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a b s t r a c t

In industrial practice, the optimal steady-state operation of continuous-time processes is typically
addressed by a control hierarchy involving various layers. Therein, the real-time optimization (RTO)
layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The
optimal point is implemented by means of the model predictive control (MPC) layer, which typically uses
a linear dynamical model of the plant. The MPC layer usually includes two stages: a steady-state target
optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of
RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the
SSTO problem. Three different quadratic program (QP) designs are considered: (i) the standard design
arget optimization
onstraint control
odel predictive control

that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing
control design that tracks the active constraints and the optimal inputs for the remaining degrees of
freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO
problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary
operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs
is illustrated in simulation for several case studies.
. Introduction

Optimization of process operations is continuing to receive
ttention in the process industries. The goal is to achieve the eco-
omic optimal operation of an industrial process in the presence
f operating constraints, disturbances, and plant-model mismatch.
n real-time optimization (RTO) schemes, optimal process opera-
ion is approached by solving the economic optimization problem
n-line (or in real time), based on a model of the process. In highly
utomated plants, RTO is typically implemented within an automa-
ion decision hierarchy involving several layers (or levels), as shown
n Fig. 1 [1,2]. There is a time scale separation between the differ-
nt layers in terms of the frequencies of the disturbances that are
ejected and of the decisions that are made at each layer [2]. At
he upper layer the planning and scheduling addresses long term
ssues such as production rate targets and raw material allocation.

t the lowest layer, basic flow, pressure, and temperature control is

mplemented, possibly via advanced regulatory controllers. Linear
odel predictive control (MPC) is widely employed because of its
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ability to handle large multivariable systems with operating con-
straints [3,4]. For this reason, the advanced control layer is often
called the MPC layer [5]. In between the other two layers, the RTO
layer computes the optimal steady-state operating policy based on
a rigorous (first-principle) steady-state model of the process. The
operating policy is characterized by setpoints that are passed to
the controllers at the lower layer, and/or by values of manipulated
variables that are applied directly to the plant.

In response to plant-model mismatch and process disturbances
several adaptation strategies have been proposed at the RTO layer.
The two-step approach consists in an iteration between parameter
estimation and optimization [2,4]. The objective of the parame-
ter estimation step is to find values of selected adjustable model
parameters for which the steady-state model gives a good predic-
tion of the measured plant outputs. Next, in the optimization step,
the updated model is used to determine a new operating point by
solving a model-based optimization problem that typically consists
in a nonlinear programming (NLP) problem. As an alternative to
the classical two-step approach, the constraint adaptation approach

does not require updating the model parameters [6,7]. Constraint
adaptation uses measurements of the constrained quantities to
bias the constraints in the optimization problem. This guarantees
that a feasible, yet possibly suboptimal, operating point is reached
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http://www.sciencedirect.com/science/journal/09591524
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Fig. 1. Multilayer automation decision hierarchy.

pon convergence of the RTO iterations [7]. These steady-state
TO schemes use steady-state data for model adaptation, which
equires the online identification of steady state [8,9].

In order to combine RTO with MPC, the optimal input and out-
ut setpoints computed at the RTO layer could be passed to the
PC layer as targets in the input and output error terms included

n the objective function of the MPC regulator. However, the incon-
istency between the steady-state RTO model and the dynamic
PC model may cause the MPC regulator to distribute the final

teady-state errors for both the inputs and outputs, resulting in
teady-state offsets in the system [10]. Note also that, in the pres-
nce of plant-model mismatch and disturbances, the input and
utput RTO setpoints might not correspond to a feasible operat-
ng point for the plant. In order to address these issues, a two-stage
pproach is usually adopted at the MPC layer. Namely, a steady-
tate target optimization (SSTO) stage, followed by the standard MPC
egulator [3,10–13]. The SSTO problem is executed at the same fre-
uency as the MPC problem. It consists of a linear program (LP) or
quadratic program (QP), which results in an LP-MPC or a QP-MPC
ascade control system, respectively [10]. The SSTO uses a linear
teady-state model, which is typically the steady-state version of
he dynamic linear model used in the MPC regulator. Its purpose is
o correct the RTO setpoints by computing steady-state targets that
re attainable by the MPC regulator. Feedback to the SSTO prob-
em is incorporated by including the estimated output bias in the
STO model. This way, SSTO can react faster than RTO when dis-
urbances occur. The RTO layer repeatedly modifies the operating
oint setpoints in response to disturbances and changing operat-

ng conditions. Hence, the MPC should be designed to work well
n a wide range of operating points and disturbance values, which
epresents a difficult challenge. For highly nonlinear processes or
oderately nonlinear processes with large operating regimes, a

onlinear model-predictive controller (NMPC), or an adaptive lin-
ar MPC controller, is required [14]. In other applications that do
ot exhibit strong nonlinearities in the normal range of operation, a
obustly tuned linear MPC may provide satisfactory control action.
his has proven to work well in many industrial applications [14].

Kadam and Marquardt [15], pointed out that many of the tech-
ologies that have been developed in the last decades in order
o solve the operational problems at the different layers of the
utomation decision hierarchy have been segregated techniques.

or instance, at the RTO layer we notice that many RTO algorithms
ave been studied by analyzing their open-loop properties. The RTO
etpoints are assumed to be effectively implemented at each RTO
teration, i.e., without correcting their values by means of the SSTO
ss Control 24 (2014) 129–145

in the MPC layer. In the RTO literature, the RTO setpoints are typ-
ically filtered in order to enforce stability of the open-loop RTO
system. Yet, the same kind of filtering might not be required in
a closed-loop RTO implementation. On the other hand, at the MPC
layer, SSTO-MPC cascade control systems have been studied assum-
ing that the optimal input and output setpoints are provided by
the RTO optimizer. The SSTO problem is often formulated so as to
drive the steady-state inputs and outputs as close as possible to
the RTO setpoints, without selecting which inputs and outputs to
track based on the structure of the RTO solution. Additional infor-
mation from the RTO solution, such as the knowledge of the active
constraints, and gradient and Hessian information, could allow the
SSTO to improve decisions in between RTO executions. Only a few
design approaches where the SSTO problem approximates the NLP
problem solved at the RTO layer have been mentioned in the lit-
erature [10,5]. Ying and Joseph [10], describe a QP design that
is based on the QP approximation used in successive quadratic
programming (SQP) approaches for solving NLP problems [16,17].
Surprisingly, the analysis of the properties of this SQP approxima-
tion design has received little attention in the MPC literature. Even
in [10], the economic SSTO problem in the illustrative case study
considered (the control of the heavy oil fractionator in the Shell
control problem) consists of an LP problem, which does not cover
many of the features of SQP approximations.

The goal of this paper is to study the integration of RTO and
MPC in the presence of plant-model mismatch and process distur-
bances by focusing on the design of the SSTO problem. The RTO
and SSTO-MPC problems are formulated and analyzed in a uni-
fied framework, and special emphasis is put on how the operating
constraints are handled at both automation layers. Three differ-
ent QP designs of the SSTO problem are investigated: (i) Design A,
which considers the standard formulation in which the QP prob-
lem finds feasible steady-state targets for the input variables that
are as close as possible to the optimal RTO inputs; (ii) Design B,
which considers a novel optimizing control design in which the QP
problem tracks the active constraints in the RTO solution as well as
the optimal inputs along selected input directions; and (iii) Design
C, which considers an economic optimization design where the
SSTO problem approximates the RTO problem. This work includes
several contributions to the RTO/MPC literature: the SSTO Design
B is novel (to the authors best knowledge, an optimizing control
design of the SSTO problem has not been previously proposed in
the literature). An SQP approximation design of the SSTO prob-
lem was described in [10], but not further investigated. The SSTO
Design C, presented in this paper, considers the SQP approximation
design described in [10], including additional novel features that
are regarded here as important, such as the approximation of the
Lagrangian Hessian (described in Section 3.3.1), and the adaptation
of the static gain matrix (described in Section 3.3.2). In addition,
the link between Designs B and C is established in Section 3.3.4,
and Design C is viewed as a first-order approximation to the solu-
tion given by constraint adaptation at the RTO layer. This paper
also presents a novel analysis on a necessary condition for match-
ing the RTO optimal point upon convergence of the RTO iterations.
This analysis is carried out for each of the three investigated SSTO
designs.

The paper is organized as follows. Preliminary results are given
in Section 2: the economic optimization problem is formulated as
an NLP problem in Section 2.1; RTO via constraint adaptation is
reviewed in Section 2.2; Section 2.3 presents the MPC regulator and
a general formulation of the SSTO problem; the main steady-state
properties of the SSTO-MPC cascade control system are discussed

in Section 2.4. Section 3 presents the three different QP designs of
the SSTO problem; the performance of the different SSTO designs is
tested in simulation in Section 4 by considering three different case
studies which comprise: a linear system with first-order dynamics,
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continuous stirred-tank reactor, and a numerical example. Finally,
ection 5 concludes the paper.

. Preliminaries

.1. Formulation of the optimization problem

The input–output mapping corresponding to the operation of
he plant at steady state is represented as yp(u, dp), where u ∈ Rnu

s the vector of decision (or input) variables, yp ∈ Rny is the vector
f measured (or output) variables, and dp ∈ Rndp is the vector of
rocess disturbances. The notation (·)p is used throughout for the
ariables associated with the plant.

In practice, only an (approximate) steady-state model is avail-
ble:

(x, u, �) = 0 (1a)

= F(x, �) (1b)

here x ∈ Rnx are the model state variables, and � ∈ Rn� is a set of
odel parameters. We denote by y(u, �) the input–output mapping

epresenting the steady-state behavior predicted by the model. In
rder to obtain y(u, �) one has to first solve the model equations
1a) in order to compute the states x and then obtain y by evaluating
1b).

The steady-state economic optimum of the plant is given by the
olution of the following optimization problem:

u�
p = argmin

u
�p(u, dp) := �(u, yp(u, dp))

s.t. yeq
p (u, dp) = yS,

yL ≤ yin
p (u, dp) ≤ yU,

uL ≤ u ≤ uU,

(2)

here � : Rnu × Rny → R is the scalar cost function to be mini-

ized; yeq
p ∈ Rneq

y is the set of equality constrained outputs for

hich yS are the setpoint values; yin
p ∈ Rnin

y is the set of inequal-
ty constrained outputs for which yL and yU are the lower and
pper bounds, respectively; and uL and uU are the lower and upper
ounds on the decision variables. The constrained outputs yeq

p and
in
p are subsets of the measured outputs yp.

In this paper, we limit our study to the case where the following
ssumptions hold:

ssumption 1. It is assumed that neq
y < nu, i.e., the number of

quality constrained outputs is lower than the number of manipu-
ated inputs.

ssumption 2. There exists a feasible solution to Problem (2) for
p ∈ D, where the disturbance set D comprises the disturbances
hat may be encountered during the operation of the plant.

Assumption 1 is included so that there are degrees of freedom
n Problem (2). If neq

y > nu then there will be in general no feasible
olution to Problem (2). On the other hand, the case neq

y = nu is not
xcluded for technical reasons, but because it is not interesting in
he framework of this paper. Notice that, these two assumptions

xclude the possibility of not having a feasible solution to Problem
2).

The plant mapping yp(u, dp) is not known accurately, and only
he approximate model y(u, �), is available. Using the model, the
ss Control 24 (2014) 129–145 131

solution of the original problem (2) can be approached by solving
the following NLP problem:

u� = argmin
u

�(u, �) := �(u, y(u, �))

s.t. yeq(u, �) = yS,

yL ≤ yin(u, �) ≤ yU,

uL ≤ u ≤ uU.

(3)

Due to plant-model mismatch and unmeasured disturbances,
the solution to Problem (3) might be neither optimal nor feasible
for the plant. Hence, the need for some kind of adaptation.

2.2. Real-time optimization layer

At the RTO layer, Problem (3) is updated based on measure-
ments. The classical adaptation strategy consists in a two-step
approach involving an iteration between parameter estimation and
optimization [2,4]. The idea is to estimate repeatedly the model
parameters � of the nonlinear steady-state model, and to use the
updated model in the model optimization to generate new inputs.
This way, the model is expected to represent the plant at its current
operating point more accurately.

Let us denote by uk the steady-state operating point applied to
the plant at the kth RTO iteration, and by �k the parameter estimates
obtained at uk. A desirable property of the model-update scheme
is that the predicted constrained outputs match the corresponding
plant measurements at each RTO execution:

yeq(uk, �k) = yeq
p (uk, dp), (4)

yin(uk, �k) = yin
p (uk, dp). (5)

When the RTO results are implemented in open loop, match-
ing the constrained outputs guarantees that a feasible operating
point is reached upon convergence. However, the satisfaction of
(4) and (5) will depend on the flexibility of the selected model
parameterization [18].

It is also possible to satisfy (4) and (5) without updating the
model parameters, by simply biasing the constraint values in the
optimization problem. Assuming that measurements are available
for every constrained quantity, the following plant-model bias
terms can be computed at uk:

εeq
k

:= yeq
p (uk, dp) − yeq(uk, �), (6)

εin
k := yin

p (uk, dp) − yin(uk, �). (7)

The constraint-adaptation approach is to obtain the RTO optimal
points by solving an NLP problem similar to (3), which includes the
bias constraint corrections [6,7]:

u�
k+1 = argmin

u
�(u, �) := �(u, y(u, �))

s.t. yeq(u, �) + εeq
k

= yS,

yL
k

≤ yin(u, �) + εin
k

≤ yU
k

,

uL
k

≤ u ≤ uU
k

.

(8)

The bounds on the decision variables, uL
k

and uU
k

, can be varied
in order to limit the input range for the next operating point:

uL
i,k = max{ui,k − �ui, uL

i }, i = 1, . . ., nu, (9)

uU
i,k = min{ui,k + �ui, uU

i }, i = 1, . . ., nu, (10)

where �ui > 0, i = 1, . . ., nu are the upper bounds on the input moves.

The bounds on the inequality constrained outputs are varied in a
similar way, based on their current measured values:

yL
j,k = max{yin

p,j(uk, dp) − �yin
j , yL

j }, j = 1, . . ., nin
y , (11)
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U
j,k = min{yin

p,j(uk, dp) + �yin
j , yU

j }, j = 1, . . ., nin
y , (12)

here �yin
j

> 0, j = 1, . . ., nin
y , are fixed increment values. Upon

onvergence of the RTO algorithm, the active constraints of the RTO
roblem reach their actual constraint bounds.

Implementation of the full biases in (6), (7) may lead to excessive
orrection, thereby compromising the convergence of the algo-
ithm [7]. In some cases, a better strategy consists in filtering the
onstraint biases, using for example a first-order exponential filter
7]:

eq
k

= (I − Keq)εeq
k−1 + Keq

(
yeq

p (uk, dp) − yeq(uk, �)
)

, (13)

in
k = (I − Kin)εin

k−1 + Kin
(

yin
p (uk, dp) − yin(uk, �)

)
, (14)

here Keq and Kin are diagonal gain matrices with gain entries in
0, 1].

emark 1. In this work, the integration of RTO with MPC is devel-
ped using constraint adaptation at the RTO layer because of the
ollowing reasons: (i) constraint adaptation uses a simple adap-
ation strategy; (ii) constraint adaptation satisfies (4) and (5) by
iasing the constraint values in the optimization problem. This will
rove to be important in order for the closed-loop RTO system to
each the RTO optimum point upon convergence of the RTO itera-
ions; (iii) A link will be established between constraint adaptation
nd one of the SSTO designs that will be presented in this work.

If the RTO results are implemented in open loop, the new oper-
ting point is obtained by applying the optimal inputs u�

k+1 directly
o the plant:

k+1 = u�
k+1.

n this case, the constraint-adaptation algorithm guarantees fea-
ibility upon convergence and the filter on the constraint biases
an be used to enforce stability [7]. Yet, the constraints might be
iolated at the RTO points prior to convergence.

In practice, RTO results are seldom applied to the plant in open-
oop fashion. Instead, they are usually implemented by means of an

PC regulator that takes care not to violate the constraints. In this
ase, the values uk+1 to be used in the next RTO iteration correspond
o the input values reached by the controlled plant at steady state.

.3. Model predictive control layer

We now go down in the general control structure shown in Fig. 1
nd concentrate on the MPC layer. The MPC regulator should be
esigned with zero offset. A formulation of the MPC regulator is
resented, as well as a general formulation of the SSTO problem.

.3.1. MPC regulator
The prediction model used by the model predictive controller is

linear, time invariant, discrete-time system:

x(t + 1) = A ıx(t) + B ıu(t) (15)

y(t) = C ıx(t) + d̂(t) (16)

The linearization is carried out at a steady state point (u0, x0,
0), and deviation variables are used in (15) and (16). The dis-
urbance estimate d̂(t) is used to add integral control, which is
equired for offset-free MPC. Implementing offset-free MPC typ-
cally involves augmenting the prediction model with a constant
utput disturbance model, and estimating the augmented state

sing a state observer. Further details on this topic can be found

n [19,20].
The integration of RTO with MPC considered in this paper relies

n the following assumption:
ss Control 24 (2014) 129–145

Assumption 3 (Validity of Linear MPC). It is assumed that a linear
MPC regulator based on the system (15), (16) is valid for all the
different operating regimes that are targeted by the upper layer
RTO problem.

This assumption limits the applicability of the results presented
in this paper. However, notice that the use of linear MPC in conjunc-
tion with nonlinear steady-state RTO is current industrial practice,
and has shown to be adequate for many industrial control prob-
lems [14]. In particular, the two-layer RTO approach with linear
MPC may be adequate for the case of a linear (or approximately
linear) process with a nonlinear economic cost function.

At the current time t, MPC predicts the behavior of the process
over N future time steps and determines the optimal sequence of N
input moves U = {u(t|t), u(t + 1|t), . . ., u(t + N − 1|t)}, that minimizes
a given objective function. The parameter N denotes the prediction
horizon. Following the receding horizon policy, only the first ele-
ment of the optimal control sequence, u(t|t), is implemented, and at
time t + 1 the computation is repeated, moving the prediction win-
dow one step ahead. The MPC objective function to be minimized is
usually given by the tracking error of the predicted trajectories to
given setpoints. These setpoints are the steady-state targets us(t)
and ys(t), which are determined at each sampling time t by solving
the SSTO problem (see Section 2.3.2). A general formulation of the
MPC problem reads1:

min
U

Jt =
N−1∑
l=0

(
∥∥y(t + l|t) − ys(t)

∥∥2

Q
+

∥∥u(t + l|t) − us(t)
∥∥2

R
) (17a)

s.t.

ıx(t + l + 1|t) = A ıx(t + l|t) + B ıu(t + l|t), l = 0, . . ., N − 1,

(17b)

y(t + l|t) = C ıx(t + l|t) + y0 + d̂(t|t), l = 1, . . ., N, (17c)

uL
k ≤ u(t + l|t) ≤ uU

k , l = 0, . . ., N − 1, (17d)

ıx(t + N|t) = ıxs(t), (17e)

where y(t + l|t) = ı y(t + l|t) + y0 are the model predictions of the out-
put variables at time t + l based on information available at time
t; u(t + l|t) = ıu(t + l|t) + u0 is the control sequence to be computed;
Q is a positive semidefinite weighting matrix on the outputs; R
is a positive definite weighting matrix on the inputs; the input
bounds are included in (17d); ıx(t + N|t) are the state deviations
predicted at time t + N based on information available at time t,
and ıx s(t) = (I − A)−1Bıus(t). Notice also that, the terminal equality
constraint (17e) is included for stability reasons. However, several
alternative MPC designs can be proposed to ensure closed-loop sta-
bility and recursive feasibility. They mainly depend on the choice of
the terminal constraint, and eventually on the choice of a terminal
penalty term in the cost function [21].

2.3.2. Steady state target optimization
The SSTO problem uses a steady-state model that is consistent

with the dynamical model used by the MPC regulator,
As = C(I − A) B, (19)

1 The notation ‖v‖2
M := vTMv is used thereafter.
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Fig. 2. Integration of RTO with MPC using SSTO.

here ıus and ıys are the steady-state input and output devia-
ion variables, respectively, and d̂(t|t) is the current estimate of the
utput disturbance.

Let u�
k+1 be the optimal inputs determined at the kth RTO exe-

ution, which takes place when the plant is at the steady-state
perating point uk, and let y�

k+1 be the optimal outputs predicted
y the updated model, that is, y�

k+1 := y(u�
k+1, �k), if the classical

wo-step approach is applied, while y�
k+1 := y(u�

k+1, �) + εk, if the
onstraint-adaptation problem (8) is applied. The SSTO problem is
pdated based on this optimal solution, and the SSTO-MPC control
ystem is implemented until the next RTO execution takes place at
he new steady-state point uk+1. A general formulation of the SSTO
roblem is given by the following QP problem [10]:

in
s,ys

∥∥ys − y�
k+1

∥∥2

Qs
+

∥∥us − u�
k+1

∥∥2

Rs
+ qT

s (ys − y�
k+1)

+ rT
s (us − u�

k+1) (20a)

.t.

s = As(us − u0) + y0 + d̂(t|t), (20b)
eq
s = yS, (20c)

L
k ≤ yin

s ≤ yU
k , (20d)

L
k ≤ us ≤ uU

k , (20e)

here Qs is a positive semidefinite weighting matrix on the outputs
nd Rs is a positive semidefinite (or positive definite) weighting
atrix on the inputs. The overall automation system hierarchy is

llustrated in Fig. 2.
Notice that the constraints on the output variables (20c) and

20d) have been included in the SSTO problem but not in the MPC
ontroller. This way, constraint violations are allowed during the
ransients but not at the steady-state points reached by the con-
rolled plant. In case it becomes critical to minimize constraint
iolations during the transients, it is possible to include the out-
ut constraints in the MPC regulator as well. However, this would
equire the use of a soft-constraint approach in order to avoid pos-
ible infeasible solutions to the MPC problem [22]. This approach
onsists in adding a penalty term to the objective function of the
PC problem that penalizes a measure of constraint violation. The

nclusion of the output constraints in the MPC regulator may also
egrade the performance of the controller. Several commercially

vailable MPC algorithms also provide soft constraints in the SSTO
roblem [3]. This is because if a large disturbance enters the pro-
ess, it may not be possible, given the available input space, to
ompletely remove the disturbance at steady state. However, since
ss Control 24 (2014) 129–145 133

relaxing the output constraints in the SSTO will result in steady-
state targets that continuously violate the output constraints [13],
we choose not to relax them, and in agreement with [13], we
suggest using an infeasible solution as an indicator of a process
exception.

2.4. Steady-state properties of the SSTO-MPC control system

The SSTO stage confers important steady-state properties to the
controlled plant. These include offset-free behavior of the MPC reg-
ulator, and guaranteed feasibility at steady-state operation.

2.4.1. Zero steady-state offset

Lemma 1. In the presence of stable step-wise disturbances, the
controlled plant will reach a steady-state operating point u with no
offsets with respect to the SSTO targets [10], i.e., with u = us, and
yp(u, dp) = ys.

Proof. At a steady-state operating point u the output disturbance
d̂(t|t) takes the value d given below:

d = yp(u, dp) − y0 − C ıx, (21)

Also, the constraints (17b) and (17c) in the MPC problem reduce
to:

ıx = A ıx + B ıu (22)

y = C ıx + d + y0. (23)

Using (21) in (23) we have

y = yp(u, dp). (24)

Eqs. (22) and (22) can be written jointly as y = As(u − u0) + d +
y0, which is identical to the constraint (20b) in the SSTO problem
with d̂(t|t) = d.

Since the solution (us, ys) of the SSTO problem satisfies the con-
straints (23) and (17d) of the MPC problem, the targets us and ys are
feasible for the MPC problem. Therefore, the solution to the MPC
problem is u = us, and y = ys since this solution is feasible and it
minimizes the MPC quadratic objective function in (17a), which
becomes equal to zero. �

In order to fully specify the operating point, the number of lin-
early independent input and output targets that are included in the
objective function of the MPC regulator should be equal to the total
number of input variables, nu. However, since the zero-offset con-
dition is independent of the number of targets included in (17a), it
is possible to exceed nu targets without incurring in offset. In fact,
one can include in (17a) targets for all the input and all the output
variables. Zero steady-state offset results from the fact that there is
no model mismatch between the SSTO and MPC stages.

2.4.2. Feasibility
An important property of the SSTO-MPC control system is that

the controlled plant will reach a feasible steady-state operating
point, i.e., a point that satisfies the constraints in Problem (2).

Lemma 2. In the presence of stable step-wise disturbances, the SSTO-
MPC control system will reach a steady-state operating point u that is
a feasible point for the plant.
Proof. The proof follows directly from Lemma 1 and the fact that
us, ys satisfy the output constraints (20c) and (20d), and the input
bounds. �
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. Alternative designs of the SSTO problem

The SSTO-MPC control system presented in Section 2.3 permits
o implement RTO results while paying attention to the feasibil-
ty of the steady-state operating points reached by the controlled
lant. However, which feasible steady-state is actually reached will
epend on the design of the SSTO problem. In this section, we
escribe three different QP design approaches that vary accord-

ng to the formulation of the QP problem and the information that
s passed from the RTO solution.

.1. Design approach A

We present first the standard SSTO design where the QP problem
nds feasible steady-state targets for the input variables that are as
lose as possible (in a least-square sense) to the optimal RTO inputs.
n this approach, which is adapted from [11,12], the QP problem
eads:

us(t), ys(t) = argmin
us,ys

∥∥us − u�
k+1

∥∥2

Rs

s.t. ys = As(us − u0) + y0 + d̂(t|t),

yeq
s = yS,

yL
k

≤ yin
s ≤ yU

k
,

uL
k

≤ us ≤ uU
k

,

(25)

here Rs is a positive definite weighting matrix.

.1.1. Matching the RTO optimal point upon convergence
Notice that, the steady-state inputs uk+1 reached by the SSTO-

PC system will not in general match the RTO optimal inputs
�
k+1. In particular, using any SSTO design, uk+1 will not match u�

k+1
henever u�

k+1 is infeasible for the plant (e.g., due to plant-model
ismatch). Yet, a desirable property of the overall RTO/SSTO-MPC

wo-layer system is that, upon convergence of the RTO algo-
ithm, the steady-state operating point u∞ = lim

k→∞
uk reached by

he controlled plant will match the RTO solution u�∞ = lim
k→∞

u�
k
, i.e.,

∞ = u�∞. In this context, let us consider the following uniqueness
ssumption:

ssumption 4. The RTO problem has a unique solution point u�
k+1

t each RTO execution k.

This assumption implies that u�
k+1 is a strict local minimum.

sing this assumption, a convergent RTO implementation will
onverge to the unique solution point u�∞, i.e., the possibility of
onverging to an optimal solution set (that is not a singleton) is
xcluded. The following proposition gives a necessary condition
hat the RTO model adaptation scheme must satisfy in order to
atisfy u∞ = u�∞.

roposition 1. In order to match the RTO optimal point upon con-
ergence of the overall RTO/SSTO-MPC two-layer system (i.e., to have
∞ = u�∞) it is necessary that the RTO model updated at u�∞ predicts
ith zero offset the equality constrained outputs and the inequality

onstrained outputs that are active at u�∞.

roof. From Lemma 1 we know that the SSTO-MPC control sys-
em will reach a steady state with yp(u∞, dp) = ys. For the case of
he equality constrained outputs, Lemma 2 implies that yeq

s = yS.
ence, if the RTO model updated at u∞ does not predict with zero

ffset the equality constrained output variables, then u�∞ cannot
e equal to u∞, because u∞ will not be a feasible point for the
TO problem. Similarly, if the active equality constrained output
ariables are not predicted with zero offset, then u∞ will be either
ss Control 24 (2014) 129–145

infeasible of suboptimal for the RTO problem, and therefore u�∞ will
not be equal to u∞. �

Notice that, any RTO model adaptation scheme that matches
the constrained outputs of the plant upon convergence of the RTO
iterations will satisfy the necessary condition in Proposition 1. In
particular, the constraint-adaptation approach satisfies this condi-
tion. Next, let us consider the following definition:

Definition 1. A fixed point of the overall RTO/SSTO-MPC two-layer
system is a steady-state operating point that is mapped to itself by
the RTO/SSTO-MPC two-layer system.

Let u� and y� be the optimal RTO inputs and outputs evaluated
when the plant is at steady-state at the operating point u. Then, u
is a fixed point of the overall RTO/SSTO-MPC system if us = u is the
unique solution to the SSTO problem with the RTO setpoints u�, y�,
and with the disturbance value d in (21) evaluated at u.

A necessary condition for matching the RTO solution upon
convergence is that the point u�∞ be a fixed point of the overall
RTO/SSTO-MPC two-layer system.

Proposition 2. If constraint adaptation is implemented at the RTO
layer, Assumption 4 holds, and Design A is implemented at the SSTO-
MPC layer, then u∞ = u�∞ is a fixed point of the overall RTO/SSTO-MPC
two-layer system.

Proof. The condition u∞ = u�∞ implies that u�∞ is the solution to
the constraint-adaptation problem (8) with constraint biases ε∞
evaluated at u�∞. Constraint adaptation guarantees that the neces-
sary condition in Proposition 1 is satisfied. In order for u�∞ to be a
fixed point of the overall RTO/SSTO-MPC system it is required that
us = u�∞ be also the unique solution to the QP problem (25) with
the disturbance value d in (21) evaluated at u�∞. This is the case
since u�∞ is feasible and Rs is positive definite. �

The SSTO design approach A is simple and easy to understand.
However, it does not economically update the targets in response to
process disturbances, and it has no optimizing control properties.
An optimizing control design of the SSTO problem is presented next.

3.2. Design approach B

In terms of optimality there is often much to win by controlling
the active inequality constrained variables to their optimal bound-
ary values [7]. Controlling the active constrained quantities has
been widely adopted in implicit process optimization approaches
such as constraint control [23], optimizing control [24–26] and NCO-
tracking [27]. The idea of the SSTO design described next is to take
advantage of the optimizing control properties that stem from con-
trolling the active constraints in the RTO solutions.

Let the vector zs ∈ Rna
k+1 include the targets for all the inequal-

ity constrained output and input variables that are active at the

optimal RTO point u�
k+1, and let zS

k+1 ∈ Rna
k+1 be the vector of active

boundary values in Problem (8), corresponding to the variables in

zs. We also define z(u, �) ∈ Rna
k+1 as the vector of active inequal-

ity constrained output and input variables predicted by the RTO
model. For example, if the third inequality constrained output in
yin is active at its lower bound, and the second input variable in u
is active at its upper bound, then we select zs = [yin

s,3, us,2]
T
, zS

k+1 =

[yL

3,k
, uU

2,k
]
T
, and z(u, �) = [yin

3 (u, �), u2]
T
. This way, the active con-

straints can be controlled by controlling the steady-state targets zs

to their setpoint values zS
k+1 in the SSTO problem. The active con-

straints might change from one RTO execution to the other, thus
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equiring a change in zs and zS
k+1. The SSTO problem is given by the

ollowing QP:

in
s,ys

∥∥zs − zS
k+1

∥∥2

Qs
+

∥∥us − u�
k+1

∥∥2

Rs
(26a)

.t.

s = As(us − u0) + y0 + d̂(t|t), (26b)
eq
s = yS, (26c)

L
k ≤ yin

s ≤ yU
k , (26d)

L
k ≤ us ≤ uU

k , (26e)

ith

s = Vk+1Cs(Vk+1)T. (27)

The quadratic term ‖us − u�
k+1‖2

Rs
is included in (26a) only if the

umber of equality constraints plus the number of active inequal-
ty constraints is lower than the number of inputs, i.e., if nb

k+1 :=
u − neq

y − na
k+1 > 0. The columns in the matrix Vk+1 ∈ Rnu×nb

k+1 cor-
espond to directions in the input space, and the weighting matrices

s ∈ Rna
k+1

×na
k+1 and Cs ∈ Rnb

k+1
×nb

k+1 are positive definite. Vk+1 can be
elected from information given by the steady-state model used at
he RTO layer. Let us define the Jacobian matrix of the controlled
onstrained quantities, evaluated at u�

k+1, as:

k+1 :=

⎡
⎢⎣

∂yeq

∂u
(u�

k+1, �)

∂z
∂u

(u�
k+1, �)

⎤
⎥⎦ (28)

Notice that the rows of Gk+1 are the gradients of the controlled
onstrained quantities yeq and z evaluated at u�

k+1. Assuming that
k+1 is full row rank, the columns in Vk+1 can be selected as an
rthonormal basis of the null space of the constraint gradients, i.e.,
k+1 = Nk+1, with Gk+1Nk+1 = 0. This choice of Vk+1 is based on the
ariational analysis carried out in [7], where it is shown that upon
nforcing the active constraints and the optimal inputs along the
olumns in Nk+1, the loss of optimality is only O(ıd2). This selection
f Vk+1 is convenient, but it is not optimal. An optimal selection of
k+1 will be presented later, in Section 3.3.4.

emark 2. Notice that ‖us − u�
k+1‖2

Rs
= ‖ˇs − ˇS

k+1‖2
Cs

, where ˇs :=
Vk+1)Tus ∈ Rnb

k+1 are the inputs along the directions given by the
olumns in Vk+1, and ˇS

k+1 := (Vk+1)Tu�
k+1 are their corresponding

ptimal values. Hence, the QP Problem (26) represents a square
ontrol problem where the number of setpoints in yS, zS

k+1, and
S
k+1, equals the number of decision variables, nu. The constraint

26c) is used to control the equality constrained variables, the
uadratic term ‖zs − zS

k+1‖2
Qs

is used to control the active inequal-

ty constrained variables, and ‖us − u�
k+1‖2

Rs
is used to exploit the

dditional degrees of freedom towards optimality.

xample 1. Consider the following constraint-adaptation prob-
em:

u�
k+1 = argmin

u
�(u, �)

s.t. yin(u, �) + εin
k

≤ yU
(29)

here the input u has two components u1 and u2, and there is a
ingle inequality constraint yin. Fig. 3 illustrates the case where,

t the current operating point uk, Problem (29) is solved for u�

k+1.
n the presence of plant-model mismatch, the predicted constraint
oundary yin(u, �) + εin

k
= yU does not match the constraint bound-

ry for the plant, yin
p (u) = yU. Assuming that at u�

k+1 the predicted
Fig. 3. Sketch of the integration between RTO and SSTO-MPC using Design B with
Vk+1 = Nk+1. Dotted lines: contours of the cost function �(u, �).

inequality constraint is active, the objective function of the SSTO
problem is chosen as follows:

JSSTO = qs

(
yin

s − yU
)2 + cs

(
(Vk+1)Tus − (Vk+1)Tu�

k+1

)2

Hence, the SSTO-MPC controller will take the operation from uk
to the new steady state uk+1, for which the inequality constraint of
the plant is active, and the input along the direction Vk+1 is at its
optimal value given by the RTO point u�

k+1. Notice that, Fig. 3 depicts
where the SSTO-MPC control system will take the operation with
respect to the RTO optimum point using Design B (for a single RTO
execution and prior to convergence of the RTO iterations).

3.2.1. Matching the RTO optimal point upon convergence
As discussed in Section 3.1.1, a necessary condition for matching

the RTO solution upon convergence is that the point u∞ = u�∞ be a
fixed point of the overall RTO/SSTO-MPC two-layer system.

Proposition 3. If constraint adaptation is implemented at the RTO
layer, Assumption 4 in Section 3.1.1 holds, and Design B is implemented
at the SSTO-MPC layer, then u∞ = u�∞ is a fixed point of the overall
RTO/SSTO-MPC two-layer system.

Proof. Constraint adaptation guarantees that the necessary condi-
tion in Proposition 1 is satisfied. We need to show that if u∞ = u�∞
then us = u�∞ is the unique minimizing solution of Problem (26).
Notice that u�∞ is feasible and it is a zero of the objective function
of Problem (26), i.e., it satisfies the setpoints yS, zS∞, and ˇS

∞. Since
Qs and Cs are positive definite, it follows that u�∞ is a minimum of
Problem (26). Assuming that Gk+1 is full row rank, there is by con-
struction a unique target that satisfies the setpoints yS, zS∞, and ˇS

∞,
and therefore u�∞ is a unique minimum. �

The SSTO design approach B is an optimizing control design,
and as most optimizing control schemes it relies on the knowl-
edge of the set of active constraints. If the set of active constraints
changes as a result of process disturbances, then Design B may lose
its optimizing properties until the next RTO execution recomputes
the active set. An economic optimization design of the SSTO prob-
lem is presented next, where the SSTO problem approximates the
nonlinear RTO problem. This may allow the SSTO problem to detect
changes in the optimal set of active constraints during the transient.

3.3. Design approach C
Design approaches where the SSTO problem approximates the
NLP problem solved at the RTO layer have been described in the
literature [10,5]. Here, we consider the QP design described in
[10], which is based on the QP approximation used in successive
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uadratic programming (SQP) approaches for solving NLP prob-
ems [16,17]. The SQP approximation of the RTO NLP problem at
he optimal point u�

k+1 is given by:

in
u

∂�

∂u
(u − u�

k+1) + 1
2

(u − u�
k+1)T ∂2L

∂u2
(u − u�

k+1) (30a)

.t.

eq(u�
k+1, �) + εeq

k
+ ∂yeq

∂u
(u − u�

k+1) = yS, (30b)

L
k ≤ yin(u�

k+1, �) + εin
k + ∂yin

∂u
(u − u�

k+1) ≤ yU
k , (30c)

L
k ≤ u ≤ uU

k , (30d)

here ∂�
∂u

, ∂yeq

∂u
, ∂yin

∂u
are evaluated at (u�

k+1, �), L is the Lagrangian

unction, and ∂2L
∂u2 is evaluated at (u�

k+1, ��
k+1, �), where ��

k+1 are the
ptimal values of the Lagrange multipliers. In this formulation, the
utput constraints are linearized at u�

k+1, and the curvature of the
onstraints is taken into account by using the Hessian of Lagrangian
unction in the quadratic term of the objective function.

In the framework of SQP, it is well known that if u�
k+1 is a KKT

Karush–Kuhn–Tucker) solution to the RTO NLP problem (8), then
�
k+1 is also a KKT solution to the SQP approximation (30) [16,17].

ndeed, the first and second order necessary conditions of optimal-
ty of Problem (30) match those of the RTO problem (8) at u�

k+1.
Based on the SQP approximation (30), the SSTO problem can be

ormulated as follows:

in
s,ys

∂�

∂u
(us − u�

k+1) + 1
2

∥∥us − u�
k+1

∥∥2

Hk
(31a)

.t.

s = As,k(us − u0) + y0 + d̂(t|t), (31b)

eq
s = yS, (31c)

L
k ≤ yin

s ≤ yU
k , (31d)

L
k ≤ us ≤ uU

k , (31e)

here

s,k = Ck(I − Ak)−1Bk = ∂y
∂u

(u�
k+1, �), (32)

nd Hk is a positive definite approximation of ∂2L
∂u2 (u�

k+1, ��
k+1, �).

ondition (32) is included so as to match the gradients of yeq
s and

in
s (recall that yeq

s and yin
s are subsets of ys) with the gradients

f the corresponding linear approximations (30b) and (30c). For
implicity, the gradients of all the output variables are matched in
32), although there is no need to match the gradients of output
ariables that do not belong to yeq

s or yin
s .

.3.1. Approximation of the Lagrangian Hessian
We would like Problem (31) to have a unique solution point.

f it has infinite solutions, the optimizer would randomly pick
ither of these solutions at any sampling time, preventing the
ontrolled plant from reaching steady-state operation. Problem
30) has a unique solution point us if the rows in matrix Gk+1,
efined in (28), are linearly independent, and the reduced Hes-( )

ian matrix NT

k+1
∂2L
∂u2 Nk+1 is positive definite (see Lemma 16.1

n [16]). Hence, Hk could be selected as an approximation of ∂2L
∂u2

uch that NT
k+1HkNk+1 is positive definite. However, since the set of
ss Control 24 (2014) 129–145

active constraints in Problem (31) might change with the disturb-
ance values d̂(t|t), we use the stronger condition that Hk be positive
definite.

One approach is to specify Hk =
(

	I + ∂2L
∂u2

)
, where 	 is deter-

mined as follows [17]: fix ı > 0, and let 	 ≥ 0 be the smallest scalar

that would make all the eigenvalues of the matrix
(

	I + ∂2L
∂u2

)
greater than or equal to ı.

3.3.2. Static gain matrix adaptation
In order to meet the condition (32) it is necessary to adapt the

linear dynamic state-space model (15), (16) used by the MPC regu-
lator at each RTO execution, such that its static gain matrix matches
the output derivatives of the RTO model evaluated at u�

k+1. The
problem to be solved is to find new model matrices Ak, Bk, and Ck,
such that:

• They represent as close as possible the old dynamic system used
by the MPC, which is given by matrices A, B, and C.

• They satisfy condition (32).

Several options arise at this point. Assuming that nx ≥ nu, one
option that seems to be simple is to keep matrices A and B unmodi-
fied (i.e., Ak = A and Bk = B), and to adapt only matrix Ck. Notice that
condition (32) is a set of ny × nu equations, and matrix Ck has ny × nx

entries that can be updated. Hence, one can search for the matrix
Ck that is closest to C (in some metric) by solving an optimization
problem where condition (32) enters as the constraints, and where
the entries of Ck are the decision variables. For example, one can
obtain Ck by solving the following problem:

min
cij,k

ny∑
i=1

(ci,k − ci)
T(ci,k − ci)

s.t. Ck(I − A)−1B = ∂y
∂u

(u�
k+1, �),

(33)

where cij,k is the ijth entry of matrix Ck, cT
i,k

is the ith row of Ck,

and cT
i

is the ith row of matrix C. In this way, the model parameters
affecting the transient regime of the system remain unmodified
with respect to the original model (i.e., the modes and the input
matrix are not changed).

3.3.3. Matching the RTO optimal point upon convergence
As before, a necessary condition for matching the RTO solution

upon convergence is that the point u∞ = u�∞ be a fixed point of the
overall RTO/SSTO-MPC two-layer system.

Lemma 3. If in Problem (31) the disturbance is such that d̂(t|t) =
dk+1, with

dk+1 := y(u�
k+1, �) + εk − As,k(u�

k+1 − u0) − y0, (34)

then us = u�
k+1 is the (unique) solution to Problem (31).

Proof. The proof follows by verifying that the first-order KKT con-
ditions of Problem (31) match those of the RTO NLP problem (8), and
that the second-order sufficient conditions for a strict minimum of
Problem (31) are also satisfied at u�

k+1. Matching the output values
and the output gradients is sufficient for matching the first-order
KKT conditions [28,29]. Using (34) in (31b) we obtain:

ys = y(u�
k+1, �) + εk + As,k(us − u�

k+1). (35)

This is the same linearization of the output variables at u�
k+1 that
is used in (30b) and (30c) for the equality and inequality constrained
outputs. Evaluating (35) at us = u�

k+1 we obtain ys = y(u�
k+1, �) + εk,

which matches the values of the constrained outputs of Problem (8),
evaluated at u�

k+1. The output gradients are matched via condition
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32). On the other hand, the second-order sufficient conditions for
strict minimum are satisfied since Hk is positive definite. �

In general, d̂(t|t) will not take the value dk+1, except upon con-
ergence of the overall RTO/SSTO-MPC two-layer system as will be
hown next. However, the theoretical disturbance dk+1 will prove
tself useful in the forthcoming analysis of Section 3.3.4.

roposition 4. If constraint adaptation is implemented at the RTO
ayer, Assumption 4 in Section 3.1.1 holds, and Design C is implemented
t the SSTO-MPC layer, then u∞ = u�∞ is a fixed point of the overall
TO/SSTO-MPC two-layer system.

roof. We need to show that if u∞ = u�∞ then us = u�∞ is the
nique minimizing solution of Problem (31). From (21) it follows
hat the steady state value of the disturbance vector evaluated at
�∞ is

= yp(u�
∞, dp) − y0 − C∞ ıx∞ = yp(u�

∞, dp) − y0 − As,∞(u�
∞ − u0).

onstraint adaptation guarantees that y(u�∞, �) + ε∞ = yp(u�∞, dp).
ence, we have

= y(u�
∞, �) + ε∞ − y0 − As,∞(u�

∞ − u0) = d∞ = lim
k→∞

dk+1. (36)

In view of Lemma 3, it follows that us = u�∞ is the unique mini-
izing solution of Problem (31). �

KKT matching in Lemma 3 in general requires the satisfaction
f condition (32), i.e., matching of the output derivatives between
he RTO and MPC models. Notice that, if the dynamical model used
n MPC is not adapted so as to satisfy condition (32), then u∞ = u�∞

ill not in general be a fixed point of the overall RTO/SSTO-MPC
ystem using Design C. A particular case for which precise matching
f the output gradients is not required was analyzed by Forbes et al.
6]. The analysis in [6] is restricted to problems where there are as

any independent active constraints at the optimum as decision
ariables. In this case, the output gradients in the MPC model (rows
n As) can vary with respect to the RTO model as long as the Lagrange

ultipliers corresponding to the active constraints remain positive.

.3.4. Link between Designs B and C
The link between Designs B and C will be established for the

ase where the set of active inequality constraints in Problem (31)
oes not change with the disturbance values d̂(t|t). By taking the
ctive inequality constraints as equality constraints and removing
he inactive constraints, the KKT conditions of Problem (31) reduce
o:

∂�

∂u
+ (us − u�

k+1)THk + �TGk+1 = 0, (37)

˜s = Gk+1(us − u0) + z̃0 + d̃(t|t) = z̃S
k+1, (38)

ith z̃s = [(yeq
s )

T
, (zs)

T]
T
, and z̃S

k+1 = [(yS)
T
, (zS

k+1)
T
]
T
. Here, zs and

S
k+1 were previously defined in Section 3.2; � are the Lagrange

ultipliers associated with z̃s; d̃(t|t) contains the disturbance val-
es in d̂(t|t) corresponding to z̃s; and Gk+1 is the Jacobian matrix
reviously defined in (28).

If d̂(t|t) = dk+1, then from Lemma 3 the solution of Problem (31)
s u�

k+1, and the KKT conditions (37), (38), evaluated at u�
k+1, reduce

o:

∂�

∂u
+ �T

k+1Gk+1 = 0,
z̃s = Gk+1(u�
k+1 − u0) + z̃0 + d̃k+1 = z̃S

k+1,

here d̃k+1 contains the disturbance values in dk+1 corresponding
o z̃s.
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Introducing the deviation variables ıd = d̃(t|t) − d̃k+1, ıus =
us − u�

k+1, and ı� = � − �k+1, conditions (37) and (38) can be written
as:

Mk+1

[
ıus

ı�

]
=

[
0

−ıd

]
, with Mk+1 =

[
Hk GT

k+1

Gk+1 0

]
. (39)

If Gk+1 has full row rank and the reduced Hessian matrix
NT

k+1HkNk+1 is positive definite, then the KKT matrix Mk+1 is non-
singular [16], and there is a unique vector pair (ıus, ı�) satisfying:

[
ıus

ı�

]
= M−1

k+1

[
0

−ıd

]
, with M−1

k+1 =
[

M1,k+1 M2,k+1

M3,k+1 M4,k+1

]
. (40)

Hence, if the active set is invariant, the optimal input targets are
a linear function of the bias disturbances:

ıus = −M2,k+1 ıd. (41)

If Hk is positive definite, then Hk is invertible, and M2,k+1 =
(Hk)−1GT

k+1

[
Gk+1(Hk)−1GT

k+1

]−1
(see exercise 3.7.11 in [30]).

This result motivates an alternative selection of matrix Vk+1 in
Design B, and the link between Designs B and C.

Proposition 5. Let the rows in matrix Gk+1 be linearly indepen-
dent, and the reduced Hessian matrix NT

k+1HkNk+1 be positive definite.
Assume that the active set in Problem (31) does not change with the
disturbance values d(t|t). If the columns in Vk+1 are selected as an
orthonormal basis of the null space of the rows in matrix M2,k+1, defined
in (40), then Designs B and C reach the same steady-state targets in
the presence of stable step-wise disturbances.

Proof. The assumptions in the Proposition imply that matrix Mk+1
in (39) is nonsingular, and hence, (41) holds. Let the columns in

Nk+1 ∈ Rnu×nb
k+1 be an orthonormal basis of the null space of the

rows in M2,k+1, then from (41) we have

(Nk+1)Tus − (Nk+1)Tu�
k+1 = (Nk+1)Tıus = −(Nk+1)TM2,k+1 ıd = 0.

(42)

Notice that, by means of (38), Design C is controlling the equal-
ity and active inequality constrained variables to their optimal set
point values; and by means of (42), Design C is controlling the input
targets along the directions given by the columns in Nk+1 to their
optimal RTO setpoints. These input targets do not depend on the
disturbances ıd. Hence, if in Design B we select Vk+1 = Nk+1, then
(under the assumptions of the Proposition) we are enforcing the
same steady-state targets with both SSTO designs. �

If in Design B we select Vk+1 = Nk+1, and the set of active con-
straints does not change with the disturbance values, then the SSTO
problem generates the same steady-state targets as with Design C.
The advantage of Design C is that the approximated economic opti-
mization problem has more chances to correctly detect changes in

the set of active constraints. On the other hand, Design B has the
advantage of not requiring to adapt the MPC model (so as to satisfy
condition (32)) in order to reach the RTO solution upon convergence
of the RTO iterations.
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Fig. 4. Contour maps for Problem (44) with dp = 0. Colored area: feasible region; Thick
solid lines: boundaries of the output constraints for the plant; Thick dashed lines:
boundaries of the output constraints predicted by the model without adaptation;
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. Illustrative case studies

.1. Case Study 1

The behavior of the plant is described by the following
ontinuous-time linear state-space system:

ẋp = Apxp + Bpu + Gpdp,

yp = Cpxp + yc,
(43)

ith

Ap =

⎡
⎢⎢⎢⎢⎢⎣

− 7
60

− 1
300

0 0

1 0 0 0

0 0 − 19
180

− 5
1800

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ , Bp =

⎡
⎢⎢⎣

1 0

0 0

0 1

0 0

⎤
⎥⎥⎦ ,

Gp =

⎡
⎢⎢⎣

−0.186 1.556

2.766 −25.52

−0.126 −1.055

−3.454 24.02

⎤
⎥⎥⎦ ,

Cp =

⎡
⎢⎢⎢⎢⎣

2
30

1
300

−0.05 − 5
1800

0.05
1

300
5

90
5

1800

8
75

2
375

−0.012 − 2
3000

⎤
⎥⎥⎥⎥⎦ , yc =

⎡
⎣−0.35

−1.00

−1.10

⎤
⎦ ,

hich consists of four state variables xp = [ xp,1 xp,2 xp,3 xp,4 ]T,
wo input variables u = [u1 u2]T, two unmeasured distur-
ances dp = [d1 d2]T, and three measured output variables
p = [yp,1 yp,2 yp,3]T.

The steady-state optimization problem for the plant reads:

max
u

cTu

s.t. yp(u, dp) = yc − Cp

(
Ap

)−1
(Bpu + Gpdp) ≤ 0,

(44)

ith c = [6.85 2.95]T.
The following discrete-time linear state-space model is avail-

ble, which uses a time step, tstep = 4:

xk+1 = Axk + Buk,

yk = Cxk + yo,
(45)

ith

=

⎡
⎣ 1.4777 −0.70124 2.8879

0.0087227 0.81012 0.038218

−0.16573 0.16357 0.092586

⎤
⎦ ,

=

⎡
⎣ 7.1307 −1.1426

−0.10167 3.6016

1.9318 0.45105

⎤
⎦ ,

=

⎡
⎣ 0.024812 −0.065606 0.10527

0.0066459 0.032906 0.028499

0.027378 −0.0097313 0.11945

⎤
⎦ , yo =

⎡
⎣ −0.12

−0.847

−1.031

⎤
⎦,
hich consists of three state variables x = [x1 x2 x3]T, and includes
he two input variables u = [u1 u2]T, and the three predicted output
ariables y = [y1 y2 y3]T.
Dotted lines: contours of the cost function; Point P: optimum for the plant; Point
M: optimum for the model without adaptation. Iterations -*-: constraint adaptation
applied in open loop with Kin = I3.

The nominal model-based steady-state optimization problem
reads:

max
u

cTu

s.t. y(u) = yo + C(I3 − A)−1Bu ≤ 0.
(46)

The contour maps of the plant (Problem (44)) with dp = 0, and
the nominal model (Problem (46)) are presented in Fig. 4. The con-
straints on yp,1 and yp,2 are active at the plant optimum, while the
constraints on y2 and y3 are active at the model optimum. Note that
the optimal point determined from the nominal model is infeasible
for the plant. The observed plant-model mismatch is purposely
introduced in order to demonstrate the applicability and the behav-
ior of the RTO/SSTO-MPC system using the different SSTO designs
in a situation where such mismatch exists.

First, the RTO results using constraint-adaptation are applied
in open-loop fashion. Constraint adaptation is executed every
100 time units, which leaves sufficient time for the controlled
system to reach steady state after an input change. For simplic-
ity, the RTO optimizer is executed using a fixed RTO period. In
practice, however, a steady-state identification scheme should
determine when the plant is operating at (near) steady-state con-
dition and trigger the execution of the RTO optimizer [2,9]. Starting
from u0 = [0.05 0.8]T, the iterations obtained without filtering the
constraint biases (i.e., with Kin = I3) are depicted in Fig. 4. The corre-
sponding time responses of the input and output variables, and of
the cost function, are shown in Fig. 5 for the first five RTO iterations.
Notice that, due to plant-model mismatch, the optimal steady-state
inputs determined at the RTO layer might be infeasible, besides
from suboptimal, prior to convergence of the constraint-adaptation
scheme.

Next, the RTO results are applied in closed loop by means
of SSTO-MPC. In the three simulation scenarios studied next,

constraint adaptation is implemented at the RTO layer, without
filtering the constraint biases, and the MPC regulator described
in Section 2.3.1 is implemented with the prediction horizon N = 5.
The prediction model (45) is augmented with constant output
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ig. 5. Time response of the main variables in Case Study 1: open loop implemen-
ation of RTO (constraint adaptation).

isturbances, and a Luenberger observer is used. The terminal con-
traint (17e) is not included, as the MPC without the constraint is
table.

Since the cost function and the constraints are linear, Design C
esults in an LP problem rather than a QP problem. In fact, in this
xample the steady-state optimization problem solved at the SSTO
tage is identical to the problem solved at the RTO layer. This issue
ill be discussed later.
Scenario 1. We analyze how the integrated RTO/SSTO-MPC
chemes perform when starting from the conservative initial point
0 = [0.05 0.8]T without perturbations (i.e., with dp = 0). The results
sing SSTO Design A are shown in Fig. 6. The SSTO stage effectively

ig. 6. Time response of the main variables in Case Study 1: Scenario 1 with Design
.

Fig. 7. Time response of the main variables in Case Study 1: Scenario 1 with Design
B.

avoids constraint violations at the steady state operating points
(compare with the open-loop implementation in Fig. 5). However,
it takes about three RTO periods for the iterations to approach the
plant optimum. The results using SSTO Design B are shown in Fig. 7.
In this case, the correct set of active constraints is identified upon
adaptation of the constraints at the initial point u0. Hence, by imple-
menting Design B, the plant optimum is reached within the first
RTO period. In this scenario, the response obtained with Design C
is identical to that obtained with Design B.

Scenario 2. A unit step on disturbance d1 is applied at time 20,
when the integrated RTO/SSTO-MPC system is operating the plant
at the plant optimum previous to the disturbance. The effect of this
disturbance on the steady-state mapping of the plant is to move
the constraint boundaries as illustrated in Fig. 8. Note that the
plant optimum changes but the set of active constraints remains
the same. Constraint adaptation is executed every 200 time units.
The results using SSTO Designs A and B are shown in Figs. 9 and
10, respectively. Since the disturbance does not change the set of
active constraints, the controller with Design B takes the operation
directly to the new plant optimum. As in the previous scenario,
Design C produces the same response as Design B.

Scenario 3. This time, a unit step on disturbance d2 is applied at
time 20. The effect of this disturbance on the steady-state mapping
of the plant is to move the boundary of yp,3 as illustrated in Fig. 11.
The constraint on yp,3 becomes active at the plant optimum, and
the constraint on yp,1 becomes inactive. Constraint adaptation is
executed every 200 time units. The results using SSTO Design B are
shown in Fig. 12. Previous to the disturbance, Design B is control-
ling yp,1 and yp,2 to their boundary values. These setpoints become
infeasible after the disturbance, and therefore the SSTO-MPC con-
troller brings the operation to a feasible steady-state point, which
is at a compromise distance from meeting the boundaries on yp,1
and yp,2 depending on the corresponding weighting matrices used
for these two outputs in the objective function of the SSTO prob-

lem. At time 200, when the controlled plant has reached a near
steady-state condition, the RTO optimizer is executed and the cor-
rect set of active constraints is passed to the SSTO stage. The results
using Design C are shown in Fig. 13. Since Design C is evaluating the
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Fig. 8. Contour map for Problem (44) with dp = [1 0] .

conomic steady state during the transient, it is able to detect the
hange in the active constraints and bring the operation at steady
tate directly to the intersection of the new active constraints.

As we mentioned earlier, when Design C is used in this case
tudy, the economic optimization carried out at the SSTO stage is
dentical to the economic optimization at the RTO layer (in both
ases an LP program). Hence, the RTO layer plays no role and can
e eliminated. The inclusion of the RTO layer makes sense when the
TO layer uses a more detailed and accurate model than the SSTO
tage.
ig. 9. Time response of the main variables in Case Study 1: Scenario 2 with Design
.

Fig. 10. Time response of the main variables in Case Study 1: Scenario 2 with Design
B.

4.2. Case Study 2

The reactor in the Williams-Otto plant is considered [31]. It con-
sists of an ideal CSTR in which the following reactions occur:

A + B −→ C, k1 = 1.6599 × 106e−6666.7/(TR+273)

B + C −→ P + E, k2 = 7.2117 × 108e−8333.3/(TR+273)

C + P −→ G, k3 = 2.6745 × 1012e−11111/(TR+273)

where the reactants A and B are fed with the mass flow rates FA and

FB, respectively. The desired products are P and E. C is an intermedi-
ate product and G is an undesired product. The reactor mass holdup
is 2105 kg, and the product stream has the mass flowrate F = FA + FB.
The material balance equations for this CSTR can be found in [32].

Fig. 11. Contour map for Problem (44) with dp = [0 1]T .
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ig. 12. Time response of the main variables in Case Study 1: Scenario 3 with Design
.

The decision variables are FB and the reactor temperature, TR,
.e., u = [FB TR]T. The states are x = [XA XB XC XP XG XE]T, where Xj is
he mass fraction of species j. The objective is to maximize profit at
teady state operation, which is expressed as the price difference
etween the products and the reactants:

= 1200XPF + 80XEF − 76FA − 114FB, (47)
The disturbance variable considered is FA, i.e., dp = FA. The
teady-state mapping for the plant mass fraction j is represented
s Xj,p(u, dp). The nominal model uses FA = 1.4 kg/s. Hence, the

ig. 13. Time response of the main variables in Case Study 1: Scenario 3 with Design
.

Fig. 14. Case Study 2. Steady-state map with FA = 1.4 kg/s. Dotted curves: contours
of the profit function; Solid curves: contours of XB .

steady-state mapping for the model is given by Xj(u) = Xj,p(u, 1.4).
Similarly, the steady-state mappings for the plant and nominal
model profit are represented by �p(u, dp), and �(u) = �p(u, 1.4),
respectively. The steady-state optimization problem for the plant
reads:

max
FB TR

�p(u, dp)

s.t. XB,p(u, dp) ≤ 0.25

2 ≤ FB ≤ 4, 70 ≤ TR ≤ 100

(48)

where XB,p is constrained to be lower than or equal to 0.25. The
constraint-adaptation approach is implemented at the RTO layer,
using the nominal model with FA = 1.4 kg/s. The steady-state map
for the nominal model is illustrated in Fig. 14. The RTO solution map
as a function of the constraint bias ε is given by:

U�(ε) = argmax
FB, TR

�(u)

s.t. XB(u) + ε ≤ 0.25

2 ≤ FB ≤ 4, 70 ≤ TR ≤ 100

(49)

Let us assume that the initial value of FA is 1.4 kg/s. Hence, there
is initially no plant-model mismatch, and the reactor is initially
operating at the nominal optimum u� = [85.6, 2.549]T = U�(0),
which is indicated in Fig. 14. The curve U�(ε) indicates the pos-
sible locations of the RTO setpoints if a stable disturbance enters
the reactor.

Using Design C, the SQP approximation of the RTO problem is
taken at u�. Let d̂ denote the estimated disturbance for the output
XB. As a function of d̂, the solution of the SSTO problem using Design
C is given by the linear relation UC

s (d̂), which is computed from (41).
UC

s (d̂) is shown in Fig. 14. Notice that UC
s (d̂) is the tangent of U�(ε)

at u�. This tangency indicates that the solution of the SSTO prob-
lem using Design C represents a first-order approximation to the
solution of the RTO problem using constraint adaptation. This is the
case only because both problems use the same adaptation strategy,

which is based on biasing the output predictions. In general, Design
C will not give a first-order approximation of the RTO solution if a
different adaptation strategy is used at the RTO layer, e.g., such as
the classical two-step approach.
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Table 1
Values of the parameters �p and � in Case Study 3.

i 1 2 3 4 5 6

controller is designed with zero offset. When the steady-state map
of the plant changes due to a change in the disturbance value dp, it
is possible to determine the steady-state point that will be reached
by the SSTO-MPC control system for the different SSTO designs.
ig. 15. Case Study 2. Steady-state map with FA = 1.83 kg/s. Dotted curves: contours
f the profit function; Solid curves: contours of XB .

Now, let us assume that the value of FA increases to 1.83 kg/s.
his disturbance introduces plant-model mismatch in the system,
hich modifies the steady-state map for the true reactor, as shown

n Fig. 15. The constraint on XB,p shifts, and the plant optimum
oves to point u�

p. The constraint-adaptation scheme will converge
o the point u�∞, i.e., the point where U�(ε) intersects the constraint
ontour XB,p = 0.25. However, right after the disturbance takes place,
he SSTO problem will take the operation to different points,
epending on the design used. Design A will keep the operation
t u�, since this point is feasible. Design C will take the operation to
he point uC

s , which is where UC
s (d̂) intersects XB,p = 0.25. The point

eached with Design B will depend on the choice of Vk+1. One possi-
ility is to select Vk+1 as proposed in Section 3.2. Since the direction

n Vk+1 is dependent on the scaling of the inputs, these are scaled as
s
R = (TR − 70)/30, and Fs

B = (FB − 2)/2. Next, the derivative dXB
duscaled

s computed from the nominal model at u� using the scaled inputs,
nd Vk+1 is obtained such that dXB

duscaled Vk+1 = 0. Using this choice of

k+1, Design B will take the operation to point uB
s , which is at the

ntersection of UB
s (d̂) and XB,p = 0.25, where UB

s (d̂) is orthogonal to
k+1. Another possibility is to select the optimal Vk+1, as proposed

n Proposition 5, in which case Design B will take the operation to
C
s , the same point as Design C.

The close proximity of uC
s with u�

p is just a lucky coincidence
n this example. The point uC

s should be viewed as an approxima-
ion of u�∞, not of u�

p. Also, notice that the close proximity of the

ine UC
s (d̂) with the curve U�(ε), which can be visualized in Fig. 14,

ndicates that in this simple case study the constraint-adaptation
TO algorithm brings no meaningful improvement over the steady-
tate points that can be reached by the SSTO problem alone using
esign C.

.3. Case Study 3

Let us assume that the steady-state optimization problem of a
iven process reads:

max −� (u) = 2, 213u + u

u

p 1 2

s.t. yp(u, dp) = �1,p + �2,pu1 + �3,pu2 + �4,pu2
1 + �5,pu1u2 + �6,pu2

2 + dp ≤ 10

0 ≤ u1, u2 ≤ 10
(50)
�i,p (plant) 4.154 −0.059 −0.067 0.0486 −0.0065 0.025
�i (model) 6.154 −0.049 −0.052 0.0436 −0.0165 0.03

with two decision variables u = [u1 u2]T, six unknown plant param-
eters �p = [�1,p . . . �6,p]T, one uncertain constrained output variable
yp, and one disturbance variable dp. Using constraint adaptation, the
model-based optimization problem solved at the RTO layer reads:

max
u

−�(u) = 2, 213u1 + u2

s.t. y(u, �) + ε = �1 + �2u1 + �3u2 + �4u2
1 + �5u1u2 + �6u2

2 + ε ≤ 10

0 ≤ u1, u2 ≤ 10

(51)

where ε is the constraint bias, and � = [�1 . . . �6]T are the nominal
model parameters. The parameter values for the plant constraint
yp (simulated reality) and for the model constraint y are reported
in Table 1. Notice that the cost function is a known linear function,
whereas there is model uncertainty in the quadratic constraint.

Let us denote by U�
p (dp) the optimal solution map of Problem (50)

as a function of the disturbance value, and by U�(ε) the RTO solu-
tion (Problem (51)) as a function of the constraint bias. The initial
disturbance value is dp = 0, for which the corresponding steady-
state map of the plant is shown in Fig. 16. In this case, we have
U�

p (0) = [10, 10]T, i.e., the upper input bounds on u1 and u2 are
both active at the optimum. On the other hand, the constraint yp(u,
0) ≤ 10 is inactive. Let us assume that initially the plant is operat-
ing at the optimum, i.e., u0 = U�

p (0). At this point, the constraint
bias is computed as ε0 = yp(u0, 0) − y(u0, �). The steady-state map
for the RTO model corrected by ε0 is shown in Fig. 17. Notice that
u0 = U�(ε0).

In this example, we shall consider that yp(u, dp) is the steady-
state mapping corresponding to a dynamic process, and that a
stable SSTO-MPC control system is implemented, where the MPC
Fig. 16. Case Study 3. Steady state map for the plant with dp = 0. Dotted lines: con-
tours of the cost function; Thin solid lines: contours of yp(u, 0); Thick lines: constraint
boundaries.



A.G. Marchetti et al. / Journal of Process Control 24 (2014) 129–145 143

Fig. 17. Case Study 3. Steady state map for the RTO model with ε0 computed at
u0 (with dp = 0 for the plant). Dotted lines: contours of the cost function; Thin solid
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Fig. 19. Case Study 3. Shift in the boundary of the output constraint for the plant
ines: contours of y(u, �) + ε0; Thick lines: constraint boundaries predicted by the RTO
odel at u0; Dashed line: contour of the linearized output constriant at u0.

n effect, the point us must satisfy the NCO of the SSTO problem,
nd from Section 2.4 we know that at steady state us must satisfy
s = yp(us, dp).

Now, coming back to the example, let us consider that the value
f dp changes to dp = 2. This disturbance modifies the steady-state
ap for the plant by shifting the boundary of the output constraint

s indicated in Fig. 18. The new plant optimum u�
p = U�

p (2) is now
ocated on the boundary of the output constraint. After the dis-
urbance takes place, Design C will take the operation to point u′

s,
hich is at the intersection of the lower input bound on u and
2

he upper bound on yp. Since this point is very distant from the
TO solutions U�(ε), one can infer that the SQP approximation at
0 fails to approximate the RTO solution when this change in the

ig. 18. Case Study 3. Shift in the boundary of the output constraint for the plant
ith dp = 2. Stationary points reached using Design C. Dotted lines: contours of the

ost function; Thick lines: constraint boundaries.
with dp = 2. Stationary point reached using Designs A and B. Dotted lines: contours
of the cost function; Thick lines: constraint boundaries.

set of active constraints takes place. As a matter of fact, before the
disturbance takes place the plant is operating at u0. In the SQP
approximation the constraint y(u, �) + ε0 ≤ 10 is linearized at u0.
Since this constraint is initially inactive, its Lagrange multiplier is
equal to zero and its curvature is not captured in the objective func-
tion of the SQP approximation. In fact, the SQP approximation is an
LP problem, for which the solution is always at the intersection of
the constraints, which is why the SSTO problem takes the opera-
tion to point u′

s. The RTO solution obtained at u′
s is u�

1. Using the SQP
approximation at u�

1 the SSTO stage will take the operation from u′
s

to u1 = u∞. Notice that, in this example, the RTO/SSTO-MPC sys-
tem using Design C converges to the RTO solution in a single RTO
iteration. However, after the disturbance takes place the station-
ary point u′

s is reached. This is very undesirable because the SSTO
problem abruptly changes the operating point from the upper to
the lower input bound on u2, taking the operation to a distant point
with important loss in cost. One way to avoid this long excursion is
to limit the input range for the next operating point by moving the
input bounds as in (9), (10). If the bounds on the input moves are
chosen as �u1 = �u2 = 4, then using Design C the SSTO stage will
take the operation to the point u

′′
s , instead of u′

s.
Next, let us consider the stationary points reached after the dis-

turbance takes place using Designs A and B. At the initial point
u0, the SSTO problem with Design A minimizes ‖us − u0‖2

Rs
, since

u0 = U�(ε0). On the other hand, Design B minimizes ‖us − uU‖2
Qs

,
since the upper input bounds are both active at U�(ε0). Noticing
that u0 = uU, it turns out that both SSTO problems are equivalent
if Rs = Qs. Assuming that As = ∂y

∂u
(u0, �) and that Rs = Qs = I, the sta-

tionary point reached by Designs A and B after the disturbance takes
place is us in Fig. 19, which is very close to the plant optimum. The
RTO solution obtained at us is very close to u∞, so for any practi-
cal purpose the RTO/SSTO-MPC system using Designs A and B will
also reach u∞ in a single RTO iteration. Notice that, unlike case
studies 1 and 2, where in the presence of disturbances the SSTO
problem using Design C approximated very well the constraint
adaptation (RTO) solution, in this case, Design C fails to approximate

the constraint adaptation solution when an inactive quadratic con-
straint becomes active. This case study illustrates a situation where
Designs A and B outperform Design C.
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. Conclusions

This paper considered the integration between RTO and two-
tage SSTO-MPC systems. In the presence of plant-model mismatch
nd constraints, the SSTO stage permits to correct the RTO setpoints
o as to reach feasible operating points at steady state. However,
he optimality of the steady state points reached will depend on
he design of the SSTO problem. In the present study, two economic
STO designs were presented (designs B and C) and contrasted with
esign A, which does not have economic optimizing properties.
he performance of the different SSTO designs was evaluated using
hree illustrative case studies involving different optimization and
isturbance scenarios, with and without changes in the set of active
onstraints. This allows to better understand situations in which a
iven design may perform well, and situations in which a design
ay not perform as desired. Several remarks are in order.

Designs B and C represent economic designs of the SSTO problem
because, in the presence of plant-model mismatch in the RTO
model, they may bring the operation directly to the intersection
of the active constraints in a single RTO execution, while Design A
may require several RTO executions for doing the same (this situ-
ation was illustrated in Case Study 1, Scenario 1). Furthermore, in
the presence of stable disturbances Designs B and C may take the
operation directly back to the active constraints (and therefore to
near optimality), without waiting for the RTO execution to take
place. In contrast, Design A has to wait for the controlled system
to settle down to a possibly suboptimal steady-state point and
for the RTO execution to update the RTO setpoints.
Design B is an optimizing control design because it tracks set-
points for selected input and output variables, such that near
optimality is achieved in the presence of disturbances. If the set
of active constraints does not change, Design B can lead to (near)
optimal operation without the intervention of the RTO layer (this
situation was encountered in Case Study 1, Scenario 2). In the
invariant active set case, Design B can even be made equivalent
to Design C by selecting Vk+1 as described in Proposition 5 (this sit-
uation was discussed in Case Study 2). When compared to Design
C, Design B has the advantage of not requiring to adapt the MPC
model in order to converge to the RTO solution.
When the set of active constraints does not change with the
disturbance values, the stationary solution of the SSTO problem
using Design C can be viewed as a first-order approximation to
the solution of the constraint-adaptation approach at the RTO
layer (this situation was analyzed in Case Study 2). If the active
set changes, and the constraints that become active or inactive are
linear, the approximation given by Design C continues to be valid,
since linear constraints appear unchanged in the SQP approxima-
tion, and they do not affect the Hessian of the Lagrangian in the
objective function of the SQP problem (this situation was encoun-
tered in Case Study 1, Scenario 3). On the other hand, difficulties
in approximating the constraint-adaptation solution might arise
if the constraints that become active or inactive are nonlinear. If
an active nonlinear constraint becomes inactive, its curvature will
continue affecting the objective function of the SQP approxima-
tion until the next RTO execution takes place. Conversely, if an
inactive nonlinear constraint becomes active, its curvature will
not be captured in the objective function of the SQP approxima-
tion. This last situation was encountered in Case Study 3, where
an inactive quadratic constraint becomes active. One might think
that these difficulties may be overcomed if a more comprehen-
sive nonlinear approximation is used at the SSTO stage. In [5] it

has been suggested that, rather than using a quadratic approxi-
mation, the best solution would be to solve the NLP RTO problem
at every sampling time of the MPC regulator (if this was compu-
tationally possible). However, we would like to point out that this

[

[
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would imply loosing the consistency between the SSTO and MPC
models, and with it, the zero steady-state offset and steady-state
feasibility properties, discussed in Section 2.4, would no longer
hold. We view these properties as the main reasons for including
the SSTO stage in the first place.

• The steady-state points reached by the SSTO-MPC system do not
in general match the RTO setpoints. However, the three SSTO
designs studied have the ability to match the RTO setpoints upon
convergence of the RTO iterations. In the case of Design C, this
requires to adapt the MPC model at each RTO iteration, so as to
match the output gradients of the RTO model.

• Also, Proposition 1 shows that, in order to match the RTO
setpoints upon convergence of the RTO iterations there are condi-
tions that the RTO model adaptation scheme must satisfy. These
conditions can be easily met using bias corrections of the con-
straints at the RTO layer (constraint adaptation).

Future developments may consider a more comprehensive the-
oretical analysis of the overall RTO/SSTO-MPC system, including the
analysis of sufficient conditions under which a given SSTO design
is guaranteed to reach the RTO optimum upon convergence, or
how to deal with optimization problems for which the set of active
constraints is ill conditioned.
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