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Abstract

Turbulence is one of the important problems in classical physics that still remain unsolved.
The Navier–Stokes equations have been studied for almost two centuries now, and although they
seem to properly describe the dynamics of 6uids, we still do not have a clear understanding of
even the simplest turbulent 6ows.

We present numerical simulations of three dimensional, homogeneous and isotropic turbulence
at moderate Reynolds numbers. We externally drive the 6uid with either helical or non-helical
forces. In both cases we ;nd that the externally driven system relaxes to a stationary turbulent
regime, which is compatible with the Kolmogorov spectrum Ek ≈ k−5=3. In the helical case,
we con;rm that the kinetic helicity also cascades directly, along with energy and displaying a
Kolmogorov spectrum as well. We ;nd that the dissipation scale of both ideal invariants is also
consistent with the Kolmogorov scale (i.e., k� ≈ (�=�3)1=4).
c© 2004 Published by Elsevier B.V.
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1. Introduction

Incompressible hydrodynamics has become a paradigmatic model for the theoretical
study of homogeneous turbulence. In three-dimensional incompressible 6ows described
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by a velocity ;eld u(x; t), there are two known ideal invariants: the kinetic energy

E(t) =
∫

d3x|u(x; t)|2 (1)

and the kinetic helicity

H (t) =
∫

d3x u(x; t) · !(x; t) ; (2)

where ! = ∇ × u is the vorticity ;eld of the 6ow. We can de;ne the corresponding
isotropic power spectra E(k; t) and H (k; t) such that

E(t) =
∫ ∞

0
dk E(k; t) (3)

and

H (t) =
∫ ∞

0
dk H (k; t) : (4)

Since the pioneering contribution made by Kolmogorov [1], many studies have assumed
6ows displaying re6exional symmetry, for which the kinetic helicity is obviously zero
(H (t) = 0) and therefore plays no role in the dynamics. Within this assumption and
for 6ows being externally driven at large scales (k � kF), the system is expected to
relax to a stationary regime characterized by an energy dissipation rate � and the well
known Kolmogorov’s energy power spectrum

E(k) = CK�2=3k−5=3 ; (5)

where CK is the Kolmogorov’s constant. This universal energy spectrum arises at inter-
mediate wavenumbers between the forcing scale at k � kF and the energy dissipation
wavenumber

k� =
( �
�3

)1=4
(6)

as a result of a direct energy cascade 6owing from kF to k�.
In 6ows with a lack of re6exional symmetry, the kinetic helicity is in general non-

zero and it is expected to play a role in the dynamics [2]. In astrophysics, helical 6ows
are crucial for the generation of large scale magnetic ;elds as the result of turbulent
dynamos. For helical stationary turbulence, Brissaud et al. [3] conjectured that the
kinetic helicity injected at a rate �H by the external force also cascades directly, and
displays a Kolmogorov spectrum H (k) � �H �−1=3k−5=3. This assertion was con;rmed
by an EDQNM (Eddy Damped Quasi Normal Markovian) closure calculation [4] and
by direct numerical simulations [5], but assuming hyperviscosity as the dissipation
process.
Using dimensional arguments, Ditlevsen and Giuliani [6] propose that the dissipation

wavenumber for the kinetic helicity (k�;H ) is always smaller than the energy dissipation
wavenumber k�, scaling with the Reynolds number like k�;H =k� � R−9=28. In a subse-
quent paper [7] they support their proposition with calculations from a shell model.
This scenario implies that the small scale structures in helical turbulence (i.e., those
within the range k�;H�k�k�) are always non-helical, posing a serious restriction for
turbulent dynamo models.
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In the present paper, we study the role of kinetic helicity in incompressible turbulent
6ows with the aid of three-dimensional direct numerical simulations. In Section 2 we
brie6y describe our numerical code, our results are described in Section 3, and our
conclusions are summarized in Section 4.

2. Description of the code

We numerically integrate the Navier–Stokes equation
9u
9t = −(u · ∇)u − ∇p+ �∇2u + f (7)

in a cubic box, assuming periodic boundary conditions and incompressibility
(i.e., ∇ · u=0). We performed simulations of 1283 and 2563 spatial grid points, using
a pseudo-spectral scheme for the spatial derivatives and second order Runge–Kutta for
the time integration [8]. We veri;ed that the balance of energy and helicity is satis;ed
with a high degree of accuracy. We developed a parallel version of the code, which
compiles with the MPI library (Message Passing Interface). The runs were performed
in a 40 nodes Beowulf cluster at the Department of Physics of the University of Buenos
Aires (Argentina).
The external force f consists of a stationary ABC 6ow with a wavenumber kF = 3

(for further details on the code and the external force, see Ref. [9]), which is an
eigenfunction of the curl operator with eigenvalue kF . We used � = 0:02 in all the
simulations and | f | = 6. To develop non-helical turbulence, we apply an external
forcing which is a superposition of sinusoidal functions of all Fourier modes satisfying
|k| = kF . In the next section we show the results arising from both helical and non-
helical simulations.

3. Power spectra

We performed 1283 and 2563 simulations with both helical and non-helical forcing,
integrating Eq. (7) for several turnover times, to make sure that the system relaxes
to a stationary regime. In Fig. 1a we show the time-averaged energy (full line) and
helicity (dotted line) compensated power spectra (i.e., k5=3E(k) and k5=3H (k)) for the
non-helical case. Only the positive part of this spectrum has been displayed, while the
total helicity remains approximately zero (see Fig. 1b). In Fig. 1b we see the total
energy E(t) and the total kinetic helicity (multiplied by 10 to allow its visualization
and divided by kF , i.e., 10 H (t)=kF) as a function of time. We see in both plots that the
content of helicity is negligibly small, as expected. The compensated energy spectrum is
consistent with Kolmogorov, since at intermediate wavenumbers the spectrum remains
approximately horizontal.
In Fig. 2a we display the time-averaged energy and helicity (divided by kF)

compensated power spectra for the case with helical forcing. We verify that indeed
both spectra remain virtually identical throughout all wavenumbers

H (k) ≈ kFE(k) (8)
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Fig. 1. (a) Time-averaged energy (full line) and helicity (dotted line) compensated power spectra correspond-
ing to a non-helical stationary regime. Only the positive part of the helicity spectrum is plotted. (b) Total
energy (full line) and total helicity (divided by kF , dotted line) as functions of time. Helicity is multiplied
by 10 to allow its visualization.

Fig. 2. (a) Time-averaged energy (full line) and helicity (dotted line) compensated power spectra corre-
sponding to a helical stationary regime. (b) Total energy (full line) and total helicity (divided by kF , dotted
line) as functions of time.

i.e., not only within the inertial range, but also in the energy-containing and dissipative
region of the spectrum. Therefore, our numerical simulations clearly show that dissipa-
tive scales of energy and helicity are the same (a similar result has also been obtained
by Chen et al. [10]), indicating that the proposition of Ditlevsen and Giuliani [6] is
probably incorrect. Fig. 2b shows the behavior of the total energy and total helicity
(divided by kF vs. time). We see that H (t) ≈ kFE(t). In Fig. 3 we show a slice of
the cubic box, displaying the spatial distribution of kinetic energy (Fig. 3a) and kinetic
helicity (Fig. 3b). Only the patterns of positive helicity are shown. Note that the patterns
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Fig. 3. (a) Slice of 2562 displaying the intensity of kinetic energy for the helically driven case at t = 10.
(b) Same slice of 6uid displaying the intensity of positive kinetic helicity (the regions of negative kinetic
helicity are grey).

Fig. 4. Compensated energy power spectra divided by �2=3 for the non-helical forcing, at diNerent times
during the stationary turbulent regime. The best horizontal ;t corresponds to a Kolmogorov constant of
CK = 1:55.

for both ideal invariants show similar contents of large and small scales, as expected
from the similarity between their power spectra (see Eq. (8)). Note that the ;lling fac-
tor between both patterns is diNerent, since we are only plotting the positive helicity.
Chen et al. [11], running simulations at slightly higher resolution, ;nd that kinetic
helicity spatial structures are somewhat ;ner than those of kinetic energy.
We also obtained the energy dissipation rate as the time average of �

∫
d3x |!|2

in the stationary part of the simulation. For the non-helical case, the dimensionless
dissipation rate is � ≈ 33. We determined the value of the Kolmogorov’s constant CK
(see Eq. (5)) from Fig. 4, which displays compensated energy power spectra divided
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Fig. 5. Compensated energy power spectra divided by �2=3 for the helical forcing, at diNerent times during
the stationary turbulent regime. The best horizontal ;t corresponds to a Kolmogorov constant of CK = 1:55.

by �2=3 at diNerent times during the stationary stage. The best horizontal ;t corresponds
to a Kolmogorov constant of CK = 1:55.
We also obtained the energy dissipation rate and the Kolmogorov’s constant for the

helical case. The corresponding values are � ≈ 35:2 and again CK = 1:55, as shown
in Fig. 5.
We also estimated the energy dissipation wavenumbers using Eq. (6). The value for

both for the non-helical and helical simulations is k� ≈ 42. Since our pseudo-spectral
code uses the 2

3 rule to dealias, the Nyquist wavenumber for the 1283 runs is kNy=43,
and therefore we can guarantee that the dissipative scale is well resolved.

4. Conclusions

In the present paper we performed 1283 and 2563 direct simulations of the three
dimensional incompressible Navier–Stokes equations to study the role of kinetic he-
licity in turbulent regimes. We ;nd that kinetic helicity cascades along with energy
from large to small scales, displaying a power spectrum which is proportional to the
energy-power spectrum. The proportionality between both power spectra covers the
energy-containing, the inertial and the dissipative ranges. In particular, we obtain that
the helicity dissipative scale coincides with the energy dissipative scale.
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