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Abstract

The Latin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics transient
events. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a tool to
measure the secondary particle flux reaching the ground. These secondary particles are produced during the interaction between
the modulated cosmic rays flux and the atmosphere.

The LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton scatter-
ing, and even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these particles
depends on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusivity of
the inner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the pulse
shape depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the time
distribution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time (~ 10ns) and a
longer decay time (~ 70 ns).

In this work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sampling
rate of 40 MHz and 10 bits resolution on time windows of 400 ns. Here, we apply unsupervised machine learning techniques to
find patterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separation.
We use data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic particle
separation producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of primary
cosmic rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection network
for onboard data analysis as an operative prototype, allowing detectors to be installed at very remote sites.

Keywords: Principal Component Analysis, OPTICS, Machine Learning, Water Cherenkov Detector

1. Introduction jectives include the measurement of events that have extreme
energy coming from space with the use of WCDs at ground-
level sites [1], and the continuous improvement of our WCD
systems [2]. LAGO WCDs use a single large-area photomulti-
plier tube as the primary sensor. When ultra-relativistic charged
particles cross the WCD they cause Cherenkov radiation, which
in consequence triggers a detection in the data acquisition sys-
tem of the detector. Due to its large water volume, neutral parti-
cles, such as photons or neutrons, can also be indirectly detected
through Compton scattering or pair creation of the former case,
or nuclear interactions with the different materials present in the
latter case.

Astroparticles that constantly impinge on the Earth’s atmo-
sphere are the reason for the existence of an atmospheric flux
of secondary particles composed of three main components: the

s electromagnetic (ys and e*), the muonic (u*) and the hadronic
(composed of different types of mesons and baryons, including
nuclei).

The Latin American Giant Observatoryl (LAGO) consists of
a network of Water Cherenkov Detectors (WCD) located at var- 20

10 ious sites in Latin America. Some of LAGO’s principal ob-

Uhttps://lagoproject.net This work aims to identify each of the components detected
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Figure 1: Data processing pipeline. Raw data is passed through a pre-

processing stage to remove anomalies; the feature engineering stage extracts
information from the cleaned data; the feature selection stage uses PCA to se-
lect principal components as new features; finally, the clustering stage uses
OPTICS to cluster the data points.

by LAGO WCDs by the application of an unsupervised ma-
chine learning (ML) pipeline to find patterns in the data and to
create groups through clustering.

The pipeline consists of several stages including an aggres-
sive data pre-processing stage to clean the dataset because of the
inherent characteristics of the raw data. Next, there is a feature
engineering stage that extracts information from the cleaned
dataset. This is followed by a feature selection stage that em-
ploys Principal Component Analysis (PCA) to identify relevant
features. Finally, a machine learning modelling stage utilizes
a density-based clustering algorithm called Ordering Points To
Identify Clustering Structure (OPTICS) to cluster the captured
particles from the WCD. Figure 1 depicts this pipeline.

2. Raw data pre-processing

Raw data used in this work is provided by the LAGO’s
“Nahuelito” WCD site at Bariloche, Argentina. Pulses that are
captured by the data acquisition system (DAQ) are digitized at
a sampling rate of 40 MHz and a 10 bits resolution on time win-
dows of 400 ns. A total of 24 hours of raw data is used starting
at 13:00 ART (10:00 UTC) on March 01, 2012.

The data used is the raw data as captured by the DAQ, thus
pre-processing is an essential stage in the overall data pipeline.
Here, we cleaned the data from electronic noise and anomalies o
as it is the standard procedure before any analysis. Due to the
nature of the electronic system and the WCD characteristics, the
original data presents a high number of anomalies, about 60%
of the total. Five types of anomalies are defined as can be seen
in Table 1. All five types are eliminated, resulting in a clean 2
data set of 39 million pulses (data points). We consider that
this is enough data points in relation to the number of features
used and the number of clusters found, although there is no
general rule for the minimum number of data points required

for clustering analysis [3]. %

3. Feature Engineering and Selection

With regards to feature engineering, the set of proposed fea-
tures is summarized in Table 2. In general, one must assure to ’
have both enough information and a sufficiently low number of
dimensions [4]. For this reason, we applied a standard proce-
dure of normalizing the features before PCA, which takes the
original features as input and results in a new set of orthonormal
features called principal components [5]. This new set is used *
in the subsequent clustering stage.

2

Table 1: Types of pulses that are considered anomalous and are eliminated.
These constitute about 60% of the 98 million pulses from the original data set.
Each type is defined and its percentage of the total anomalous pulses is shown.

Name Definition

Saturated Pulse A pulse with any sample reaching the sat-
(~1%) uration ADC peak value (1023).
Duplicated Pulse A pulse whose ID and values are exactly
(<0.1%) the same as another.

Complex Pulse A pulse that did not have the expected
(~21%) Fast-Rising-Exponential-Decay form.
Negative Pulse A pulse where the DAQ reported negative
(~1%) numbers.

Short Pulse A noise associated pulse that triggered the
(~T77%) acquisition (third temporal bin) but did not

surpass a secondary threshold of 70 ADC
on the fourth temporal bin [2].

Table 2: Original features used before the application of PCA.

Name Description

Charge (Area) Total charge deposited (the time inte-
gration of the pulse)

Peak Maximum value of the pulse.

Charge Deposit Time Number of time bins from the trig-

gered bin to the peak bin.

Width Number of bins over the detection
threshold

Delta Time Forward Time difference between current and
next pulse.

Time difference between current and
previous pulse.

Delta Time Backwards

4. Method

The ML model is the hierarchical density-based clustering al-
gorithm OPTICS, which is an unsupervised ML technique [6].
Like all clustering algorithms, its objective is to group similar
points in the data set, which in our context means pulses belong-
ing to the same type of particle. Specific to density-based algo-
rithms, clusters are chosen according to regions of high density
defined by a fixed neighbourhood distance epsilon (&), and are
separated by regions of low density.

What is particular to OPTICS is that it defines the reachabil-
ity distance, a minimum distance (&) between a particular point
and the closest core group. Each point that connects to a core
group is ordered from smallest to biggest reachability for that
particular group. This unique strategy creates a reachability plot
where each section represents a core group. This captures in-
formation about every cluster level present as can be seen in
Figure 2.

In the reachability plot, areas of low & are considered “val-
leys” and correspond to places where there is a higher density of
data points, meanwhile, areas where the value of & rises more
vertically, are considered the edges of the “valley”. A visual
strategy can be used to choose a maximum ¢ value as a thresh-
old to decide if a given point is a member of a given cluster, as
proposed by [6].
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Figure 2: Reachability plot. Each cluster (represented by each colour) is com-
posed of those points of higher density (“valley”). Points in the edges of theqz
valley that are above the defined threshold of 0.095 have less density and do not
belong to any group (blue).

Histogram of Pulse Charge with Clusters
labels_optics

20000

—a
17500 — 0
—1
15000 —2
— 3
—a
4 12500 —
g 130
O 10000
O
7500
5000

135
2500

0 500 1000 1500 2000

Charge (ADC)

2500 3000

Figure 3: Charge histogram of the dataset with the six detected clusters (0-5)
and the points that do not belong to any cluster (-1). Cluster 4 is of particular
interest as it is located where VEMs are expected to be found. Clusters 2 and 5
are also of interest as they are located where electromagnetic contributions areq4o
expected to be found.

5. Results

With the use of the visual strategy, as mentioned in the pre-'*®

vious section, a conservative threshold of 0.095 is used. Never-
theless, in future works, we will perform fine-tuning of several
hyperparameters including this threshold. This results in six
clusters as seen in Figure 3. Any point above the threshold is
regarded as not being part of any cluster (labelled -1 in blue).

Based on the well-known response of WCD for different'
types of component of extensive air showers, which is char-
acterised by the position and the features observed for each
cluster in the charge histogram (Fig. 3), it is possible to in-
fer some possible identification for the obtained clusters. For"
example, cluster 4 (brown) could correspond to the Vertically
Equivalent Muon (VEM) contributions as they are expected to
be found in that particular region of the histogram. In the same
way, clusters 3 (purple) and 5 (pink) could be associated with"™
electromagnetic contributions as the total deposited energy is
directly related to the total energy of each particle, and so, they
are expected to be found on the left side of the charge histogram‘65
[7].

These results show that is possible to group the contributions

0

5

of the components in separated clusters. Preliminary validation
was done by visually inspecting the clusters. Nevertheless, fur-
ther systematic validation is needed which is planned in future
works by using synthetic data under controlled conditions.

6. Conclusion

The OPTICS clustering algorithm produced promising re-
sults. Cluster groups are located where secondary particle con-
tributions are primarily expected to appear (e.g. muonic and
electromagnetic). The reachability plot shows clear cluster
structures based on the density of the features used.

These preliminary results can be a starting point for future
steps in this research including further efforts to improve the
pre-processing procedures [2] and study the feature space, the
application of hyper-parameter tuning techniques, and addi-
tional validation of results with the use of simulated data[7]
and actual labelled data that are available for specific cases.

It is worth mentioning that, recently, many works have ap-
plied machine learning algorithms to synthetic data ( e.g. ob-
tained from simulations), thus we consider that analyzing actual
data is an important contribution of this work.

In the long term, this research is expected to be implemented
in a semi-real-time manner directly onboard the WCDs of the
LAGO Collaboration detection network.
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