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ABSTRACT
Type III (type U) radio bursts are signatures of energetic electrons generated during solar Ñares, trav-

eling along open (closed) magnetic coronal Ðeld lines. The burst photons correspond to the second har-
monic of the plasma frequency and are generated by the coalescence of two Langmuir waves excited by
the beam. In the present paper we derive expressions for the emissivity and absorption in the second
harmonic of the plasma frequency without assuming the so-called head-on approximation. Only plasma
wave isotropy is assumed. The resulting expressions yield important reductions in the emissivity when
compared to the head-on results, as well as to lower absorption coefficients. We calculate second harmo-
nic emissivities for several electron beam intensities. The spectrum of Langmuir turbulence used to
compute second harmonic emissivity is consistently derived from a model that includes collisional e†ects
and quasilinear relaxation. We speculate that further reductions in the emissivity, down to levels compat-
ible with observations, would be obtained if nonlinear scattering of Langmuir waves with ion-acoustic
turbulence and background density inhomogeneities are considered.
Subject headings : Sun: Ñares È Sun: radio radiation È turbulence

1. INTRODUCTION

Suprathermal electron beams generated during solar
Ñares are known to be responsible for a variety of radiation
mechanisms, ranging from hard X-rays (HXRs) to radio
frequencies. In particular, these energetic beams are known
to generate plasma turbulence by the so-called bump on-tail
instability (Tsytovich 1970). Langmuir turbulence, in turn,
generates photons at the second harmonic of the local
plasma frequency as a result of the coalescence process

where L and L@ denote Langmuir waves ofL ] L@] T (2u
e
),

di†erent momentum and T denotes a transverse wave at
twice the plasma frequency (Kaplan & Tsytovich 1973).
Also, the inverse process leads to reabsorption of these
photons by the plasma.

The search for mechanisms able to reduce second harmo-
nic emissivity is relevant to the long-standing discrepancy
between hard X-rays and microwave intensities generated
by a given electron beam. Beam energy Ñuxes are normally
inferred from the HXR intensity generated by the beam,
assuming thick target bremsstrahlung. The very good time
correlation between HXRs and microwave time series
strongly suggests that both emission processes are gener-
ated by the same beam. These beams, however, would
produce second harmonic emission with typical photon
energy Ñuxes between 1 and 2 orders of magnitude larger
than observed levels (Emslie & Smith 1984 ; Hamilton &
Petrosian 1987).

& (1997) developed a model to computeVa� squez Go� mez
the level of Langmuir turbulence produced by electron
beams, consistently considering quasilinear relaxation and
collisional e†ects. They obtain turbulence levels smaller
than those derived by Emslie & Smith (1984). Although this
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result helps to reduce the gap between second harmonic and
HXR intensities, it does not remove the discrepancy com-
pletely. Therefore, in the present paper we concentrate on
the process of second harmonic production, seeking e†ects
able to reduce the emissivity for a given level of Langmuir
turbulence.

A semiclassical approach can be used to derive expres-
sions for emissivity and absorption. Previous works on the
Ðeld (Smith 1970, 1977 ; Smith & Fung 1971) assume the
so-called head-on approximation and have been applied to
the case of energetic electron beams during solar Ñares. The
head-on approximation is appropriate in cases where the
wavenumbers of the Langmuir waves are much larger than
the photon characteristic wavenumber, thus implying that
the two coalescing Langmuir waves are almost antiparallel.
Melrose & Stenhouse (1979) explored the role of the
head-on approximation in second harmonic plasma radi-
ation. They Ðnd that for power-law Langmuir spectra, size-
able reductions must be expected with respect to the
head-on results. Melrose & Stenhouse (1979) study only the
emission process, which is sufficient to compute the photon
outÑow if the coronal conditions in the region of the source
can be regarded as optically thin to second harmonic
radiation.

In this paper we revisit the expressions for the emissivity
and absorption coefficients for second harmonic radiation
without assuming head-on. We apply these results to Lang-
muir spectra generated by Ñare electron beams, such as
those derived by & (1997). In doing so, weVa� squez Go� mez
assume that the beam-generated Langmuir waves are effi-
ciently isotropized through scattering by thermal ions or
ion-acoustic waves. We assume that each individual scat-
tering process produces a small-angle deÑection on the
Langmuir waves. An alternative mechanism, according to
which Langmuir waves experiment backscattering in each
interaction, has been analyzed by Cairns (1987). Also under
that assumption, the relaxation of the head-on approx-
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imation has been analyzed by Willes, Robinson, & Melrose
(1996).

In ° 2 we discuss the subject of Langmuir turbulence
generated by suprathermal electron beams during solar
Ñares. In ° 3 we revisit the general expressions for second
harmonic emissivity and absorption. We also rederive the
head-on and constant-spectrum as limiting cases, which are
approximations commonly found in the literature. In ° 4 we
apply our results of ° 3 to the solar Ñare spectrum obtained
in ° 2. Finally, in ° 5, we discuss the results thus obtained.

2. BEAM-GENERATED LANGMUIR TURBULENCE

During solar Ñares, high-energy electron beams are gen-
erated. We assume the electron beam to propagate in one
dimension, following the magnetic loop Ðeld lines. Consis-
tent with this assumption, the beam-generated plasma
waves propagate along Ðeld lines as well. We take into
account the following processes : (1) saturation of the
plasma turbulence by the quasilinear relaxation mecha-
nism, and its di†usive e†ect on the electron distribution
function ; (2) Coulomb damping on the beam electrons and
on the Langmuir waves ; (3) nonlinear scattering of Lang-
muir waves caused by ions and/or ion-acoustic turbulence ;
and (4) production of second harmonic photons through
the process.L ] L@ HT (2u

e
)

Consistent with these considerations, the set of equations
appropriate to describe the steady state situation in terms of
the electron distribution function f (normalized so that n

b
\

/ dvf, beam particle density) and the turbulent spectraln
b
:

energy density W is (Zheleznyakov & Zaitsev 1970)
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where is the particle density, is then
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plasma frequency, and e and are the electron charge andm
emass, respectively. The group velocity of the Langmuir

waves is and is thev
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electron thermal velocity. The spectral energy density W is
deÐned in such a way that the total energy density for the
Langmuir waves is cm~3)\ / W dv. In equationsW

L
(ergs

(1) and (2), the velocity v not only represents the speed of the
electrons, but also the phase velocity of plasma waves that
are in resonance with the particles. The resonance condition
is v\ u(k)/k, where k is the wavenumber of the plasma
wave and u(k) is given by the dispersion relationship
u2(k)\ u

e
2] 3k2v

e
2.

The Ðrst terms on the right-hand side of equations (1) and
(2) describe the beam-wave coupling, while the second terms
correspond to collisional damping. The respective collision
frequencies, l(v) for electrons and for the LangmuirlLwaves, are (Zheleznyakov & Zaitsev 1970)

l(v)\ "u
e
4

8nn
e
v3 , lL\ "u

e
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e
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e
3 , (3)

where "^ 20 is the Coulomb logarithm. The typical time-
scales of this problem are the quasilinear relaxation time-
scale, (Tsytovich 1970), and theq

p
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e
)~1

collisional timescale, In these expressions,q
c
04 1/l(v\ v

c
).

is the typical velocity of a suprathermal electron, whichv
ccorresponds to an energy of around 20 KeV. The coefficient

a corresponding to nonlinear scattering by ion-acoustic
waves is (Kaplan & Tsytovich 1973)

a \ nu
e
3

27n
e
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p
v
e
4 . (4)

The coefficient for nonlinear scattering by ions is given by
the same expression as in equation (4), but divided by a
factor The coefficient b corresponds to the(1 ] T

e
/T

i
)2.

process and is given by (Kaplan & Tsyto-L ] L@H T (2u
e
)

vich 1973)
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Note that the last two processes are represented by quad-
ratic terms in equation (2) Therefore, for sufficiently low
beam energy Ñuxes, which in turn imply low turbulence
levels, these two e†ects could be neglected. &Va� squez

(1997) developed a stationary model in which quasi-Go� mez
linear relaxation and collisions are consistently considered.
They formulated an iterative procedure to integrate the
coupled equations for the electron distribution function and
the wave energy density, taking advantage of the fact that
quasilinear relaxation occurs on times much shorter than
the collisional timescale (i.e., The spectrum ofq

p
0> q

c
0).

Langmuir waves thus obtained is (see &Va� squez Go� mez
1997 for a detailed derivation)

W (v, x) \ WL(x)
I

h(v)
v

, (6)

h(v) \ 12(v2[ v12)(v22[ v2) , (7)

where is the phase velocity of Langmuir waves,v\ u
e
/k v1and are the minimum and maximum phase velocities ofv2the spectrum, respectively, x(cm) denotes the position along

the loop Ðeld lines (considering x \ 0 at the point where
energetic particles are generated), and

I4
P

dv
h(v)
v

\ 1
8

[v24[ v14[ 4v12 v22 ln (v1/v2)] . (8)

In all these expressions, and depend (although in av1 v2rather smooth fashion) on the energy Ñux of the injected
beam as well as on the temperature of the background.

The spectrum introduced in equation (6) is such that the
total energy density in Langmuir waves is WL(ergs
cm~3) \ / W (v)dv. Alternatively, we can also deÐne the
spectrum as a function of wavenumbers W (k), under the
assumption of an isotropic distribution of waves and so that

cm~3) \ 4n/ W (k)k2dk. The relationship betweenWL(ergs
W (v) and W (k) can be obtained in a straightforward fashion,
using that Figure 1 shows the shape of the spec-vBu

e
/k.

trum of Langmuir waves W (k) at a given position as a
function of wavenumber (in units of k

t
\ J3u

e
/c).

Detailed computations of the total Langmuir energy
density as a function of depth are shown in &WL Va� squez

(1997). For di†erent values of the electron beamGo� mez
energy Ñux s~1 cm~2), is a smooth function of'

E
(ergs WL(x)

position, and the dependence of its spatial average on the
parameters of the problem is approximately given by

WL
n
e
kB T

e
B 2.6] 10~5n10~1@2 T 73@2'91.3 , (9)
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FIG. 1.ÈShape of the spectrum of Langmuir waves given by eqs. (6) and
(7) as a function of wavenumbers (in units of k

t
\J3u

e
/c).

where and are the background electron density andn10 T7temperature in units of 1010 cm~3 and 107 K, respectively,
and is the energy Ñux of the electron beam in units of 109'9ergs s~1 cm~2. The dependence of the Langmuir turbulence
level with the beam intensity like reÑects theWL P'

E
1.3

nonlinearities involved in the resolution of equations (1)
and (2).

Once the Langmuir turbulence saturates at the level indi-
cated by equation (9), we assume that the turbulent spec-
trum becomes isotropic in a virtually instantaneous fashion.
There are at least two decay processes that could play this
role : (a) scattering of Langmuir waves by ions, and (b) the
electrostatic (ES) decay process L % L@] S (S : ion-acoustic
wave), both of which have been discussed in the literature
(see, for example, Tsytovich 1970). Each individual decay is
constrained by the conservation of momentum and energy,
which poses restrictions on the allowed decays. For the
kinematically allowed decays, the rate of occurrence of
L % L@] S can be estimated by computing the rate of gener-
ation of S waves, considering both the direct and inverse
processes. Using the probability of the decay under analysis
(see Tsytovich 1970, Appendix 3), a detailed estimate shows
that the decay is fastest for the cases (i.e., equally fast for
both cases) of backscattering (L and L@ possessing wavevec-
tors almost antiparallel) and small-angle scattering (L and L@
possessing wavevectors forming a small angle).

Regardless of whether the dominant isotropization
agents are ions or ion-acoustic waves, we assume that the
angle between the incoming and outgoing Langmuir waves
in each elementary interaction is always small, which allows
us to consider isotropization as a di†usion process in wave-
number space. An alternative scenario, according to which
Langmuir waves experiment backscattering in each inter-
action, has been analyzed in detail by Cairns (1987). Under
this backscattering assumption, Cairns & Robinson (1995)
have also made an analysis of low-frequency wave obser-
vations during type III bursts using in situ data obtained by
ISEE 3 at 1 AU. The agreement of their predicted
frequencies with the observations lends support to the
presence of the ES decay during type III bursts.

In the model of & (1997), the one-Va� squez Go� mez
dimensional beam-driven Langmuir spectrum is generated
on timescales of the order of the quasi-linear relaxation of

the beam. On the other hand, estimates for the iso-
tropization times for the two decay processes listed above
can be obtained by computing the corresponding rates of
occurrence (see Tsytovich 1970, chap. 5). For typical solar
Ñare conditions, these isotropization timescales are about
10È100 times longer than the time for quasi-linear relax-
ation, which is of order of 10~7 s. The assumption of small-
angle scattering implies also that the isotropization occurs
quasi-elastically, since analogous estimates for the energy
transfer time are much larger than the isotropization times.

It is also important to consider the timescale for the
coalescence process of Langmuir waves to produce second
harmonic radiation. An estimate for this timescale
(Tsytovich 1970) results an order of magnitude longer than
the isotropization timescale for the most intense beams
(three most intense beams on Table 1). Then, for those cases,
the angle distribution of Langmuir waves can be considered
isotropic. For the less intense case (Ðrst line on Table 1) the
coalescence and the isotropization timescales can be com-
parable. In this case, the isotropization process only pro-
duces a partial redistribution of orientations, contributing
to reduce second harmonic emissivity in comparison to the
isotropic case.

To compute an upper bound to the second harmonic
production, in what follows we assume the most favorable
scenario for the emission process. Therefore, according to
this scenario, the beam-driven one-dimensional Langmuir
spectrum of equation (6) fully develops and saturates at the
level given by equation (9). In a second stage, it becomes
isotropic very rapidly, without any signiÐcant energy loss,
and then the coalescence process produces second harmo-
nic photons.

For the turbulence levels obtained in equation (9), we Ðnd
that the term proportional to b in equation (2) is indeed
very small. This implies that the Langmuir turbulence loses
a negligible fraction of its energy to produce second harmo-
nic photons during the development of the turbulence satu-
ration level given by equation (9). This result justiÐes our
approach of computing the Langmuir turbulence level Ðrst
and calculating the second harmonic emissivity afterward.

On the other hand, in equation (2), the term describing
nonlinear scattering (term proportional to a) might be com-
parable or even larger than the collisional term, at least for
sufficiently intense beams. As mentioned above, however,
nonlinear scattering has not been considered for the present
analysis. Its potential role in the development of the station-
ary Langmuir spectrum will be addressed in a future paper.

3. SECOND HARMONIC EMISSION

3.1. Emission and Absorption Coefficients
Langmuir turbulence generates photons at the second

harmonic of the local plasma frequency as a result of the
coalescence process We also consider theL ] L@ ] T (2u

e
).

inverse process, which involves reabsorption of these
photons by the plasma.

To compute the power radiated by the source, we need to
solve the corresponding radiative transfer equation. The
stationary radiative transfer equation is

dIl
dr

\ Jl [ kl Il , (10)

where is the photon intensity per unit frequency, r is theIldistance along a ray, andJl\ 2nJ(k
t
, u), kl \ 2nk(k

t
, u).
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The volume emissivity, is such that isJ(k
t
, u), J(k

t
, u)dud)

the power radiated per unit volume in the photon-frequency
interval (u, u] du) in the solid angle d) about the direc-
tion of the transverse mode wavevector The inversek

t
.

process is represented by the absorption coefficient k(k
t
, u).

The aim of this section is to brieÑy summarize standard
formulae for the emissivity and the absorption coefficient,
and to compare with the approximate head-on expressions
of common use in the literature.

The mathematical expressions for and can beJl klderived following a semiclassical approach (Smith 1970 ;
Smith & Fung 1971) for a three-plasmon decay process of
the type as sketched in Figure 2.p1] p2] p,

In our case, p \ t is a transverse (electromagnetic) wave
and are Langmuir waves of di†erentp1\ l1, p2 \ l2momenta. The respective dispersion relationships are
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During this three-wave process, momentum and energy
must be conserved. These conditions are conveniently
expressed as follows :

k
t
\ k1] k2 , (13)

u
t
\ u1] u2 . (14)

We deÐne the wave occupation number for wavesNp(k)
of type p such that their energy density W p is
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dk
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\ 4n
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where the last expression holds for the case of isotropic
wave turbulence. Also, the total power emitted per unit
volume is

Pp 4
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The process under consideration corresponds to an evol-
ution equation for the occupation number given by

FIG. 2.ÈThree-plasmon decay interaction. Conservation of momentum
is explicitly displayed.

(Tsytovich 1970)
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where is the probability for the coalescence of thewpp1 p2
waves and to generate the wave p, and it is given byp1 p2
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The three terms in the right-hand side of equation (17)
represent the direct process (emission, positive term) and
the inverse process (absorption, negative terms). The expres-
sion of as a function of the occupation numberJ(k

t
, u)

can be derived considering that the power emitted perNp(k)
unit volume must also be given by

Pp \
P

d)duJ(k
t
, u) . (19)

From equations (16) and (19), and considering that the
emissivity corresponds to the Ðrst term of the right-hand
side of equation (17), we obtain
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The expression for can be derived in a similark(k
t
, u)

fashion, associating the absorption process to the second
and third terms of the right-hand side of equation (17), to
obtain

k(k
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Using equation (15) we can cast equations (20) and (21) in
terms of Wp(k) :
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3.2. Isotropic L angmuir Spectra
Replacing the probability given by equation (18) into

equations (22) and (23), the integrals in can easily bek2performed using the conservation of momentum. To obtain
the total emissivity and absorption rates, we integrate equa-
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tions (22) and (23) in u. To this end, we use the conservation
of energy for this three-wave process, and we take into
account the corresponding dispersion relationships given
by equations (11) and (12). The following results are
obtained, where we explicitly assume the Langmuir wave
distribution to be isotropic :
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where g is the cosine of the (variable) angle between k
t(Ðxed) and (variable). Note, for instance, that for g \ 1k1(i.e., there is no emission, which can also be seenk1 pk

t
pk2)directly form the expression for the decay probability given

in equation (18), which clearly drops to zero in this case.
The integrals involved in equations (24) and (25) depend

on the shape of the turbulent spectrum. Before computing
and for any particular Langmuir spectrum, we turnJ

t
k
tour attention to the head-on approximation to test its valid-

ity in typical Ñaring conditions.

3.3. T he Head-on Approximation
The head-on approximation is valid for Langmuir wave-

numbers much larger than the transverse wavenumber k
t
B

This approximate expression for is a direct con-J3u
e
/c. k

tsequence of the conservation of energy (equation [14]) and
the dispersion relationship for the transverse plasmons
(equation [11]). Using the kernel ink

t
> k1, k2, Fho(k1, g)

the head-on approximation becomes (see also Melrose &
Stenhouse 1979)
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(regardless of the shape of the turbulent spectrum), and the
angular integration can be performed analytically, yielding
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and absorption in the head-on approximation become
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To test the validity of the head-on approximation, in the
next section we compare, for the particular turbulent spec-
trum derived in ° 2, the results obtained from the more
general equations (24) and (25) with those derived from
equations (28) and (29).

3.4. Constant L angmuir Spectrum
If we further assume the Langmuir spectrum to be broad

and constant (a common approximation in the existing
literature), we obtain
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where (ergs cm~3) is the total energy density in Lang-WLmuir turbulence and is the maximum wavenumber of thek
mspectrum. Equation (30) for emissivity has been used in pre-

vious studies (Smith & Spicer 1979 ; Emslie & Smith 1984).
Note, however, that our expression for the absorption coef-
Ðcient (eq. [31]) is a factor of D7 smaller the one reported
by Smith & Spicer (1979).

4. RESULTS FOR BEAM-GENERATED LANGMUIR

TURBULENCE IN SOLAR FLARES

In ° 2, we computed the energy density level of Langmuir
waves generated by a suprathermal electron beam during
solar Ñares. In ° 3, we obtained general expressions for
second harmonic emissivity. To obtain the intensity of
second harmonic emission during solar Ñares, we replace
the turbulent spectrum given by equations (6), (7), and (8) in
our expressions for the emissivity and absorption coeffi-
cients (given by eqs. [24] and [25]). Note that the spectrum
W (v, x) in equation (6) is expressed as a function of the
phase velocity v, while in equations (24) and (25) we use
W (k, x). Replacing into the expressions for the emissivity
and absorption coefficients, we obtain

J
t
\ 1

32
I
J

I2
Au

e
W L2

n
e
m

e
c2
B

, (32)

k
t
\J3n

16
Ik
I
A u

e
2WL

n
e
m

e
c3
B

, (33)

where we have deÐned the integrals

I
J
4

1
k
t

P
~1

`1
dg
P
0

=
dk1

F(k1, g)
k1 k23

h(u
e
/k1)h(u

e
/k2) , (34)

Ik 4
1
k
t
4
P
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`1
dg
P
0

=
dk1F(k1, g)k12

Ch(u
e
/k1)

k13
] h(u

e
/k2)

k23
D

,

(35)

and k2\ o k
t
[ k1 o\ (k

t
2] k12[ 2k1 k

t
g)1@2.

Equations (32) and (33) can also be used for the head-on
limiting case provided that the integrals and areI

J
Ikreplaced by their head-on versions :

I
J
ho\ 16

15
k
t
3
P
0

=
dk1

h(u
e
/k1)2

k14
, (36)

Ikho \ 32
15
P
0

=
dk1

h(u
e
/k1)

k1
. (37)
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TABLE 1

MAXIMUM WAVENUMBERS

'9a
(]109 ergs s~1 cm~2) kmax/kt
1 . . . . . . . . . . . . . . . . . . . . . . . . 3.5
5 . . . . . . . . . . . . . . . . . . . . . . . . 3.9
10 . . . . . . . . . . . . . . . . . . . . . . . 4.1
50 . . . . . . . . . . . . . . . . . . . . . . . 4.9

a Beam energy Ñux.

Since the head-on limit has become a standard approx-
imation in the literature, we are interested in testing its
validity for typical Ñare situations. To this end, we now
compute the ratios :

o
J
4 J/Jho\ I

J
/I

J
ho , (38)

ok 4 k/kho\ Ik/Ikho . (39)

For a typical electron beam of D20 keV, the minimum
wavenumber of the spectrum is We com-kmin/kt D 2.07.
puted the integrals for the following beam injection energy
Ñuxes 1, 5, 10, and 50] 109 ergs s~1 cm~2. In each'

E
:

case, the generated Langmuir spectrum has di†erent
maximum wavenumbers depending both on the injec-kmax,tion energy Ñux and the background electron temperature.
In all cases we consider T D 107 K as a typical temperature
for a Ñaring loop. As a result, for the various cases we
studied (see & 1997), the maximum wave-Va� squez Go� mez
numbers obtained are shown in Table 1.

It is clear that in all these cases, the wavenumber ranges
for the Langmuir spectra do not satisfy the requirements for
the head-on approximation (as In Figure 3kmin/kt D 2.07).
we show the ratio of emission (absorption) between the
exact and the head-on cases (k/kho) as a function ofJ/J

t
ho

It can be seen that in a typical case ofkmax/kt
. kmax/kt D 4

(see Table 1), the emissivity is reduced by a a factor of D2.
Comparing both panels of Figure 3 we see that the

head-on approximation breaks down more noticeably for
emission than for absorption. This result arises from the
nonlinear dependence of emission with turbulent spectra,
while for absorption the dependence is linear (see eqs. [28]

FIG. 3.ÈFor corresponding to a beam cuto† energy ofkmin/kt D 2.07,
20 keV, we show the ratio of emission (absorption) between the exact and
the head-on cases (k/kho) as a function of maximum wavenumbers.J/J

t
ho

The calculations were made for the turbulent spectrum given by eq. (6).

FIG. 4.ÈRatio of emission between the exact and the head-on cases
as a function of minimum and maximum wavenumbers. On the topJ/J

t
ho

of this Ðgure, seven contour plots for reduction factors of 0.1, 0.2, . . ., 0.7 are
displayed. The calculations were made for the turbulent spectrum given by
eq. (6).

and [29]). In Figure 4, we show the ratio of emission
between the exact and the head-on cases as a functionJ/J

t
ho

of minimum and maximum wavenumbers.
On the top of this Ðgure, seven contour plots for

reduction factors of 0.1, 0.2, . . ., 0.7 are displayed. It can be
seen that as both and grow, the ratio of emissionkmin kmaxbetween the exact and head-on cases tends asymptotically
toward unity because, in this limit, the head-on approx-
imation becomes valid.

5. DISCUSSION AND CONCLUSIONS

Type III and type U radio bursts are the signatures of
energetic electrons generated during Ñares, traveling along
open or closed magnetic Ðeldlines, respectively. The
coalescence of two Langmuir waves excited by the beam
produces a photon at the second harmonic of the plasma
frequency. In the case of type U bursts, these electron beams
eventually hit the transition region where they are col-
lisionally stopped, producing HXR signatures through non-
thermal bremsstrahlung. Thus, typical beam intensities are
derived from HXR observations.

One of the unsolved problems in solar physics is the fact
that electron beams with typical intensities inferred from
HXR data yield second harmonic emissivities much larger
than observed levels. In the present paper we derive expres-
sions for the emissivity and absorption in the second har-
monic of the plasma frequency without assuming the
head-on approximation. We calculate second harmonic
emissivities for several electron beam intensities. To
compute the corresponding levels of Langmuir turbulence,
we use the model developed by & (1997).Va� squez Go� mez
In all the cases studied, we show that the head-on assump-
tion is not adequate, and that our more general expres-
sions lead to sizeable reductions in the second harmonic
emissivity.

We assume that the beam-generated Langmuir waves are
efficiently isotropized through scattering by thermal ions or
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ion-acoustic waves (ES decay). We assume that each ele-
mentary interaction produces a small-angle deÑection on
the Langmuir waves. The resulting expressions yield, in
certain spectral regions, to important reductions in the
emissivity when compared to the head-on results, as well as
lower absorption coefficients. An alternative mechanism,
according to which Langmuir waves experiment back-
scattering in each interaction, has been analyzed by Cairns
(1987). Under this backscattering assumption, the relax-
ation of the head-on approximation has been analyzed by
Willes et al. (1996). Their study has led to an increase in
second harmonic emissivity. As pointed out in ° 2, there is
observational evidence supporting the presence of the ES
decay during type III bursts. Assuming backscattering,
Cairns & Robinson (1995) obtain a reasonable agreement
between their theoretically predicted IA frequencies and in
situ measurements of plasma waves (during type III bursts)
in the 100È300 Hz range, taken by ISEE 3 at 1 AU. Small-
angle decay processes could in principle explain obser-
vations of relatively smaller frequencies, also present during
type III bursts. An example of this are the low-frequency
bursts detected by Ulysses in the 25È60 Hz range (see The-
jappa & MacDowall 1998). A more general model, includ-
ing all possible angles between incoming and outgoing
Langmuir waves, is certainly necessary to obtain more deÐ-
nite results. In any case, other e†ects should be considered
as well, such as nonlinearities and background inhomoge-
neities, as discussed below.

For the present study, the level of Langmuir turbulence
has been computed under the so-called quasilinear approx-
imation. Therefore, we neglected nonlinear e†ects such as
scattering of Langmuir waves caused by ions or ion-
acoustic waves. For typical beam intensities, this e†ect
might become comparable or even larger than the col-
lisional damping of Langmuir waves. We postpone a
detailed study of the relevance of nonlinear scattering in the
development of a stationary Langmuir spectrum for a
future paper. We speculate, however, that the inclusion of
this e†ect might lead to further reductions in second harmo-
nic emissivity. The e†ect of the term proportional to a in the
propagation of Langmuir waves described by equation (2)
will be to skew the Langmuir spectrum displayed in Figure
1, progressively shifting its ““ center of mass ÏÏ to larger
velocities (i.e., smaller wavenumbers). Since second harmo-
nic emissivity is proportional to (asW ( o k o )W ( o k

t
[ k o )

shown in eq. [24]), a higher degree of skewness in W (k)
contributes to a reduction in the emissivity.

Another factor that could seriously a†ect the emissivity is
related to the isotropization mechanism of the beam-driven

one-dimensional Langmuir spectrum. We proposed, as rea-
sonable isotropization agents, the scattering of Langmuir
waves through ions or ion-acoustic waves. In ° 2 we pre-
sented a conservative scenario by assuming that the iso-
tropization timescales are slower than the quasilinear
relaxation timescale. However, sufficiently large pressures
or sufficiently intense beams can in principle reduce the
isotropization timescales to levels comparable to the quasi-
linear relaxation timescales. Under these circumstances, the
isotropization mechanisms also contribute to take Lang-
muir waves o† resonance, thus reducing the energy density
in Langmuir waves to levels smaller than indicated by
equation (9).

We also assumed that the background density is a
smooth function of the distance along the Ñaring loop. This
is also a conservative assumption, since it is likely that the
density displays a ““ clumpy ÏÏ behavior with a complex dis-
tribution of density gradients. Whenever the beam travels
through an inhomogeneous region, the local plasma fre-
quency changes accordingly and the Langmuir waves sud-
denly become out of resonance with the beam. Robinson,
Cairns, & Gurnett (1992) (see also Robinson 1992 ; Robin-
son, Cairnes, & Willes 1994) have developed a stochastic
growth theory of type III source regions that is able to
incorporate the observed fragmented character of these
phenomena. In particular, see Robinson, Cairns, & Gurnett
(1993) for their predictions on the clumpy character of the
excited Langmuir wave and a detailed comparison with
observations. This e†ect also reduces the saturation level of
the Langmuir spectrum with respect to the one given by
equation (9).

Therefore, either faster isotropization or an inhomoge-
neous density distribution contribute to reduce the turbu-
lence level, which in turn reduces second harmonic
emissivity. In summary, although an adequate computation
of the level of Langmuir turbulence produced by a beam
and the relaxation of the head-on assumption lead to
important reductions in second harmonic emissivity, it
seems apparent that more research is necessary to explain
the long-standing discrepancy between HXR and second
harmonic emissivities.
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