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act

atin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics tran
. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a to
re the secondary particle flux reaching the ground. These secondary particles are produced during the interaction bet

odulated cosmic rays flux and the atmosphere.
LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton sc

nd even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these par
ds on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusiv
ner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the
depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the
ution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time (∼ 10 ns) a

r decay time (∼ 70 ns).
his work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sam
f 40 MHz and 10 bits resolution on time windows of 400 ns. Here, we apply unsupervised machine learning techniqu
atterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separa
e data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic pa
tion producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of pri
c rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection net
board data analysis as an operative prototype, allowing detectors to be installed at very remote sites.

ords: Principal Component Analysis, OPTICS, Machine Learning, Water Cherenkov Detector

troduction

roparticles that constantly impinge on the Earth’s atmo-
e are the reason for the existence of an atmospheric flux
ondary particles composed of three main components: the
omagnetic (γs and e±), the muonic (µ±) and the hadronic
osed of different types of mesons and baryons, including

i).
Latin American Giant Observatory1 (LAGO) consists of
ork of Water Cherenkov Detectors (WCD) located at var-
ites in Latin America. Some of LAGO’s principal ob-

ps://lagoproject.net

jectives include the measurement of events that have ext
energy coming from space with the use of WCDs at gro
level sites [1], and the continuous improvement of our W
systems [2]. LAGO WCDs use a single large-area photom
plier tube as the primary sensor. When ultra-relativistic cha15

particles cross the WCD they cause Cherenkov radiation, w
in consequence triggers a detection in the data acquisition
tem of the detector. Due to its large water volume, neutral p
cles, such as photons or neutrons, can also be indirectly det
through Compton scattering or pair creation of the former20

or nuclear interactions with the different materials present i
latter case.

This work aims to identify each of the components det

t submitted to Nuclear Instruments and Methods in Physics Research Section A July 11
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of1: Data processing pipeline. Raw data is passed through a pre-

ing stage to remove anomalies; the feature engineering stage extracts
ation from the cleaned data; the feature selection stage uses PCA to se-
incipal components as new features; finally, the clustering stage uses
S to cluster the data points.

GO WCDs by the application of an unsupervised ma-
learning (ML) pipeline to find patterns in the data and to
groups through clustering.
pipeline consists of several stages including an aggres-

ata pre-processing stage to clean the dataset because of the
nt characteristics of the raw data. Next, there is a feature

eering stage that extracts information from the cleaned
t. This is followed by a feature selection stage that em-
Principal Component Analysis (PCA) to identify relevant
es. Finally, a machine learning modelling stage utilizes
sity-based clustering algorithm called Ordering Points To
fy Clustering Structure (OPTICS) to cluster the captured
les from the WCD. Figure 1 depicts this pipeline.

w data pre-processing

data used in this work is provided by the LAGO’s
elito” WCD site at Bariloche, Argentina. Pulses that are

red by the data acquisition system (DAQ) are digitized at
pling rate of 40 MHz and a 10 bits resolution on time win-
of 400 ns. A total of 24 hours of raw data is used starting
00 ART (10:00 UTC) on March 01, 2012.

data used is the raw data as captured by the DAQ, thus
ocessing is an essential stage in the overall data pipeline.
we cleaned the data from electronic noise and anomalies
s the standard procedure before any analysis. Due to the
of the electronic system and the WCD characteristics, the

al data presents a high number of anomalies, about 60%
total. Five types of anomalies are defined as can be seen
le 1. All five types are eliminated, resulting in a clean
et of 39 million pulses (data points). We consider that
enough data points in relation to the number of features

and the number of clusters found, although there is no
al rule for the minimum number of data points required
ustering analysis [3].

ature Engineering and Selection

th regards to feature engineering, the set of proposed fea-
is summarized in Table 2. In general, one must assure to
oth enough information and a sufficiently low number of
sions [4]. For this reason, we applied a standard proce-
f normalizing the features before PCA, which takes the
al features as input and results in a new set of orthonormal
es called principal components [5]. This new set is used
subsequent clustering stage.

Table 1: Types of pulses that are considered anomalous and are elimi
These constitute about 60% of the 98 million pulses from the original da
Each type is defined and its percentage of the total anomalous pulses is s

Name Definition

Saturated Pulse
(∼1%)

A pulse with any sample reaching the sa
uration ADC peak value (1023).

Duplicated Pulse
(< 0.1%)

A pulse whose ID and values are exact
the same as another.

Complex Pulse
(∼21%)

A pulse that did not have the expect
Fast-Rising-Exponential-Decay form.

Negative Pulse
(∼1%)

A pulse where the DAQ reported negati
numbers.

Short Pulse
(∼77%)

A noise associated pulse that triggered t
acquisition (third temporal bin) but did n
surpass a secondary threshold of 70 AD
on the fourth temporal bin [2].

Table 2: Original features used before the application of PCA.

Name Description

Charge (Area) Total charge deposited (the time i
gration of the pulse)

Peak Maximum value of the pulse.
Charge Deposit Time Number of time bins from the t

gered bin to the peak bin.
Width Number of bins over the detec

threshold
Delta Time Forward Time difference between current

next pulse.
Delta Time Backwards Time difference between current

previous pulse.

4. Method

The ML model is the hierarchical density-based clusterin
gorithm OPTICS, which is an unsupervised ML techniqu70

Like all clustering algorithms, its objective is to group si
points in the data set, which in our context means pulses be
ing to the same type of particle. Specific to density-based
rithms, clusters are chosen according to regions of high de
defined by a fixed neighbourhood distance epsilon (ε), an75

separated by regions of low density.
What is particular to OPTICS is that it defines the reach

ity distance, a minimum distance (ε) between a particular
and the closest core group. Each point that connects to a
group is ordered from smallest to biggest reachability for80

particular group. This unique strategy creates a reachability
where each section represents a core group. This capture
formation about every cluster level present as can be se
Figure 2.

In the reachability plot, areas of low ε are considered85

leys” and correspond to places where there is a higher dens
data points, meanwhile, areas where the value of ε rises
vertically, are considered the edges of the “valley”. A v
strategy can be used to choose a maximum ε value as a th
old to decide if a given point is a member of a given clust90

proposed by [6].
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of2: Reachability plot. Each cluster (represented by each colour) is com-

f those points of higher density (“valley”). Points in the edges of the
hat are above the defined threshold of 0.095 have less density and do not
to any group (blue).

3: Charge histogram of the dataset with the six detected clusters (0-5)
points that do not belong to any cluster (-1). Cluster 4 is of particular
as it is located where VEMs are expected to be found. Clusters 2 and 5
of interest as they are located where electromagnetic contributions are

d to be found.

sults

th the use of the visual strategy, as mentioned in the pre-
section, a conservative threshold of 0.095 is used. Never-
s, in future works, we will perform fine-tuning of several
parameters including this threshold. This results in six
rs as seen in Figure 3. Any point above the threshold is
ed as not being part of any cluster (labelled -1 in blue).
ed on the well-known response of WCD for different
of component of extensive air showers, which is char-

sed by the position and the features observed for each
r in the charge histogram (Fig. 3), it is possible to in-
me possible identification for the obtained clusters. For
ple, cluster 4 (brown) could correspond to the Vertically
alent Muon (VEM) contributions as they are expected to
nd in that particular region of the histogram. In the same

clusters 3 (purple) and 5 (pink) could be associated with
omagnetic contributions as the total deposited energy is
ly related to the total energy of each particle, and so, they
pected to be found on the left side of the charge histogram

se results show that is possible to group the contributions

of the components in separated clusters. Preliminary valid
was done by visually inspecting the clusters. Nevertheless
ther systematic validation is needed which is planned in f115

works by using synthetic data under controlled conditions

6. Conclusion

The OPTICS clustering algorithm produced promisin
sults. Cluster groups are located where secondary particle
tributions are primarily expected to appear (e.g. muonic120

electromagnetic). The reachability plot shows clear cl
structures based on the density of the features used.

These preliminary results can be a starting point for f
steps in this research including further efforts to improv
pre-processing procedures [2] and study the feature space125

application of hyper-parameter tuning techniques, and
tional validation of results with the use of simulated da
and actual labelled data that are available for specific case

It is worth mentioning that, recently, many works hav
plied machine learning algorithms to synthetic data ( e.g130

tained from simulations), thus we consider that analyzing a
data is an important contribution of this work.

In the long term, this research is expected to be impleme
in a semi-real-time manner directly onboard the WCDs o
LAGO Collaboration detection network.135
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