
a
i-

er

s

e

he

ot

At this point, we need to reinvestigate the back-react
problem described before but now for the two non-vacu
statesuC1& and uC2&. In particular, we are going to see th
we can put some constraints on the free parameters
from theoretical considerations. An analogous analysis to
one performed in Sec. II, now for the stateuC1& leads to

^C1uruC1&5
1

8p3a4E0

1`dk

k
k2@112nd~kPD!#Fmk8mk8*

2
a8

a
~mkmk8* 1mk* mk8!1S a82

a2
1k2D mkmk* G ,

~49!

^C1upuC1&5
1

8p3a4E0

1`dk

k
k2@112nd~kPD!#Fmk8mk8*

2
a8

a
~mkmk8* 1mk* mk8!1S a82

a2
2

k2

3 D mkmk* G .

~50!

Again, as in Sec. II, the term which is not proportional ton
should be subtracted since it represents the vacuum co
bution. Now, for the stateuC2&, one gets

^C2uruC2&5E
0

1`E
0

1`

dsds8g* ~s!g~s8!

3^C1~s,n!uruC1~s8,n!& ~51!

5E
0

1`

dsug~s!u2^C1~s,n!uruC1~s,n!&,

~52!

where we used the fact thatr does not act ons. In the
high-frequency regime, one obtains

^C2uruC2&5^0uru0&1
n

16p2a4E0

`

s4ug~s!u2ds, ~53!

^C2upuC2&5^0upu0&1
1

3

n

16p2a4E0

`

s4ug~s!u2ds.

~54!

Clearly, the equation of state is still radiation. A comparis
with Sec. II also shows that the distribution of quanta is n
known explicitly and is given byn(k)5nug(k;kb)u2k/8. Us-
ing ug(s)u25dh/ds, the distribution function reads

n~k!5
an

16
cosh22Fa lnS k

kb
D G . ~55!

This function is represented in Fig. 3 for different values
the parametera. It is clearly peaked around the central valu
2-9
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k5kb . Finally, we end up with the following energy contr
bution from our state~after having removed the vacuum co
tribution!:

^C2uruC2&5
n

16p2a4

a

2E0

`

s3F12tanh2S a ln
s

kb
D Gds ~56!

5
n

16p2a4

kb
4

2 E2`

1` e4v/a

cosh2v
dv, ~57!

where we have used the change of variablev[a ln(s/kb).
Separating the integral into two pieces, it is easy to show

^C2uruC2&5
n

16p2a4
kb

4E
0

`cosh~4v/a!

cosh2v
dv ~58!

5
n

16p2a4
kb

4BS 11
2

a
,12

2

a D ~59!

5
n

16p2a4
kb

4GS 11
2

a DGS 12
2

a D , ~60!

where we have used Eqs.~3.512.1! and~8.384.1! of Ref. @39#
and whereB(x,y)[*0

1tx21(12t)y21dt is the Euler’s inte-
gral of the first kind, see Eq.~8.380.1! of Ref. @39#. In the
above equationG is the Euler’s integral of the second kind
These expressions are well-defined ifa.2; it is interesting
to see that we can obtain constraints on the free param
of our model just from the requirement that the energy
finite. We see in Fig. 2 that it corresponds to a situat
where the function is almost a step. Repeating the same
soning as before, we obtain the following constraint:

Ne&
1

4 H 2 lnS mPl

H inf
D2 ln n2 lnFGS 11

2

a DGS 12
2

a D G J .

~61!

The result does not depend very much on the free param
n. Roughly speaking, for the fiducial example discussed p

FIG. 3. The functionn(k) for kb5312, n51, a52 ~continuous
line!, a55 ~dotted line! anda510 ~dashed line!.
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viously, the energy density of the particles becomes do
nant 5 e-foldings before the exit of the horizon. Since th
mode considered leaves the horizon 53e-foldings before the
end of inflation, we conclude that a model with.60
e-foldings does not suffer from the back-reaction problem

In the following, we turn to the calculation of the matte
power spectrum taking into account the constraint deriv
above, namelya.2.

2. Calculation of the power spectrum

The first step is to calculate the two-point correlati
function of the Bardeen potential. Most of the calculation h
already been done in the previous subsection, see Eq.~40!,
but what matters now is the coefficient of proportional
which was not determined previously. One finds

^C2~n,kb!uF~h,x!F~h,x1r !uC2~n,kb!&

5
,Pl

2

,0
2

9

4pE0

`dk

k

sinkr

kr
k3u f ku2@112nh̄~k!#. ~62!

The link between the power spectrum and the classical F
rier component of the Bardeen potentialF(h,k), with
F(h,x)51/(2p)3/2*dkF(h,k)eik•x, is obtained if one uses
an ergodic hypothesis and identifies the ‘‘quantum’’ tw
point correlation function with the spatial averag
^F(h,x)F(h,x1r )&V . In this case, one finds

^F~h,x!F~h,x1r !&V5
1

2p2E0

`dk

k

sinkr

kr
k3uF~h,k!u2

⇒ 1

2p2
k3uF~h,k!u2

5
,Pl

2

,0
2

9

4p
Ask

ns21@112nh̄~k!#.

~63!

Then, the matter power spectrum can be directly deriv
since the density contrast is linked to the Bardeen poten
by the perturbed Einstein equations. As we mentioned ab
we take ns51 for simplicity and get from the Poisson’
equation

ud~h,k!u25
4

9 S kphys

H0
D 4

uF~h,k!u2

⇒ud~h,k!u2

5
p

4H0

,Pl
2

,0
2

Askphys@112nh̄~k!#, ~64!

whereAs is the constant fixed by the COBE normalizatio
see Eq.~43!. The quantityd(h,k) in the last equations is
dimensionless. The dimension-full~physical! Fourier compo-
nent of the square of the density contrast is justa0

6 times the
previous one,a0 being the value of the scale factor toda
Defining, as usual, the spectrumP(k) by P(k)
[udphys(h,k)u2/a0

3 and choosing the normalization of th
scale factor asa052,H where,H is the Hubble radius today
one finds
2-10
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P~k!5
16p

5H0
4

Qrms-PS
2

T0
2

1

W 2
2F 1

6p
12nD̄2

(2)~kb!G21

3@112nh̄~k!#kphys. ~65!

This equation gives the initial matter power spectrum.
order to obtain the matter power spectrum today, we nee
take into account the transfer functionT(k) which describes
the evolution of the Fourier modes inside the horizon. In t
case, one has

P~k!5T2~k!
16p

5H0
4

Qrms-PS
2

T0
2

1

W 2
2F 1

6p
12nD̄2

(2)~kb!G21

3@112nh̄~k!#kphys. ~66!

The standard cold dark matter~SCDM! transfer function is
given approximatively by the following numerical fit@40#

T~k!5
ln~112.34q!

2.34q
@113.89q1~16.1q!2

1~5.46q!31~6.71q!4#21/4,

q[k/@~hG!Mpc21#, ~67!

whereG is the so-called shape parameter, which can be w
ten as@40#

G[V0he2Vb2A2hVb /V0, ~68!

whereV0 is the total energy density to critical energy de
sity ratio andVb represents the baryon contribution. Mo
explicitly, the definitions used in this article areV05VL

1Vm5VL1Vcdm1Vb . We have now normalized the ma
ter power spectrum to COBE. It is important to realize th
the above procedure only works for the SCDM model sin
we have used the Sachs-Wolfe equation~24!. The SCDM
matter power spectrum is depicted in Fig. 4. The measu
power spectrum of the Infrared Astronomy Satellite~IRAS!
Point Source Catalogue Redshift Survey~PSCz! @41# has
also been displayed for comparison. One notices that
effect of the step inh̄(k) is to reduce the power at sma
scales which precisely improves the agreement between
theoretical curves fornÞ0 and the data. Let us remind a
this point that the shape of the functionh̄(k) has not been
designed for this purpose and comes from different~theoret-
ical! reasons. Therefore, it is quite interesting to see that
power spectrum obtained from our ansatz fits reasona
well the data. This plot also confirms the result of Ref.@8#,
namely that the number of quanta must be such that~for
SCDM! 1<n,10, i.e., cannot be too large.

Another more accurate test to check the consistency of
model with the observations is to compute the rms m
fluctuation at a scale ofr 058h21 Mpc. Its definition for a
top hat window function reads
08350
to

t

t-

t
e

d

e

he

e
ly

e
s

s8
2[S dM

M D 2

~r 058h21 Mpc!

5
1

~4pr 0
3/3!2E0

`k3P~k!

2p2
W2~k!

dk

k
, ~69!

with

W~k!54pr 0
3Fsinkr0

~kr0!3
2

coskr0

~kr0!2 G . ~70!

For n50 ~i.e. standard SCDM model! with the following
choice for the cosmological parameters,h50.65, V051,
Vb50.05, a numerical calculation of the previous integ
gives s8.1.67, in agreement with previous estimates, s
Fig. 15 of Ref. @43#. For h50.5, the result becomess8
.1.28 which is also consistent with Ref.@43#. Let us now
calculate the rms mass fluctuation fornÞ0. For a52,
kb

phys50.052h Mpc21 one finds, for our fiducial choice of the
cosmological parameters,s8.0.99,0.79,0.68 forn51,2,3
respectively. In the same conditions, but fora55, one ob-
tainss8.0.98,0.77,0.66 which illustrates explicitly the fa
that s8 is not sensitive to the parametera. These numbers
should now be compared with those inferred from clus
abundance constraints@44# which give

s8
clu5~0.560.1!Vm

2g , ~71!

whereg.0.5. We recover the well-known conclusion th
the n50 SCDM model is ruled out because the CMB a
clusters normalization are not consistent with each other~i.e.
the difference is greater than 5s). On the other hand, we se
that putting a few quanta improves the situation and that
n52 model becomes compatible with the data at thes
level whereas the modeln53 gives the correct value at les

FIG. 4. Matter power spectrum normalized to COBE for diffe
ent numbersn of quanta in the initial state. The cosmological p
rameters are those corresponding to the SCDM model, nameh
50.65,VL50, Vb50.05,Vcdm50.95, andns51. The parameters
describing the non-vacuum state arekb

phys50.052h Mpc21 and a
52.5. The data points represent the power spectrum measure
the PSCz survey@42#.
2-11
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than 2s. Fine-tuning the other cosmological paramete
would allows us to achieve an even better agreement. Th
fore, as announced, there exists a region in the space o
rameters where the model is in agreement with the prese
available data.

Now, we would like also to test the predictions of th
model in the case where a cosmological constant is pres
A first problem is that the value of the coefficientAs is no
longer the same. The reason is that the integrated Sa
Wolfe effect now plays a role at large scales and modifies
relation~25!. This changes the COBE normalization and w
have C2

(2)(VLÞ0)ÞC2
(2)(VL50). As a consequence, th

constantAs in Eq. ~27! is no longer given by Eq.~43! and has
to be evaluated numerically for each value of the cosmolo
cal constant. We can parametrize this dependence by in
ducing a coefficient Bs(VL) such that As(VLÞ0)
5Bs(VL)As(VL50). Obviously, one hasBs(VL50)51.
A second problem is that the transfer function is also mo
fied by the presence of a cosmological constant. Howe
the change can be easily parametrized by using a new
merical fit to the transfer function. Finally, the power spe
trum can be written as

P~k!5T2~k!
g2~V0!

g2~Vm!
Bs~VL!

16p

5H0
4

Qrms-PS
2

T0
2

1

W 2
2

3F 1

6p
12nD̄2

(2)~kb!G21

@112nh̄~k!#kphys,

~72!

where the functiong(V) takes into account the modificatio
induced in the transfer function by the presence of a cos
logical constant. Its expression can be written as@45#

g~V![
5V

2 FV4/72VL1S 11
V

2 D S 11
VL

70 D G21

. ~73!

Using the previous expression, we deduce that

s8
2~V0 ,Vcdm,Vb ,VL ,n!

5
g2~V0!

g2~Vm!
Bs~VL!s8

2~V0 ,Vcdm,Vb ,VL50,n!,

~74!

where the last term,s8
2(V0 ,Vcdm,Vb ,VL50,n) does not

depend explicitly onVcdm since this one does not appear
the shape parameter and therefore neither in the tran
function. Therefore, this term is equal to the value compu
previously for the SCDM model. From this last equation o
08350
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can easily deduce the constantBs(VL), and we finally obtain

s8
2~V0 ,Vcdm,Vb ,VL ,n!

5
s8

2~V0 ,Vcdm,Vb ,VL ,n50!

s8
2~V0 ,Vcdm,Vb ,VL50,n50!

3s8
2~V0 ,Vcdm,Vb ,VL50,n!. ~75!

The quantitys8
2(V0 ,Vcdm,Vb ,VL ,n50) is known in the

literature since it is nothing but the value for theLCDM
model. For our choice of the cosmological parameters,
has, for theLCDM model with VL50.7, s8.1 in agree-
ment with Fig. 16 of Ref. @43#. The quantity
s8

2(V0 ,Vcdm,Vb ,VL50,n50) is the value correspondin
to SCDM. Finally, the quantitys8

2(V0 ,Vm,Vb ,VL50,n) is
known from the previous calculations. Hence, for the valu
of the parameters considered above, one findss8

.0.59,0.47,0.40 forn51,2,3 respectively. This has to b
compared withs8

clu which is now equal tos8
clu.0.91 @46–

48#. In this case, we see that already the first valuen51
gives a too small contribution. This had already been noti
in Ref. @8# for the CMB anisotropy. In this case the presen
of the cosmological constant increases the height of the
acoustic peak which is also the effect of adding more a
more quanta. This can result in an acoustic peak which is
high. The cure is obvious: one has to decrease the valu
the cosmological constant as also noticed in Ref.@7#. For
instance, forVL50.5, the value ofs8 for theLCDM model
becomess8.1.25, see Fig. 16 of Ref.@43#. This gives for
our models8.0.74,0.59,0.51 forn51,2,3 which goes in
the right direction. The model withn51 is now compatible
at the 1.5s level. One can decrease more the value ofVL in
order to obtain a better agreement. These numbers are in
agreement with those proposed in Ref.@7# where the range
for the cosmological constant in a BSI model withp.1 was
found to be 0.2,VL,0.5. Again, this is not surprising sinc
we essentially deal with~almost! the same two-point corre
lation function.

IV. FOUR-POINT CORRELATION FUNCTION FOR
NON-VACUUM INITIAL STATES

A. General expressions

In this section we proceed with the calculation of the fou
point correlation function. We first perform the calculatio
for the stateuC1&, which we then generalize for the sta
uC2&. The first step is to establish the expression of all
combinations of four creation and/or annihilation operat
taken in the stateuC1(s,n)&. This calculation is presented i
Appendix A. Using these results, we compute the expe
tion value of four coefficientsa,m in the stateuC1(s,n)&.
From Eq.~29! which links the operatorsa,m to the operators
ck , one obtains
2-12
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^C1~s,n!ua,1m1
a,2m2

a,3m3
a,4m4

uC1~s,n!&

5
,Pl

4

,0
4 $~21!m11m2@C,1

C,2
12nC,1

D,2

(1)12nC,2
D,1

(1)14n2D,1

(1)D,2

(1)#d,1,3
d,2,4

dm1 ,2m3
dm2 ,2m4

1~21!m11m2

3@C,1
C,2

12nC,1
D,2

(1)12nC,2
D,1

(1)14n2D,1

(1)D,2

(1)#d,1,4
d,2,3

dm1 ,2m4
dm2 ,2m3

1~21!m11m3@C,1
C,3

12nC,1
D,3

(1)

12nC,3
D,1

(1)14n2D,1

(1)D,3

(1)#d,1,2
d,3,4

dm1 ,2m2
dm3 ,2m4

22n~n11!E,1,2,3,4

(1) H,1,2,3,4

m1m2m3m4eip(,11,21,31,4)/2

3@~21!,11,21,31,41~21!,11,31~21!,21,3#%, ~76!

with

E,1,2,3,4

(1) [E
0

s

j ,1
@k~h02h lss!# j ,2

@k~h02h lss!# j ,3
@k~h02h lss!# j ,4

@k~h02h lss!#k
3u f ku4

dk

k
, ~77!

H,1,2,3,4

m1m2m3m4[E dVeY,1m1
* ~2e!Y,2m2

* ~2e!Y,3m3
* ~e!Y,4m4

* ~e!. ~78!

Let us notice the following technical trick. Originally, in front of the first squared bracket in Eq.~76! appears a term of the
form (21),11,2eip(,11,21,31,4)/2. Using the fact that the presence of the Kro¨necker symbols implies that the correspondi
expression inside the squared bracket is non-vanishing only if,15,3 and ,25,4, the previous term can be rewritten a
e2ip(,11,2)51. This explains why it does not appear explicitly in Eq.~76!. Similar manipulations can be performed for th
terms in front of the following two squared brackets. Let us also notice that Eq.~76! includes a complex exponential facto
namely exp@ip(,11,21,31,4)/2#. However, by inspection of the properties of the quantityH,1,2,3,4

m1m2m3m4, see its definition in

terms of Clebsch-Gordan coefficients in the Appendix B, it is possible to show that this term is in fact real. Indeed si
Clebsch-Gordan coefficients are non-vanishing only if,11,21L52p and,31,41L52q wherep,q are integers, we have
,11,21,31,452(p1q2L), i.e., an even number. Therefore, the complex exponential factor in Eq.~76! is real and equal
to either 1 or21. These technical considerations will be employed in the formulas below. We also see that we now
(21),11,21,31,451. Finally, Eq.~76! can be cast into a more compact form

^C1~s,n!ua,1m1
a,2m2

a,3m3
a,4m4

uC1~s,n!&

5
,Pl

4

,0
4 $~21!m11m2C,1

(1)C,2

(1)d,1,3
d,2,4

dm1 ,2m3
dm2 ,2m4

1~21!m11m2C,1

(1)C,2

(1)d,1,4
d,2,3

dm1 ,2m4
dm2 ,2m3

1~21!m11m3

3C,1

(1)C,3

(1)d,1,2
d,3,4

dm1 ,2m2
dm3 ,2m4

22n~n11!E,1,2,3,4

(1) H,1,2,3,4

m1m2m3m4eip(,11,21,31,4)/2

3@11~21!,11,31~21!,21,3#%. ~79!

The first part of this equation has the same structure as the corresponding well-known equation for the vacuum s
sufficient to replaceC, with C,

(1) in the latter to obtain the first part of Eq.~79!. However, in addition, there is a non-trivia
term proportional to the coefficientE,1,2,3,4

(1) which cannot be guesseda priori. Obviously, forn50, one recovers the standar

result.
The calculation of the four-point correlation function in the stateuC2& is a bit more involved. Using the fact that th

operatorsa,m do not act ons, one finds that the general expression is given by

^C2~n,kb!ua,1m1
a,2m2

a,3m3
a,4m4

uC2~n,kb!&5E
0

`

dsg2~s;kb!^C1~s,n!ua,1m1
a,2m2

a,3m3
a,4m4

uC1~s,n!&. ~80!

The integration of terms of the typeC,1
C,2

, C,1
D,2

(1) andE,1,2,3,4

(1) is easy and proceeds as before. The most difficult pa

the integration of terms of the typeD,1

(1)D,2

(1) . We find that, in the stateuC2&, the four-point correlation function is given b
083502-13
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^C2~n,kb!ua,1m1
a,2m2

a,3m3
a,4m4

uC2~n,kb!&

5
,Pl

4

,0
4 $~21!m11m2@C,1

C,2
12nC,1

D,2

(2)12nC,2
D,1

(2)14n2F,1,2

(2) #

3d,1,3
d,2,4

dm1 ,2m3
dm2 ,2m4

1~21!m11m2@C,1
C,2

12nC,1
D,2

(2)12nC,2
D,1

(2)14n2F,1,2

(2) #

3d,1,4
d,2,3

dm1 ,2m4
dm2 ,2m3

1~21!m11m3@C,1
C,3

12nC,1
D,3

(2)12nC,3
D,1

(2)14n2F,1,3

(2) #

3d,1,2
d,3,4

dm1 ,2m2
dm3 ,2m4

22n~n11!E,1,2,3,4

(2) H,1,2,3,4

m1m2m3m4eip(,11,21,31,4)/2@11~21!,11,31~21!,21,3#%, ~81!

with

F,1,2

(2) [E
0

1`

dsh̄~s!
d

ds
@D,1

(1)D,2

(1)#5
p2

4
As

2E
0

1`

dsh̄~s!
d

ds
@D̄,1

(1)D̄,2

(1)#[
p2

4
As

2F̄,1,2

(2) ~82!

E,1,2,3,4

(2) [E
0

1`

j ,1
@k~h02h lss!# j ,2

@k~h02h lss!# j ,3
@k~h02h lss!# j ,4

@k~h02h lss!#h̄~k!k3u f ku4
dk

k

5
p2

4
As

2E
0

1`

J,111/2~k!J,211/2~k!J,311/2~k!J,411/2~k!h̄~k!k2ns28dk[
p2

4
As

2Ē,1,2,3,4

(2) . ~83!

We now see clearly the complication brought into the problem by the termF,1,2

(2) . This term prevents us from reducing the

terms within the squared brackets to the natural formC,1

(2)C,2

(2) becauseF,1,2

(2) ÞD,1

(2)D,2

(2) .

B. Calculation of the excess kurtosis

We are now in a position to calculate the excess kurtosis. In the previous section, we have established the expressio
four-point correlation functions for the operatora,m . In order to establish an analytical formula for the CMB excess kurtos
one just needs to use the equation linkinga,m anddT/T and to play with the properties of the spherical harmonics. Explicitl
the excess kurtosis is defined as

K[m423m2
2 , ~84!

where the second moment has already been introduced and where the fourth moment,m4, of the distribution is defined as

m45^K& with K[FdT

T
~e!G4

. ~85!

An important shortcoming of the previous definition is that the value ofK depends on the normalization. It is much mor
convenient to work with a normalized~dimensionless! quantity. Therefore, we also define the normalized excess kurtosis

Q[
K
m2

2
5

m4

m2
2 23, ~86!

which is the one more commonly used in the literature. In what follows we work with eitherK or Q parameters. Thus, Eqs.
~36!, ~81! and ~84! imply

K5
,Pl

4

,0
4 H 3

4n2

~4p!2 (
,1,2

~2,111!~2,211!@F,1,2

(2) 2D,1

(2)D,2

(2)#W ,1

2 W ,2

2 22n~n11!

3 (
,1m1

(
,2m2

(
,3m3

(
,4m4

E,1,2,3,4

(2) H,1,2,3,4

m1m2m3m4eip(,11,21,31,4)/2@11~21!,11,31~21!,21,3#

3W,1
W,2

W,3
W,4

Y,1m1
~e!Y,2m2

~e!Y,3m3
~e!Y,4m4

~e!J . ~87!
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Let us first concentrate on the first term in the above equation. The terms (2,111)(2,211) and 1/(4p)2 originate from the
summation theorem of spherical harmonics

(
m

Y,m~e!Y,m* ~k!5
2,11

4p
P,@cos~e•k!#. ~88!

The factor 3 comes from the definition ofK, see Eq.~84!. The fact thatF,1,2

(2) ÞD,1

(2)D,2

(2) prevents this first term from

vanishing. This is consistent with the previous considerations, as we have seen that in the absence of this cond
structure of the four-point correlation function would be similar to the one in the vacuum state, up to the term proport
E,1,2,3,4

(2) of course. Let us now treat in more detail the second term in Eq.~87!. Using again the summation theorem

spherical harmonics and the expression of a Legendre polynomial in terms of a spherical harmoniY,0

5A(2,11)/(4p)P,(cosu), we can perform the sum over the indicesmi ’s and express the corresponding factor in terms
the coefficientH,1,2,3,4

0000 , and therefore in terms of Clebsh-Gordan coefficients; see Appendix B.

After some lengthy but straightforward algebra, one finds that the excess kurtosis in our class of models is finally g

K5
,Pl

4

,0
4 H 3n2

4p2 (
,1,2

~2,111!~2,211!@F,1,2

(2) 2D,1

(2)D,2

(2)#W ,1

2 W ,2

2 2
1

32p3
n~n11! (

,1,2,3,4

~2,111!~2,211!~2,311!

3~2,411!E,1,2,3,4

(2) eip(,11,21,31,4)/2W,1
W,2

W,3
W,4

@11~21!,11,31~21!,21,3# (
L5max(u,12,2u,u,32,4u)

L5min(,11,2 ,,31,4)

~2L11!

3S ,1 ,2 L

0 0 0D
2S ,3 ,4 L

0 0 0D
2J . ~89!

Let us emphasize that Eq.~89! is the general expression for the excess kurtosis forany non-vacuum state, since the on
information we have used about the functionh̄(k) is that it is always positive, it vanishes at infinity, and it is a monotonica
decreasing function ofk. This expression is just a pure number, and it is our main result. In the following, as we did in pre
sections, we will choose an adequateansatzfor h(k), namely that one from Eq.~47!, and compute the excess kurtosisK, as
well as the normalized excess kurtosisQ defined by Eq.~86!. We will then compare the calculated value forQ to the one
quantified by the cosmic variance.

In an analogous way as for the definition of the second momentm2 given in Eq.~46!, and for future convenience, we ca
express the excess kurtosis in terms of its ‘‘multipole moments’’K,1,2,3,4

, as

K5 (
,1,2,3,4

W,1
W,2

W,3
W,4

K,1,2,3,4
. ~90!

Then, from Eqs.~38!, ~82!, and~43!, it is easy to establish that the momentsK,1,2,3,4
can be put under the form

K,1,2,3,4
5

,Pl
4

,0
4

As
2H 3n2

16
~2,111!~2,211!@ F̄,1,2

(2) 2D̄,1

(2)D̄,2

(2)#d,1,3
d,2,4

2
1

128p
n~n11!~2,111!~2,211!~2,311!

3~2,411!Ē,1,2,3,4

(2) ~21!(,11,21,31,4)/2@11~21!,11,31~21!,21,3# (
L5max(u,12,2u,u,32,4u)

L5min(,11,2 ,,31,4)

~2L11!

3S ,1 ,2 L

0 0 0D
2S ,3 ,4 L

0 0 0D
2J . ~91!

The last step consists in normalizing the spectrum. For that, we use the value ofAs determined previously~in the SCDM case
with non-vanishing quantan in the vacuum state!. We obtain
083502-15
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K,1,2,3,4
5

Qrms-PS
4

T0
4

64

25

1

W 2
4 H 1

232ns

G~32ns!G@21~ns21!/2#

G2@~42ns!/2#G@42~ns21!/2#
12nD̄2

(2)J 22H 3n2

16
~2,111!~2,211!@ F̄,1,2

(2)

2D̄,1

(2)D̄,2

(2)#d,1,3
d,2,4

2
1

128p
n~n11!~2,111!~2,211!~2,311!~2,411!Ē,1,2,3,4

(2) ~21!(,11,21,31,4)/2

3@11~21!,11,31~21!,21,3# (
L5max(u,12,2u,u,32,4u)

L5min(,11,2 ,,31,4)

~2L11!S ,1 ,2 L

0 0 0D
2S ,3 ,4 L

0 0 0D
2J . ~92!

In particular, we have the following expression forK,,,, :

K,,,,5
Qrms-PS

4

T0
4

64

25

1

W 2
4 H 1

232ns

G~32ns!G@21~ns21!/2#

G2@~42ns!/2#G@42~ns21!/2#
12nD̄2

(2)J 22 H 3n2

16
~2,11!2@ F̄,,

(2)2D̄,
(2)D̄,

(2)#

2
3

128p
n~n11!~2,11!4Ē,,,,

(2) (
L50

L52,

~2L11!S , , L

0 0 0D
4J . ~93!
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This expression for the multipole moments will be employ
in the next section to estimate the overall amplitude of
non-Gaussian signal from non-vacuum states in a semi
lytical manner.

Let us end this section by signaling that the explicit e
pression for the normalized excess kurtosis parameter ca
easily derived from the above formulas. Then, since t
derivation is not especially illuminating, we prefer to jum
directly to the numerical evaluation.

V. RESULTS

Having established the formal expression of the exc
kurtosis, we now turn to the question of its numerical eva
ation. It turns out that it is not possible to calculate eve
thing analytically for our specific ansatz. In this section w
present a full numerical evaluation of the excess kurtosisQ.
A detailed order-of-magnitude estimate ofQ, which can help
us in roughly understanding the full numerical results,
given in Appendix C. Finally, in subsection B we presen
comparison with the cosmic variance of the excess kurto
This will tell us about the feasibility of detecting this non
Gaussian signal.

A. Full numerical results

By resorting to Eq.~90! and using again the COBE Dif
ferential Microwave Radiometer~DMR! window function,
we compute the value ofQ, valid on large angular scales, b
means of a Fortran code. We plot the results in Fig. 5, wh
we show the normalized excess kurtosisQ for some particu-
lar values of the free parameters. As we see from it,Q.
24.2431024 is an asymptotic value, provided we conce
trate on the middle and big values of the built-in scalekb .
This value almost exactly corresponds to the numerical e
mate derived in Appendix C. In other words, the fact that
numerical estimate does not depend onkb is confirmed by
the plot, except for small values of the wave numbers.
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fact, this shows that the quantityQ does not depend very
much on the free parameters. We have already establis
this property fora but this is also true forn since, using the
analytical estimate of Appendix C, we find, forn51, Q.
23.7731024 and for n→`, Q.24.2531024. Since we
know that this result does not depend on the details of
weight functionh̄(k), we conclude that the asymptotic valu
obtained above is a generic value, at least for large value
kb . In particular, this is true forkb'300 which corresponds
to the built-in scale located roughly at the privileged scale
the matter power spectrum selected by the redshift survey
Ref. @27#. Another important remark is that the excess kur
sis is found to be negative.

Let us now try to understand qualitatively the shape of
plot Q vs kb . The state that we consider,uC2&, is a quantum
superposition of statesuC1&, each one of these containingnk
quanta for all the scalesk up to a given, fixed scales @cf. Eq.

FIG. 5. The normalized excess kurtosis parameterQ in terms of
the privileged~comoving! wave numberkb for a particular repre-
sentative set of parameters:a55 for the sharpness of the weigh
function signaling the privileged scale, andn52 quanta in the non-
vacuum initial state for the cosmological perturbations.
2-16
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SINGLE FIELD INFLATION AND NON-GAUSSIANITY PHYSICAL REVIEW D 66, 083502 ~2002!
~17!#. The ‘‘weight’’ given to each stateuC1& is described by
the functiong(k;kb) that depends on the privileged scalekb .
As already mentioned, for our ansatz of Eq.~47! we have
g(k;kb)5(a/2k)1/2cosh21@a ln(k/kb)#, which, as a function
of k, is roughly ‘‘peaked’’ atkb . Then, in effect, we may
approximately write

uC2~n,kb!&.uC1~n,kb!&5 ^
kPD~kb!

unk& ^
pP” D~kb!

u0p&. ~94!

Thus, we see that a smallkb will reduce the range of scalesk
included in the domainD(kb), and therefore also reduce th
effective available number of quanta~of energyk). Given
that we employed the Sachs-Wolfe formula, the excess
tosis that we computed is only the ‘‘trace’’ of the no
Gaussian signal characterized bykb left at large scales@this
is also why there is no contradiction in using Eq.~25! while
kb can be large#. Let us consider two scales, say,kb1 andkb2
such thatkb2.kb1@1 ~recall that we are takingh02h lss
51). It is clear that passing fromkb1 to kb2 will not change
the structure of the stateuC2& at small scales. It will just
enlarge the domain where there are quanta, leaving unm
fied the large scale part. Therefore, as the excess kurtos
essentially given by the large scale part ofuC2&, it must be
independent ofkb provided thatkb is large, exactly as we
find. On the other hand, ifkb is small, a change in this scal
affects the structure of the state at scales that are relevan
the Sachs-Wolfe effect. As we saw previously, in this regim
the number of quanta corresponding to large scales decre
as kb goes to zero. The result is that the excess kurto
whose value is directly dependent on the number of qua
should diminish proportionally askb goes to zero, and this i
in fact what we see in Fig. 5.

These considerations give an intuitive understanding
the main result of this article. We will see in the next secti
that the theoretical uncertainties onQ ~as given by the cos
mic variance! are roughly equal toQCV.1 implying that the
non-Gaussian feature studied previously would be undet
able.

B. Comparison with the cosmic variance

The cosmic variance quantifies the theoretical error co
ing from the fact that, in cosmology, observers have o
access to one realization of thedT/T stochastic proces
whereas theoretical predictions are expressed through
semble averages. To compute the cosmic variance of a g
quantity, saye, one should proceed as follows@6,52#. First,
one has to introduce a class of unbiased estimatorsÊ of the
quantity e, i.e., ^Ê&5e, where in the present context th
average symbol means a quantum average in the consid
state. Secondly, one should compute the variance of th
estimators and find the smallest one under the constraint
the estimators are unbiased. The estimator which posse
the minimal variance is the best unbiased estimator of
quantity e. We denote it asÊbest. Finally, one should com-
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pute the variance of the best estimators Êbest
which is, by

definition, the cosmic variance. Ifs Êbest
50, then each real-

ization givese and from one realization we can measure t
quantity we are interested in. Ifs Êbest

Þ0, which is obviously

the usual case, one can attach a theoretical error to the q
tity we seek. Letereal be ~the numerical value of! one real-
ization of the corresponding stochastic process, then we
say that the quantitye is found to beereal6s Êbest

. So far, this

strategy has been successfully applied to quantities relate
the two-point correlation function@6# and to the three-poin
correlation function@52#, in the vacuum state.

The normalized excess kurtosis is defined in Eq.~86!. We
see that, in the present context, we face two important c
plications. The first is that one has to perform the minimiz
tion in a non-vacuum state. Let us notice in passing that
implies that the cosmic variance of the multipole moments
probably not given by the usual expression if the quant
state is no longer the vacuum. The second complicatio
that, in order to determine the best estimator of the norm
ized excess kurtosis, one has to deal with the ratio of t
stochastic processes. Suppose that we want to find
best estimator of the quantitye5e1 /e2 knowing the best

estimators of the quantitiese1 and e2 , Êbest(e1) and

Êbest(e2), respectively. The problem is thatÊbest(e1 /e2)

ÞÊbest(e1)/Êbest(e2). In this case, the calculation of the be
estimator becomes much more complicated.

Therefore, the full calculation of the best estimator of t
normalized excess kurtosis is a project beyond the scop
the present work and we will instead limit ourselves to
order-of-magnitude estimate of the theoretical uncertaint
This will yield a roughly correct estimate of the uncertainti
without the complications of much more cumbersome ana
sis.

To avoid the first complication, we estimate the varian
of the excess kurtosis as if it were issued from a Gauss
process, i.e., as if the quantum state were the vacuum s
To deal with the second complication, we use the followi
procedure. The excess kurtosisK ~or its normalized version
Q) is just related to the fourth momentm4 of the distribution
from which we substract the Gaussian partm4

(Gauss)53m2
2.

We will only take into account the contribution to the cosm
variance related to the fourth momentm4. This last one is
determined in the standard manner: the quantityK, defined in
Eq. ~85!, is an unbiased estimator ofm4; let sCV be its vari-
ance~in order to compute this variance one needs to cal
late the eight-point correlation functions of the relevant c
ation and annihilation operators in the vacuum state
according to our trick to avoid the first complication, s
above! and let m4

real5^K& real be one realization of the sto
chastic processK; as it issCV what attaches theoretical erro
bars to theactual value for the mean kurtosis, we can he
ristically express the effect ofsCV on m4 as follows: m4

.m4
real6sCV , at one sigma level. Having specified the co

mic variance of the kurtosis, we now need to relate it to
cosmic variance of the excess kurtosis. The effect of
cosmic variance is that, instead of finding the valueQ50 for
2-17
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a Gaussian process in the vacuum state, we typically obta
value shifted by6QCV which can be estimated as

QCV.
m4

real23m2
2

m2
2

.
m423m2

2

m2
2 6

sCV

m2
2

56
sCV

m2
2

, ~95!

where in the last equality, and as we mentioned above,
used the fact that the process is Gaussian. In other words
us
r
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a
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~95! shows thatQCV is the normalized excess kurtosis p
rameter~assuming Gaussian statistics! purely due to the cos-
mic variance.QCV is in general non-zero@49# and its mag-
nitude increases with the theoretical uncertaintysCV . This
gives a fundamental threshold that must be overcome by
measurable excess kurtosis parameter. The expression
QCV is straightforward to obtain, although after a somewh
long algebra. It was computed in Ref.@34# and gives
QCV55 72
(

,
~2,11!C,

2W ,
4

F(
,

~2,11!C,W ,
2G2 124

S )
i 51

4

(
, i

(
mi52, i

, i

C, i
W, i

2 D S (
L

4pH̄,1 ,,2 ,L
m1 ,m2 ,m31m4H̄,3 ,,4 ,L

m3 ,m4 ,2m32m4D 2

F(
,

~2,11!C,W ,
2G4 6

1/2

. ~96!
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As is the case forQ, one of the advantages of the previo
expression forQCV is that it is transparent to any particula
normalization of the spectrum. We have computed the va
for QCV for the COBE-DMR window function and found
value of order one for values of the scalar spectral ind
close to one. For illustrative purposes, we show in Fig. 6
variation with spectral index ofQCV when the term with
pre-factor 24 is absent@just a 5% off of the full result#. Note
that in an analogous calculation in Ref.@34# the quadrupole
was subtracted from the sum. The fact of including it no
only increases slightly the final value forQCV , showing the
big contribution of the low order multipoles to the cosm
variance, as already noted in that paper.

FIG. 6. The normalized excess kurtosis parameterQCV due to
the cosmic variance, in the mildly non-Gaussian approximation
as function of the scalar spectral indexns. We have checked that, o
the two terms in Eq.~96!, it is in fact the first one~with prefactor
72! that dominates the full result forQCV . It is this first term that
we plot in the figure for the COBE-DMR window function, includ
ing the quadrupole and for,max520. The addition of the term with
prefactor 24 raises the points no more than 5% for all values ofns.
e

x
e

VI. CONCLUSIONS

In this article, we have presented evidence that Gauss
ity is a robust property of single field inflation. We have se
that a departure from the standard vacuum initial conditio
for the cosmological perturbations leads generically to
clear non-Gaussian signature, viz. the excess kurtosis o
CMB temperature anisotropies. The signal-to-noise ratio
the dimensionless excess kurtosis parameter is found to

US

NU.431024, ~97!

and so the signal lies well below the cosmic variance and
away from experimental detection. We have found that t
value is quite independent of the free parameters of
model. We have also shown that the excess kurtosis is
nerically negative. The only possible loophole in the arg
ment presented above, and that we have discussed at le
is the uncertainty related to back reaction. This issue is
nerically important for the inflationary phase, and one co
well conceive that it could modify the evolution of the bac
ground in such a way as to increase the ratioS/N. However,
we do not think at present one such positive conspir
would take place, and therefore primordial Gaussianity ke
on being a generic property of single field inflationary mo
els.

Finally, a comment is in order on the trans-Plancki
problem of inflation. As already mentioned, it has been
cently suggested in Refs.@17,18# that trans-Planckian phys
ics could be mimicked by a non-vacuum state~rather than by
a change in the dispersion relation! implying that non-
Gaussianity would be a possible observable signature of
physics on lengths much smaller than the Planck length.
fortunately, what has been shown in the present paper for
CMB excess kurtosis leads us to conclude with a no-go c
jecture: these aforementioned signatures of trans-Planc
physics will most probably be astrophysically unobservab

d
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APPENDIX A

In this appendix, we give all the non-vanishing four-po
correlation functions of the creation and/or annihilation o
erators in the stateuC(s,n)&:

^C1~s,n!uckcpcq
†cs

†uC1~s,n!&

5@d~p2s!d~k2q!1d~p2q!d~k2s!#@11nd~sPD!

1nd~qPD!1n2d~sPD!d~qPD!#2n~n11!

3d~sPD!d~q2s!d~p2s!d~k2q!, ~A1!

^C1~s,n!uck
†cp

†cqcsuC1~s,n!&

5n2d~sPD!d~qPD!@d~p2s!d~k2q!

1d~p2q!d~k2s!#2n~n11!d~sPD!d~q2s!

3d~p2s!d~k2q!, ~A2!

^C1~s,n!uck
†cpcq

†csuC1~s,n!&

5nd~sPD!d~p2q!d~k2s!1n2d~sPD!d~qPD!

3d~p2q!d~k2s!1n2d~sPD!d~pPD!d~q2s!

3d~k2p!2n~n11!d~sPD!d~q2s!

3d~p2q!d~k2s!, ~A3!

^C1~s,n!uckcp
†cq

†csuC1~s,n!&

5nd~sPD!@d~q2s!d~k2p!1d~p2s!d~k2q!#

1n2d~sPD!d~kPD!@d~q2s!d~k2p!

1d~p2s!d~k2q!#2n~n11!d~sPD!

3d~q2s!d~p2s!d~k2q!, ~A4!

^C1~s,n!uck
†cpcqcs

†uC1~s,n!&

51nd~kPD!@d~p2s!d~k2q!1d~q2s!d~k2p!#

1n2d~sPD!d~kPD!@d~q2s!d~k2p!

1d~p2s!d~k2q!#2n~n11!

3d~sPD!d~q2s!d~p2s!d~k2q!, ~A5!
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^C1~s,n!uckcp
†cqcs

†uC1~s,n!&

5d~q2s!d~k2p!1nd~sPD!d~q2s!d~k2p!

1nd~qPD!d~p2q!d~k2s!1nd~pPD!d~q2s!

3d~k2p!1n2d~sPD!d~pPD!@d~q2s!d~k2p!

1d~p2q!d~k2s!#2n~n11!d~sPD!

3d~q2s!d~p2q!d~k2s!. ~A6!

APPENDIX B

We review here some definitions and properties of qu
tities involving Wigner 3-j symbols which are useful for the
main text. We define the integral of four spherical harmon
as

H̄,1,2,3,4

m,m2m3m4[E dVeY,1m1
~e!Y,2m2

~e!Y,3m3
~e!Y,4m4

~e!

~B1!

5~2 !m31m4(
L

H̄,1 ,,2 ,L
m1 ,m2 ,m31m4

3H̄,3 ,,4 ,L
m3 ,m4 ,2(m31m4) , ~B2!

where, following the notation of Refs.@50–52#, we wrote

H̄,1 ,,2 ,,3

m1 ,m2 ,m3[H̄,1,2,3

m1m2m3[E dVeY,1

m1~e!Y,2

m2~e!Y,3

m3~e!.

~B3!

H̄,1,2,3

m1m2m3 has the following simple expression in terms

Wigner 3-j symbols@53#:

H̄,1,2,3

m1m2m35A~2,111!~2,211!~2,311!

4p

3S ,1 ,2 ,3

0 0 0 D S ,1 ,2 ,3

m1 m2 m3
D . ~B4!

In the main text we employed the quantityH,1,2,3,4

m1m2m3m4 which

is simply related toH̄,1,2,3,4

m1m2m3m4 defined above by

H,1,2,3,4

m1m2m3m45~2 !,11,2@H̄,1,2,3,4

m1m2m3m4#*

5~2 !,11,2H̄,1,2,3,4

m1m2m3m4. ~B5!

The last equality holds since the 3-j symbols, as well as the
Clebsh-Gordan coefficients, are all real.

APPENDIX C

In this appendix, we give an approximate analytical stu
of the excess kurtosis. This analysis is important since
allows us to check the validity of the numerical calculati
presented in Sec. V.
2-19



an
on

o
th

in

th

w

,

ion
se
der
r

rom
be

osis

s-

this
s
es
xi-
ns.
e
the

-

GANGUI, MARTIN, AND SAKELLARIADOU PHYSICAL REVIEW D 66, 083502 ~2002!
We first study the functionD̄,
(1)(s), defined in Sec. III as

D̄,
(1)~s![E

0

s

J,11/2
2 ~k!kns23dk. ~C1!

The plot of this function is represented in Fig. 7. We c
easily understand the qualitative behavior of this functi
For small values of the argument, we take the first term
the Taylor expansion of the Bessel function and perform
integration exactly. The result reads

D̄,
(1)~s!

.
1

22,11~2,1ns21!G2~,13/2!
s2,1ns21, s!1.

~C2!

On the other hand, for large values of the argument, us
Eq. ~6.574.2! of Ref. @39#, we obtain

D̄,
(1)~s!.

G@32ns#G@,1~ns21!/2#

232nsG2@22ns/2#G@,1~52ns!/2#
, s@1.

~C3!

For ns51, the above amounts toD̄,
(1)(s).1/@p,(,11)#

which, for ,52, gives D̄2
(1)(s).1/(6p).0.053 in agree-

ment with Fig. 7. As a next step we want to understand
qualitative behavior ofD̄,

(2) as a function ofkb and ,. Its
definition, given in Sec. III, reads

D̄,
(2)[E

0

1`

J,11/2
2 ~k!h̄~k!kns23dk ~C4!

.E
0

kb
J,11/2

2 ~k!kns23dk ~C5!

5D̄,
(1)~kb!, ~C6!

where we have used the fact that the behavior ofh̄(k), es-
pecially for large values of the parametera, is very similar
to a Heaviside function. In practice, for largekb and for the
range of angular frequencies we are interested in, we
havekb@,. In this case,D̄,

(2).1/@p,(,11)#. Let us now

try to evaluateF̄,1,2

(2) defined by

F̄,1,2

(2) [E
0

1`

dsh̄~s!
d

ds
@D̄,1

(1)D̄,2

(1)#. ~C7!

Using again the fact thath̄(k) behaves like a step function
we find

F̄,1,2

(2) .E
0

kb
ds

d

ds
@D̄,1

(1)D̄,2

(1)#5D̄,1

(1)~kb!D̄,2

(1)~kb!. ~C8!

The previous equations allow us to estimate the first term
Eq. ~89!. We find
08350
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F̄,1,2

(2) 2D̄,1

(2)D̄,2

(2).0. ~C9!

This conclusion rests on the approximation that the funct
h̄(k) behaves like a step function. In reality, this is of cour
not exactly the case. It would have been nice to find the or
of magnitude of the correction in terms of the parametea

controlling the sharpness of the functionh̄(k). Unfortu-
nately, the complexity of the equations has prevented us f
deriving such an estimate. This notwithstanding, we can
sure that the contribution of this first term to Eq.~89! will not
be higher than that of the second term; see below.

The second term which participates to the excess kurt
is given by the term proportional to the coefficientE,1,2,3,4

(2) .

Let us now study this coefficient in more detail. Its expre
sion, using the approximate behavior ofh̄(k), can be written
as

Ē,1,2,3,4

(2) [E
0

1`

J,111/2~k!J,211/2~k!J,311/2~k!

3J,411/2~k!h̄~k!k2ns28dk ~C10!

.E
0

kb
J,111/2~k!J,211/2~k!J,311/2~k!

3J,411/2~k!k2ns28dk. ~C11!

We have not been able to find a compact expression for
coefficient. However, it is easy to follow qualitatively it
behavior. Its numerical value is maximum when the indic
, i ’s are all equal. This is because this configuration ma
mizes the overlap of the first peak of the Bessel functio
Also when ,15,25,35,4 increases, the numerical valu
of Ē,1,2,3,4

(2) decreases, because the coincidence between

four ~first! peaks of the Bessel functions occurs at higherk,
resulting in a factork2ns28 much smaller. From these con
siderations, one can infer that the largest coefficient isĒ2222

(2) .
Practically, this quantity does not depend onkb because we

FIG. 7. The functionD̄,
(1)(s) versuss for ,52.
2-20
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always choosekb@5/2 so that the upper bound of the int
gral can be considered to be the infinity. Numerically, o
obtains

Ē2222
(2) 50.000094.1024. ~C12!

This means that for all, i ’s we haveĒ,1,2,3,4

(2) <1024.

These semianalytical considerations allow us to deriv
rough estimate of the excess kurtosis. In the context of
approximation, this one does not depend onkb . Let us first
write Eq. ~89! as follows:

K5
,Pl

4

,0
4

A
s

2~K11K2! ~C13!

and consider the first term. One has, as already mentio
previously,

K 1[
3n2

16 (
,1,2,3,4

~2,111!~2,211!@ F̄,1,2

(2) 2D̄,1

(2)D̄,2

(2)#

3d,1,3
d,2,4

W,1
W,2

W,3
W,4

~C14!

.0. ~C15!

Let us now study the second term. Since we have shown
the contribution ofĒ2222

(2) dominates the sum, we can ve
roughly estimate the excess kurtosis by retaining only
term. We have

K2[2
1

128p
n~n11! (

,1,2,3,4

W,1
W,2

W,3
W,4

3~2,111!~2,211!~2,311!~2,411!

3Ē,1,2,3,4

(2) ~21!(,11,21,31,4)/2@11~21!,11,3

1~21!,21,3# (
L5max(u,12,2u,u,32,4u)

L5min(,11,2 ,,31,4)

~2L11!

3S ,1 ,2 L

0 0 0D
2S ,3 ,4 L

0 0 0D
2

~C16!

.2
33625

128p
n~n11!Ē2222

(2) (
L50

L54

~2L11!S 2 2 L

0 0 0D
4

,

~C17!

where we have used the fact thatW2.1 for the COBE win-
dow function, see below. The sum of the Clebsh-Gordan
efficients can easily be computed by noticing that

S 2 2 0

0 0 0D 5
1

A5
, ~C18!

S 2 2 2

0 0 0D 52S 2 2 4

0 0 0D 52A 2
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, ~C19!
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the other coefficients being zero. The numerical value of
sum is 0.0857 and we therefore reach the following resu

K2.2
3n~n11!625

128p
30.085731024. ~C20!

Now, to have an order of magnitude of the contribution to t
kurtosis from the second term,K2, what remains to be done
is to take into account the normalization. Using the expr
sion of A

s
derived previously into Eq.~C13! we finally find

K.21022p
n~n11!

~2n11!23
Qrms-PS

4

T0
4

. ~C21!

Let us again stress that there is a non-trivial guess in
calculation that can only be justified by the full numeric
calculation. The contribution ofK2 is small, K2!1. Since
we have takenK1.0, this means that, in fact, we have a
sumedK2@K1. This has clearly been done without a pro
because we were not able to derive an order of magnitud
K1 as a function of the sharpness parametera. Nevertheless,
the numerical calculation of Sec. V shows that the previo
estimate is quite good.

It is also very convenient to work with the normalizatio
independent quantityQ. Recalling that with our approxima
tions we have the second moment

m2
2.

36

25

Qrms-PS
4

T0
4 F (

,52

,max 2,11

,~,11!
W ,

2G2

, ~C22!

it is easy to show thatQ ([Q11Q2.Q2) can be written as

Q.20.0017
n~n11!

~2n11!2 . ~C23!

In the above equation we have used the COBE-DMR w
dow function W,.exp@21

2,(,11)(3.2°)2#, where 3.2° is
the dispersion of the antenna-beam profile measuring the
gular response of the detector and we have chosen,max

520; we find that the sum in the expression form2
2 is equal

to .3.73. As an example let us taken52. Then we find
Q.24.0931024. Of course this number should be consi
ered only as an order-of-magnitude estimate. It can be ea
improved if we add more terms in the calculation of the su
in the termK2. At this point, one should make clear th
taking into account more terms does not mean that we c
sider the next-to-leading order of a consistent expansion
the present context there is no small parameter to expan
Therefore, the choice of the extra terms that we include
the sum is a bit arbitrary. However, this is not a serio
problem since we know that the termE,1,2,3,4

(2) gives a con-

tribution greater than the contribution coming fromE
,

18,
28,

38,
48

(2)

provided that, i!, i8 ,i 51, . . . ,4. Inother words there is no
means to give a precise rule with regards to the terms
should be kept or not kept but there is clearly a gene
tendency which renders the improvement of the approxim
tion possible~otherwise the sum would not be convergent!. A
2-21
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good strategy to calculate the successive corrections i
proceed as follows. Suppose that we would like to calcu
the sumK2 up to ,max. A consistent requirement is that on
should take into account all the termsE,1,2,2,4

(2) such that

, i<,max,i51, . . . ,4. For example if ,max52, then one
should only includeE2222

(2) as we did in our ‘‘leading order’’
calculation. The next step is to consider the case,max53,
i.e., we choose to take into account the termsĒ2233

(2) , Ē3333
(2) ,

Ē2333
(2) and Ē2223

(2) ~of course we should also include the term
obtained by permutations of the indices, i). In fact, it is easy
to see that the last two terms do not give an extra contr
sa

ys

ys

. A

tin

e

J
.

-

08350
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tion because the sum( i, i is not even. For the two othe
terms, we findĒ2233

(2) .0.000041 andĒ3333
(2) .0.000021. After

a lengthy but straightforward calculation, one can show t
this gives an additional contribution equal to28.51
31026. Therefore, a more accurate estimate of the norm
ized excess kurtosis is

Q.24.1731024. ~C24!

This estimate is fully consistent with the numerical calcu
tion of Sec. V.
i,

o-

.
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