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Abstract.

This study presents DNS results of the laminar-turbulent spatial transition in a plane channel flow. The
transition is achieved imposing at the inlet the most unstable modes of the associated Orr-Sommerfeld
and Squire eigenvalue problems. First, a study of the dependence of the transition on the intensity
of the perturbations is presented. For Re = 5000, eleven simulations employing different amplitudes
of the Tollmien-Schlichting and oblique waves were analyzed to find that the variation of the friction
Reynolds number and shape factor downstream the departure of the transition is roughly independent
on the amplitude of the perturbations and that the location of the peak in the friction Reynolds number
is strongly dependent on the amplitude of each wave. This implies that, for the type of perturbations
simulated here, the transitional phenomenon is essentially delayed or accelerated by the amplitude of the
perturbations. Second, two cases with well different amplitude of perturbations are compared in detail.
Results show that in both cases the following stages can be identified: quasi-linear stage, late stage, spike

stage, peak transitional zone, post-transitional zone and fully turbulent zone. Moreover, downstream



the first state of the spike stage, both cases are essentially equal despite the fact that both transitions
are separated by 50 channel half-height diameters in the streamwise coordinate. Finally, the physical
phenomenon of the peak zone in the friction Reynolds number is explained considering the coherent

vortices packet found across the height of the channel in the super-late stage of the transition.



1 INTRODUCTION

The understanding of the laminar-turbulent transition in a fluid flow is required in different
engineering applications. In particular, this work is motivated by the study of transition in rect-
angular cooling channels with large aspect ratios. This geometrical characteristic allows mod-
eling these devices employing a periodic boundary condition in the spanwise direction (channel
width to channel height ratio, W /H > 7, (Vinuesa et al., 2014)). These types of channels are
found in the fuel elements of nuclear research reactors (W / H = 22). Although modern research
reactor operates within the turbulent regime (Teruel and Rizwan-uddin, 2009), the Argentinean
research reactor RA6 may operate in a transitional regime since its last upgrade in power (Silin
et al., 2010). Therefore, thermo-hydraulic and safety of this reactor is remarkably sensitive
to flow conditions due to the strong variation of the friction and heat transfer coefficients in
the transitional regime (Minkowycz et al., 2009; Abraham et al., 2010, 2011). For transitional
flows, there are correlations based on experiments that can accurately predict, for instance, the
pressure loss in channels as those studied here (see for example Gioia and Chakraborty (2006)).
However, there is no organized data in the open literature to characterize the value of the fric-
tion coefficient in the spatial transition from the laminar regime to the fully turbulent one for
different inflow conditions and Reynolds numbers. The variation of this parameter has been
partially discussed in the following references Schlatter et al. (2006); Buffat et al. (2014).

More generally, the transition from laminar to turbulent flow is still nowadays a problem not
fully understood even for flows in simple geometries such as pipes or rectangular channels (Sano
and Tamai, 2016; Lorenzini and Salvigni, 2010; Benhamou and Galanis, 2004). These simple
geometries have been extensively employed to study temporal and spatial transitions. On the
experimental side, results are very costly to obtain, as the proliferation of turbulence requires
capturing the spatial scale of the spreading and decay of the process while structures are mov-
ing downstream at the average mean velocity. For instance, in the experiment of Avila et al.
(2011), a length of 3750 pipe diameters is employed. A relatively modest length of 440 channel
diameters is employed in Lemoult et al. (2014). In these experiments, the evolution of turbulent

spots in a transitional channel is studied resembling the pioneering study of instability in the



boundary layer flow by Klebanoff et al. (1962). Numerical simulations have been extensively
employed to study the space-time evolution of disturbances in transitional flows. Likely due
to the computational cost involved, temporal transitions, that employ periodic domains in two
spatial directions, are more easily found and have been successful in predicting experimental
observations (Kleiser and Zang, 1991). Some relevant DNS studies in the temporal transition
in a plane Poiseuille flow are: Zang and Krist (1989); Henningson et al. (1993); He and Sed-
dighi (2013); Luo and Hui (2004). These studies exemplified the capabilities of the numerical
simulation as a powerful tool to study the physics of the transition. The simulation of the
spatial transition, although more computationally intensive, offers a direct comparison with ex-
perimental observations. One of the techniques employed to simulate the spatial transition is
to perturb the inflow conditions with the two-dimensional (primary) disturbances, also known
as the Tollmien-Schlichting waves (T-S), that become susceptible to three- dimensional distur-
bances at some finite amplitude (i.e. oblique waves). The study of Lundbladh et al. (1994)
and Liu and Liu (1995) show the complete transitional scenario employing this type of per-
turbations obtained from the solution of the Orr-Sommerfeld and Squire equations. The study
of Saiki et al. (1993) employs a similar technique to simulate the H- and K-type transitions in
the plane Poiseuille flow. Similarly, but employing LES, the transition has also been success-
fully simulated in Schlatter et al. (2006). In this study, a comparison between the temporal and
spatial transition is carried out trying to determine a correspondence between time and space in
both transitional scenarios.

While the linear and early weakly non-linear stages of transitional flow are relatively well
understood (Chen and Liu, 2011; Lu and Liu, 2012), the late and super-late non-linear transi-
tional stages still have questions to answer. We will discuss here the physics involved in the
friction Reynolds number or friction factor’s peak (super-late stage) that characterizes the tran-
sitional process at moderate Reynolds numbers (Machaca Abregu and Teruel, 2016) analyzing
the three-dimensional vortices structures: the A, hairpin and ring vortices. On this regard, it has
been shown that in the K-type transition, the TS wave interacts with oblique waves to yield a A

vortex. As the flow develops, the A vortex generates at its tip a ring-type vortex. The ring vortex



with two quasi-streamwise vortices is known in the literature, after Theodorsen (Theodorsen,
1952), as a hairpin vortex and is composed by three parts: head, neck and two legs (Adrian
et al., 2000; Wang et al., 2016). These vortices yield downward jets (sweep), which bring high
energy from the bulk of the flow towards the wall, and upward jets (ejection), which bring low
velocity flow from the wall towards the bulk (Borodulin et al., 2002a; Guo et al., 2010). Both
mechanisms mix the flow yielding large shear layers that result in an increase of the friction
factor.

Moreover, different types of sweep-ejection mechanisms can be identified according to the
formative state of the hairpin vortex. When the A vortex or the legs of the hairpin vortex are
present, the first sweep and first ejection are produced. This mechanism was identified numeri-
cally and experimentally by Borodulin et al. (2002a) and Liu and Chen (2010). When the ring
vortex is present, there is a second sweep and second ejection mechanism with higher intensity
than the former (Chen and Liu, 2011; Guo et al., 2010). A scheme of these mechanisms is
shown in Figure 1. The principal characteristic of the ring vortex is that near the neck of the
hairpin vortex the mechanism yields high shear layer areas that are unstable and yield small
scales structures (Lu et al., 2012a) (i.e.small scales structures are generated by multilevel posi-
tive spike instead of large vortex breakdown (Lu and Liu, 2012)). The increase of the intensity
of these spikes, and thus the generations of shear layer areas, continues until the ring vortex
ceases to be perpendicular to the flow direction (Lu and Liu, 2012). After this stage, the vortex
deforms and dissipates and thus it reduces the production of small-scales structures. However,
in the process of the formation and evolution of the hairpin vortex, chains ring vortices are gen-
erated upstream the leading vortex as a consequence of the Helmholtz vorticity conservation
law (Lu et al., 2012b; Zhou et al., 1999; Wang et al., 2016). These ring vortices appear one by
one (Lu et al., 2012b) and are called a coherent packet (Zhou et al., 1996, 1999). When the
intensity of the downward jet decreases in the primary hairpin vortex (due to its change in slope
and deformation), the upstream vortices begin to grow and to be perpendicular to the flow direc-
tion causing the growth of the shear stress. This is the main reason that explains the existence

of a high shear layer upstream of the leading ring vortex. Using this description of the flow, we



will discuss the peak zone (super-late stage) in the spatial transitional channel flow.

Second ejection

First ejection

First sweep Flow direction

Figure 1: Hairpin vortex in spatial laminar-turbulent transitional channel flow simulated by
Machaca Abregu and Teruel (2016).

In the present contribution, DNS is carried out to simulate the spatial transition to achieve
different goals. In the first part of this study, the numerical method is presented. The inflow and
outflow boundary conditions are described and validated. Next, a grid independence study is
employed to determine an accurate and cost-effective production grid. Next, a useful parameter
for engineering calculations, the friction Reynolds number (or equivalently, the friction factor),
is computed for different amplitude of the perturbations imposed at the inlet. Later, a compar-
ison between two simulations with very different amplitude of perturbations is carried out to
evaluate the effect of the perturbation in the late stage and super-late stage of the transition.
Finally, the physical phenomenon of the friction factor’s peak in the transitional zone is dis-
cussed using the actual knowledge of the hairpin vortex growth and sweep-ejection mechanism

in transitional flows. Conclusions are finally drawn in the last section.

2 NUMERICAL METHOD

The finite difference code Incompact3d (Laizet and Lamballais, 2009; Laizet et al., 2010;

Laizet and Li, 2011) is used to solve the incompressible and dimensionless Navier-Stokes equa-



tions, written in cartesian coordinates as:

A P 1 5.
§+§(V(u®u)+(u-V)u)——Vp+EVu, (1)

V-i=0, 2)

where the distance 7, instantaneos velocity u, pressure p and time ¢ are dimensioned with the
channel half-height A, the maximum velocity in the streamwise direction U, the constant den-
sity p and the constant kinematic viscosity v. Therefore, Re is the Reynolds number based on
U, and h. The convective term is written as it is numerically treated, in the skew-symmetric
form, to enable the reduction of aliasing errors and improvement of kinetic energy conserva-
tion for the spatial discretization used in the code. For the spatial differentiation, sixth-order
centered compact schemes are used. The time integration is performed using a second-order
Adams-Bashforth scheme with an approximated time step of 10~% due to the CFL restriction.
The simulated domain is a parallel channel flow (Figure 2) with the x-coordinate chosen as the
streamwise direction. No-slip boundary conditions are ensured in a conventional way at the top
and bottom of the computational domain (y = 0, 2) imposing a Dirichlet condition on the veloc-
ity. In the spanwise direction (z), periodicity is assumed. Inlet and outlet boundary conditions
are not straightforward and are described below. For more information about the code Incom-
pact3d (numerical method and parallelization strategy) visit http://www.incompact3d.com/.
For most calculations, the computational domain L, X L, X L, = 90 X 2 X 3 was discretized
on a cartesian grid (slightly stretched in the y-direction) of n, X n, X n, = 1800 X 65 X 64
points. This grid will be called the production grid in the rest of the study. For fully developed
conditions and Re, = 210 the near-wall resolution of the production grid is given in plus unit
by " =11, = 2and 2* = 10. This resolution was found cost-effective for the purposes of
the study. Additionally, other resolutions were employed to verify the independence of results
on the production grid. The longest computation run required approximately ten wall days with

the available computational resources.
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Figure 2: Computational domain.

2.1 Inlet Boundary Conditions

In comparison with the simulation of the temporal transition, the spatial transition is com-
putationally expensive (Herbert, 1988). The domain simulated must be long enough in the
streamwise direction to allow the flow to transition from the laminar state to a fully developed
turbulent one. Therefore, the mechanism to trigger the transitional process must be effective
enough to reduce the portion of the domain with the laminar regime. Possibly, the most effec-
tive way to trigger the transitional process is to perturb the flow with the most unstable modes of
the Orr-Sommerfeld and Squire eigenvalue problem. This methodology has been successfully
employed for the boundary layer problem as well as for the parallel channel flow (Lundbladh
et al., 1994). For a base flow depending only on the y-coordinate (i.e. the laminar solution or
Poiseuille flow for the present domain) and for perturbations at the inlet for the wall-normal

velocity (v) and wall-normal vorticity (77) of the form:

i(ax+Bz—wt)

o(z,y,2,t) = 0(y)e , 3)

i(az+Bz—wt)

i(@,y, 2, t) =0(y)e 7 4)



the Orr-Sommerfeld and Squire equations reduce to the following eigenvalue problem:

[(=iw + iaU)(D* = o = 32) — iall — é(p2 —at = Yo =0, )

[(ito + ial) = 5=(D* —a* = 8?1 = ~iBU's, ©)

where D stands for the differential operator in the wall-normal direction and ' stands for the
derivative in the same direction. These equations can be solved prescribing the boundary con-
ditions © = Dv = 7 = 0 at the walls for the plane channel flow or at the free stream for
the boundary layer. For the spatial problem, the eigenvalue « is obtained following a strategy
shortly reviewed here (Lundbladh et al., 1994). First, the 4" order problem is reduced to a

2" _order one by the transformation:

1%

>

= |exp(—ay), (7)
E

=

Then, the non linear problem can be linearized employing an additional variable, «V. The final

linear eigenvalue problem results in:

_Rl _RO 0 aV RQ 0 0 aV
I 0 0 Vi=alo 1 01| V| (8)
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Ty = 5D+, (12)

. I o 1 o
Ty = —iws— =D’ + 7" (13)
S = iU . (14)

We employ the open-source language Octave to develop a code to solve the eigenvalue prob-
lem given in Eq. (8). This code is based on an available one developed to calculate the temporal
eigenvalue problem (Juniper, 2014; Schmid and Henningson, 2001). It employs the Chebyshev
collocation method to carry out the derivatives required by the differential operators. The impo-
sition of the boundary conditions on these operators is carried out following the technique given
in Trefethen (2000). The code has been extensively validated. A brief resume of this validation
is presented here comparing our results with data extracted from the open literature. It is worth
noting however that although rich data can be found to test parameters calculated for the tempo-
ral eigenvalue problem, only a few cases are available to test the solution of the spatial one. First,
the eigenvalue spectrum is evaluated. For the parameters given in Table 1, the spatial eigenvalue
a is very well compared with values obtained by Saiki et al. (1993) (Table 2). Additionally, the
most unstable eigenvalues obtained in Schmid and Henningson (2001) for Re = 2000, w = 3
and S = 0 does not show differences with those calculated in this study (Table 3). The complete

spectrum is also very well compared with available data in Machaca Abregu (2015).

Caso | Re Wag Wag I5;
I 5000 | 0.33698 | 0.33698 | 1
II 5000 | 0.33698 | 0.16849 | 1
11 5000 | 0.33698 | 0.33698 | 2
v 5000 | 0.33698 | 0.16849 | 2

Table 1: Parameters employed by Saiki et al. (1993) to solve the spatial eigenvalue problem.

The eigenfunctions are difficult to validate. To the knowledge of the authors, there is only



Caso | agqr Qa24C Q34R A3dc

1 1.17249+0.0128731 | 1.17247+0.012802i | 1.02570+0.068456i | 1.02568+0.068450i
II 1.17249+0.012873i | 1.17247+0.012802i | 0.52293+0.0196451 | 0.52292+0.019676i
III 1.17249+0.012873i | 1.17247+0.012802i | 0.91984+0.258357i | 0.91983+0.258360i
v 1.17249+0.0128731 | 1.17247+0.012802i1 | 0.37243+0.083078i | 0.37243+0.080377i1

Table 2: Eigenvalues calculated for the Orr-Sommerfeld problem and parameters given in Table
1. apyr and aizyp are given in Saiki et al. (1993), and a4 and aizy¢ are calculated in the present
study. Bold numbers emphasize the difference.

QodRr

Qadc

0.97875+0.0443941
0.61167+0.1404921
0.34312+0.0496771

0.97875+0.0443941
0.61167+0.140491
0.34312+0.0496771

Table 3: Eigenvalues calculated for the Orr-Sommerfeld problem and Re = 2000, w = 0.3 and
B = 0. agqp are given by Schmid and Henningson (2001); and a4 are computed in the present
study.

available data in Schlatter (2005). This reference reports the eigenvalue spectrum for Re =
5000 and w = 0.3, for the bi-dimensional case (f = 0) and for the three-dimensional case
(8 = 2.0944). The most unstable eigenvalues (2D and 3D cases) obtained in Schlatter (2005)
are not exactly equal to those calculated here (for Schlatter (2005) o = 1.08 +4.44 X 10 and
a = 0.803 + 0.2317 while for the present study a = 1.08 +4.60 X 10 % and a = 0.787 +0.223i,
respectively). Nevertheless, the eigenfunctions reported for the most unstable eigenvalues in
Schlatter (2005) are in excellent agreement with present results (see Figure 3). This short vali-

dation gives enough support to claim that the spatial eigenvalue problem is correctly solved.
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Figure 3: Comparisson of streamwise eigenfunctions between present results (lines) and Schlat-
ter (2005) results (symbols). Blue lines correspond to the real part and red lines to the imagi-
nary part. 2D case for Re = 5000, w = 0.3 and 5 = 0. 3D case for Re = 5000, w = 0.3 and
£ =2.0944.

With the solution of the Orr-Sommerfeld and Squire equations at hand, the inflow boundary

condition is prescribed as:

Sy

U+, (15)
where U = (U(y),0,0) is the Poiseuille base flow and @ = (@, ?, ®) is the perturbation given

by:

i(x = 0,y,2,t) = AyR[ (figg(y))e "]
1
2

(16)

= i(Bz—ws 1 - i(Bz—w; ’
5 A5aR(iyza(y))e ™0 4+ 5 AgR[ (iirga(y) ) )]

where A,; and Az, are the amplitude of the bi-dimensional (T-S waves) and oblique waves re-
spectively. The complex eigenfunctions, ﬁgd and fbgd, are calculated solving the Orr-Sommerfeld
and Squire problem for a given Re, wave number in the z-direction (), and the angular fre-
quency in two and three dimensions, wq, Y wsy, respectively. In this study the eigenfunctions
have been normalized so that the maximum amplitude of their streamwise component is one
for a zero phase-shift. The upper indexes + and — correspond to the eigenfunctions calculated
for 5 > 0 and B < 0, respectively. It is well known that perturbations with w,3; = w,94 yield
K-type instabilities and the case with w,3; = %wﬂd corresponds to H-type instabilities (Saiki

et al., 1993). The implementation of the inflow boundary condition in incompact3D is straight-



forward as the inlet velocity needs to be prescribed at each time-step when the inflow-outflow

boundary condition is employed.

2.2 Outlet Boundary conditions

For non periodic turbulent flows, the outlet boundary condition is an issue that needs to be
specifically addressed for each numerical implementation. Ideally, this condition needs to be
capable to avoid spurious reflections of waves at the outlet that can weaken the stability of the
numerical computation. One way to sort out this problem is the fringe method. This method
allows to employ periodic boundary conditions in the stream-wise direction by relaminarizing
the flow near the outlet (Schlatter et al., 2006; Buffat et al., 2014). Other option is to employ
a buffer domain. In this case, the buffer domain is added at the outlet of the physical domain
where the governing equations are modified reducing the streamwise viscous term (Criminale
et al., 1997). In these two methodologies, approximately 20% of the computational domain is
dedicated to impose the outflow boundary condition. The code Incompact3D allows to impose
a relatively simple convective boundary conditions at the outlet. Therefore, the first step was to
evaluate the response of the code to the use of this boundary condition for our simulations.

To prescribe the velocity at the outlet, a standard convective boundary condition is solved in

Incompact3D:

ou ou
E + UC% = 0, (17)

where U, is, in general, a constant convective average velocity. The study of Lamballais (2014)
for a rotating parallel channel flow with an expansion gives a useful insight on this regard. Lam-
ballais (2014) found that when a constant average velocity is used as the convective velocity,
the numerical solution is not always stable. Nevertheless, when the Poiseuille laminar profile is

used as convective velocity:

Ucy) = y(2 - y), (18)

the time evolution of the initial condition is very robust introducing only moderate spurious
effect in the near-outlet region. In our simulations this test was repeated with similar results.

The use of a constant average velocity as convective velocity yields spurious oscillations that



grow in the near outlet region up to a point where the numerical solution becomes unstable.
This effect can be mitigated applying a very costly reduction of the time step. However, the
use of the parabolic profile as convective velocity was found to be numerically very robust
(i.e. the maximum time step that allows a stable numerical solution is approximately the same
than that found for the same grid and parameters but with periodic boundary conditions in the
streamwise direction). Although spurious effects are clearly observed in the near-outlet region
of our simulations they are mainly limited to the region x = L, — 5 (i.e. the last 5 channel
half-heights).

To give a clear insight that spurious effects do not pollute the numerical solution outside
the near-outlet region, we compared our statistics of the turbulent channel flow upstream of
this region with a reference. We simulated the spatial transition for Re = 4200 with a spatial
resolution and parameters that correspond to the production grid. Here, we are only interested in
the quality of our fully developed turbulent solution downstream of the transition and upstream
of the near-outlet region. First, the spurious effects are shown. Figure 4 shows the friction
Reynolds number, a quantity proportional to square root of the friction coefficient (Quadrio

etal., 2016), along the streamwise coordinate for the transition simulated (note that Re, = “;h,

where u, is the friction velocity averaged in time and in the periodic coordinate). The near-
outlet region has been zoomed in to indicate the spurious effects that show up as a sudden drop in

the value of this parameter in the near outlet region. The quality of the solution upstream of the

I+ 1+ I+ I+
i U >and\/< w; Wy >,

near outlet region is shown in Figure 5. Two turbulent statistics (\/ <u
the root-mean-square (rms) of the turbulent fluctuating velocity components and the turbulent
fluctuating vorticity components in wall units respectively) are considered. Three sets of data
are displayed for comparison: the reference (Moser et al., 1999), results at the location =z =
L, — 5 = 85 in Figure 4, and our results for a periodic box with the same spatial and temporal
resolution than that employed in the spatial transitional case. The agreement is good enough
to show that the numerical solution in the near-outlet region is not polluted by the imposition

of the convective boundary condition. It is then concluded that the use of Eq. 17 employing

Eq. 18 as convective velocity is robust, easy to implement in Incompact3d, and computationally



cheaper than other methodologies employed in the literature.
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Figure 5: Fully developed turbulent statistics from Moser et al. (1999) , present results for a
periodic box and for the spatial transition simulation at x = 85 (Figure 4). Re = 4200.

2.3 Grid dependence results

Present results show that the domain length in the streamwise direction must be at least 90
channel half-heights to capture the transition to a fully established turbulent regime. Therefore,
the number of grid points in this direction could be a bottle neck. We define a production grid
establishing two criteria to evaluate the quality of the results computed with this grid. The first

one is to compare the fully developed flow upstream of the near outlet region (x = L, — 5)



with available DNS data. The second one is to perform a single simulation in a finer grid that
approximately doubled the number of grid points per direction than those used in the production
grid. We will show that these two comparisons reveal that the production grid is sufficient for
the purposes followed in this study.

Present numerical experiments allowed to determine that Ax = 0.05 is a value that yields a
reasonable computational cost with good accuracy and stable numerical computations (Machaca Abregu,
2015) (equivalent to 1800 grid points in 90 channel half-heights). In the wall-normal direction,
the grid refinement is mainly defined by a grid that yields a fully developed turbulent profile that
is well compared with available DNS data. For present simulations, an averaged Ay = 0.03 is
considered sufficient for the highest Reynolds numbers simulated (this corresponds to 65 ele-
ments in the wall-normal direction). Additionally, some computational savings can be obtained
by considering carefully the wave-number of the perturbation imposed in the spanwise direc-
tion, 3. At least, a period of the perturbation must be simulated, so larger values of 3 require
shorter lengths in this direction. Following these considerations, we avoid the well studied case
with # = 1 (Saiki et al., 1993) and we choose, instead, the case with § = 2.0944 (Schlatter,
2005). In addition, it is found that Az = 0.07 is a value that yields good results to describe the
fully turbulent regime in fully periodic simulations (Machaca Abregu, 2015). Alter all, L, = 3
and n, = 64 (Az = 0.05) ensures a sufficient discretization in the spanwise direction.

The first criterion to evaluate the production grid is presented. For the highest Re number
simulated in this study (Re = 5000), the production grid with Ax = 0.05, Ay = 0.03 (aver-
aged value) and Az = 0.05 is compared, in the fully developed region, with a fully periodic
simulation that employs the same grid resolution than that used in the production grid. Figure 6
shows good agreement for the statistics of the fully developed turbulent channel flow (note that
Incompact3D has already been validated for the turbulent channel flow (Laizet and Lamballais,
2009)). Additionally, the spatial evolution of Re, obtained with the production grid is com-
pared with computations that vary computational parameters. First, Figure 7a shows results for
Re = 4200 with one grid that doubles the resolution per direction used in the production grid,

and other that keeps the spatial resolution fixed but doubles the number of time steps employed



to carry out statistics. Figure 7b shows the spatial transitions varying the spanwise width (L)
for Re = 5000. The comparison shown in Figure 7 and Figure 6 suggests that the production
grid is sufficient to compute the friction Reynolds number in the transitional scenarios proposed

in this study and therefore it was employed to obtain results presented in the following sections.
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Figure 6: Fully developed turbulent statistics for Re = 5000. Periodic box and spatial transition.
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Figure 7: Space evolution of Re. in the transition for different parameters of the simulation.
The legend "Stat." refers to the number of time-points employed to carry out the time averaging.

3 RESULTS
3.1 Dependence of integral quantities on the amplitude of perturbations

We will discuss the speed of development of the transitional process with the amplitude of the
perturbations imposed at the inlet analyzing results of Re, and shape factor (H) at Re = 5000.

We have let fixed the parameters of the 2D and 3D waves imposed at the inlet (3 = 2.0944,



waq = 0.3 and w3, = 0.3) together with the eigenfunctions corresponding to the most unstable
eigenvalue (Figure 3). A total of 11 simulations were carried out varying the amplitude of
the 2D and 3D waves, A,; and Az, respectively. Table 4 shows simulated amplitudes and the

corresponding inlet turbulent intensity Tu (T'w = 4/2/3k), where k is the turbulent kinetic

energy (k = J02 <“’“I>+<”’5'>+<wlw'> dy, where <> means averaged in time and z).
Agq | Asq || Tu(%)
6 0.05 || 2.24
6 0.1 2.24
6 02 | 224
6 04 | 224
6 0.8 | 2.24
3 0.2 1.20
35 102 1.39
4 0.2 1.59
45 102 1.80
9 0.2 | 3.58
12 (02 | 4.77

Table 4: Different inlet conditions simulated. Amplitude of the T-S and 3D oblique waves for
Re = 5000 and the corresponding inlet turbulent intensity.

Figure 8 shows the streamwise evolution of the friction Reynolds number for cases described
in Table 4 where Figure 8a and 8b are for fixed Ay, and As,, respectively (note that the case with
Ayq = 3 does not achieve transition in the domain simulated). Additionally, a reference data
calculated by Schlatter (2005) using the ADM-RT model is presented for comparison purposes
(Ayg = 6% and A3y = 0.2%). On the one hand, both figures clearly show that the increase of the
amplitude of any of these two components accelerates the departure of the transition, changing,
for instance, the location of the peak of the friction Reynolds number in approximately 33
channel half-heights (cases with A,; = 3.5% and A,; = 12% in Figure 8b respectively). On
the other hand, the shape of the streamwise evolution of Re., characterized by a fast growth,
peak and decay to a fully turbulent value, is qualitatively similar for all transitions. Moreover, a
quick review of Table 4 and Figure 8 reveals that cases characterized by almost the same inlet
turbulent intensity result in locations of the departure of transition that differs in several channel

half-heights. This shows that the value of Tu by itself is not enough to predict the location of



the onset of transition as it is usually hypothesized in RANS models (Minkowycz et al., 2009).
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Figure 8: Space variation of Re. with the amplitude of the T-S and oblique waves as parameters
(Re = 5000). The data calculated by Schlatter (2005) is shown in black dots.

These aspects suggest that the amplitudes of the perturbations delay or accelerate the transi-
tional process but do not significantly affect the shape of integral quantities. Rather arbitrarily
and following these ideas we choose the following criterion to define a methodology that allows
to find similarities between the different transitional scenarios. The curves shown in Figure 8
are shifted so the maximum of each one coincides with each other (i.e. curves are shifted to
the left so that the maximums are superimposed with the case that achieves a transition in the
shortest distance from the inlet, Aoy = 12% and Az, = 0.2%). This shift, shown in Figure 9, al-
lows to conclude that the variation of the friction Reynolds number from the onset of transition
to the fully turbulent state is fairly independent on the amplitude of perturbations, at least for
the range of parameters simulated here. An implication of this claim that can be used in RANS
modeling is that a model that fits a particular transitional scenario may employ the intensity
of perturbations to modify, only, the spatial location of its onset. Another aspect that can be
inferred from Figure 9, directly related to engineering applications, is that the pressure drop
during the transition (i.,e. from the onset to the fully turbulent state) is fairly independent on

the intensity of the perturbations.
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Figure 9: Space shifted e, for cases described in Table 4.

The criterion chosen to shift the curves allows to explore the dependence of the peak location
on the values of the amplitude. Figure 10 shows the non dimensional values of the distances
shifted in the streamwise direction as a function of the amplitude of perturbations simulated.
Two power laws are fitted, one for the case where As; is kept fixed and equal to 0.2% and the
other one where A,; is equal to 6% . These laws predict calculated values within a 10% of
accuracy. As expected, the peak location exhibits a stronger sensitivity to A,;, the amplitude
of the primary instability (TS wave, with finite amplitude), than that shown to the secondary
instability (a pair of oblique waves, with infinitesimal amplitude). That is, the location on the
onset varies more for the same percentage change of the amplitude of the TS wave than that for
the oblique waves. This behavior is expected because the TS waves are more unstable than the

3D oblique waves in the present linear stability analysis (see section 2.1).
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Figure 10: Space location of the Re, peak with the amplitude of the T-S and oblique waves
(Re = 5000).

Other quantity of interest, the shape factor (H), is shown in Figure 11. Both, the calculated
laminar and fully turbulent values of this quantity, 2.5 and 1.6 respectively, are in perfect agree-
ment with the literature (Seki and Matsubara (2012), Schlatter et al. (2004)). The streamwise
evolution is, also, in good agreement with results calculated by Schlatter (2005). As expected,
based on previous results, the shape factor’s evolution is more sensible to A,; than As; and its
shape is fairly independent on the amplitude of the perturbations as can be appreciated in Figure

11c, where the quantities have been shifted according to laws calculated in Figure 10.
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Figure 11: Space development of H with the amplitude as a parameter (e = 5000). Reference
data (Schlatter, 2005) in black dots in Figure 11a.

3.2 Comparison between two spatial transitions triggered by very different amplitude of

perturbations

In the previous section we compared different transitional scenarios to show both: the weak
dependence of the shape of the spatial evolution of integral quantities and the strong dependence
of the location of the transitional departure, on the values of the amplitude of perturbations. In
this section, an accurate comparison between two cases that yield transitions in locations sep-
arated by approximately 50 channel half-heights is carried out. The amplitude of perturbation
for both cases are respectively A,y = 6%, Asq = 0.2% (case A) and Ay; = 3%, Azg = 0.2%
(case B). In Table 5 the parameters of each simulation are described. The domain for case B
is significantly larger than that employed in the previous section to capture the transition. Both
simulations were run for 500000 time steps and the statistics were taken during the last 100000

time steps.



Case A Case B
L, XL,XL,|n,;Xn,Xn, At L, XL, XL, |n,;Xn,Xn, At
100 x 2% 3 2001 X 65 x 64 | 0.001 | 180 x 2 x 3 3601 x 65 x 64 | 0.001

Table 5: Simulations’ parameters for cases A and B.

3.2.1 Friction Reynolds number

As in the previous section, we shift results to match the Re. peak’ location and this shift is
used to compare other quantities in this section (here, case A is shifted 50 channel half-heights
to the right). Figure 12 compares Re, for cases A and B after the shift. A qualitatively similar
behavior of this parameter is found downstream x = 70. This reinforces the idea that the
amplitude of the perturbations has a relatively small influence on the spatial evolution of this
integral parameter in the transitional zone.

Also, six streamwise locations are remarked in this figure to serve as a reference for com-
parison purposes. These positions exemplify locations downstream the onset of the spike stage
(z = 70): x, and x5 in the super-late stage, x3 in the peak transitional zone, z, in the post-
transitional zone, x5 in the final state of the post-transitional zone, and z¢ in the turbulent zone.

260

case A (A2d=6%,A3d=0.2%)
case B (A2d=3%,A3d=0.2%)

240

220

200

180

Re,

160

140

120

100 1

L L L L
0 20 40 60 80 100 120 140 160 180

Figure 12: Re, vs. streamwise coordinate. Case A shifted and case B.



3.2.2 Vortex structures

We show in Figure 13 the vortex structures for case A (left, non shifted) and case B (right).
These vortices are visualized using the )\, vortex visualization technique (Chakraborty et al.,
2005; Sengupta et al., 2019). Figure 13.a shows the spanwise perturbation (TS waves) for both
cases, where a higher size of the structures is found for case A (see the color of the isosurfaces
for Ay = —0.01). The zone where these waves dominate is 0 < z < 10and 0 < = < 20
for case A and B, respectively. These perturbations are periodic and increase their intensity
with the streamwise direction defining the well known quasi-linear growth region where the
friction Reynolds number is practically constant (see Figure 12). In figure 13.b the late stage is
presented for both cases (10 < < 20 and 20 < x < 70 for cases A and B, respectively). In
this region, a characteristic A vortex is generated due to the interaction between the TS waves
and oblique waves, and the friction Reynoldsnumber increases moderately (see figure 12). At
the end of this region, a hairpin vortex is generated as it is shown at z = 24 and = = 70 for the
case A and B, respectively. This is the onset of the spike stage or super-late stage. From there,
the ring vortices govern (Lu and Liu, 2012) and the friction factor increases rapidly. Moreover,
the interaction between both walls can be recognized considering the vortex population at the
center of the channel (see Figure 13.c). In this zone it can be observed that case A shows a
denser population of coherent structures than case B but this fact is not reflected as a difference
in the evolution of the friction Reynolds number. Finally, we can distinguish four zones in
Figure 13.d (please consider case B, on the right, for the coordinate description) or figure 12:
the final state of the super-late stage (90 < x < 100), the peak transitional zone (z = 100), the
post-transitional zone (100 £ « < 130) and the fully turbulent zone (z 2 130). In this region,
both cases display a qualitatively and quantitative similar vortex structure and friction Reynolds
number. This shows that both transitions are essentially equivalent downstream z = 90 (for

Case B).
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Figure 13: Vortices structures along the streamwise direction at ¢ = 460 for case A (left) and
case B (right), respectively. Isosurfaces of \, colored with the streamwise velocity.

Other important parameter in the transitional phenomenon is the location of its onset. We
can qualitatively relate this location with the head of the hairpin vortex (ring vortex), where
high velocity fluctuations are generated (note figure 13.c right at x = 70). These fluctuations
are shown in figure 14, where the streamwise and wall-normal velocity fluctuations at z =
1.5, y = 0.01 and t = 460 are presented for both cases (case A shifted). Near the channel
inlet, fluctuations are characterized by the TS wave packet ( figure 14a), which has a constant
amplitude for a short length and then starts to decrease its amplitude (e.g. downstream x = 40
for case B) because the eigenvalue of the TS wave is stable for the simulated Reynolds number
(Re < 5772 (Orszag, 1971)). Near x = 70 the Spatio-Temporal Wave Front (STWF) takes place
to trigger the transitional process (Sengupta et al., 2020, 2018, 2006; Sengupta and Bhaumik,
2011). The STWF is generated by the interaction between the TS wave and the pair of oblique
waves. In the literature, this stage is known as the spike stage due to the appearance of a
high positive streamwise velocity fluctuation (Schlatter et al., 2004) (this will be discussed in
section 3.3). After this stage, the wall-normal velocity fluctuation increases significantly too

(see figure 14b). Thus, we can also define the location of the onset of the transition analyzing



the behavior of the streamwise and wall-normal velocity fluctuations yielded by the second
sweep-ejection mechanism. Therefore, we can locate the onset of transition for cases A and B
to be approximately at z = 20 and x = 70, respectively; which coincides approximately with
the location where the first ring vortex appears.
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Figure 14: Streamwise and wall-normal velocity fluctuations for cases A (red) and B (blue) as
a function of streamwise direction at z = 1.5, y = 0.01 and ¢ = 460.

3.2.3 First order parameters

Figure 15 shows the dimensionless streamwise velocity ( time and spanwise averaged) in the
developing region for both cases under consideration (downstream the late stage). Both cases
seems to be qualitatively equal comparing this quantity. A more detailed look is shown in figure
16, where the velocity profiles are compared at the six streamwise positions remarked in Figure
12 (note that each streamwise velocity is normalized using its centerline velocity < wu, >).
Overall, the velocity profiles are comparable in shape and magnitude along the transition. There
are relatively small differences upstream the peak zone (xq, x5 and x3) that can be explained
considering that the larger population of vortex structures present in case A respect to case B

(see figure 13.c) yields a relatively flatter profile.
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The fact that A vortices evolve faster for case A than case B (see figure 13.b) can also be
appreciated in figure 17, where the shape factor is compared for both cases. For x < 70,
case B displays a slower space development than case A, being its late stage longer than that

corresponding to the other case. Downstream = = 90 the shape factor does not show significant
differences between both cases.
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3.2.4 Second order parameters

Figure 18 shows the diagonal components of the Reynolds stresses, the TKE and turbulent
shear stress upstream and downstream of the peak friction Reynolds number’s position. Note
that quantities have been averaged in time and z-coordinate.

Observing the figure it is clear that upstream x = 40 and z = 90 for case A (non shifted) and
case B, respectively, the TKE is dominated by the contribution of < u'u' >. After this stage,
the other two diagonal components of the stresses become significant but the main contribution
to the TKE is still due to the streamwise component (see for instance Antonia et al. (2009) in
turbulent channel flow).

Comparing cases A and B, it can be observed that the spatial distribution and the intensity of
< u't' >, and therefore TKE, are significantly different upstream the peak transitional zone but
for the other two diagonal components of the Reynolds stresses are not. This reinforces the idea
that the wall-normal and spanwise components need to grow to interact with the streamwise
fluctuations to trigger the transitional process. The turbulent shear stress (— < u'v' > shown
in the last cartoon of the figure), has a qualitatively similar magnitude and space development
for both cases. This fact is relevant to turbulence models that intend to capture the transition

employing this quantity to define the turbulent viscosity.
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Results discussed in figure 18 can be complemented considering figure 19, where the evolu-
tion of the TKE, Reynolds normal stresses and the turbulent shear stress is shown as a function
of streamwise direction (quantities are now averaged also in the wall-normal direction, <>,,,,
and case A is shifted). All these components evolve from the inlet value to the fully turbulent
one passing through a peak of over production that is four or five times larger than their fully de-
veloped turbulent values. The cross-section averaged streamwise turbulent fluctuating velocity
(< u'd >.n) develops first in space peaking approximately 10 channel half-heights upstream

of the peak of the other diagonal components. These two, together with — < u'v' >.n, depend
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on the interaction between the oblique wave and the saturated 2D wave (secondary instability)
and therefore develop later in space. We can see this effect considering case B, where the onset
of spanwise and wall-normal turbulent fluctuating velocities is located 50 channel half-heights
apart from the onset of the streamwise turbulent fluctuating velocity.

More in detail and for the lowest values of A,; (case B), the TKE presents three zones
upstream the peak location of Re,: a quasi-linear stage (e.g. 0 < x < 20), where the TS waves
interact with the 3D waves to destabilize the flow; the late stage (e.g. 20 < z < 70), where
the A vortices are present (Zang and Krist, 1989; Guo et al., 2010; Borodulin et al., 2002b);
and the super-late stage or spike stage (70 < x < 100), (Schlatter et al., 2004), where the ring
vortices are present. Analyzing case A and based on Figures 13, 18 and 19 we can observe
that increasing A,,;, the quasi-linear stage and the late stage become shorter as the TS wave
reachs its saturated state in a shorter distance from the inlet than the other case ((Schmid and
Henningson, 2001; Bayly and Orszag, 1988)). Moreover, in the first state of the super-late stage
(70 < x < 90), integral quantities present differences between both cases showing the influence
of the amplitude of the TS wave in this zone. Downstream of the peak zone (x = 100), where
there is no presence of coherent vortices (see figure 13), there are no significant differences
between both cases. This shows that the mechanism that governs the post-transitional zone and

the turbulent zone is essentially equivalent in them.
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To continue with the analysis, wall-normal profiles of Reynolds normal stresses and turbulent
shear stress are shown in figure 20 at the six streamwise positions indicated in figure 12 (case B
shifted). Additionally, fully developed values of these quantities computed by different sources
are shown in the same figure for comparison purposes.

First, it is noted that upstream the peak position of the friction Reynolds number (z < x3),
quantities are greater than the corresponding fully developed values. This is due to the existence
of large coherent structures that populate this zone (see figure 13). For example, at z,, the
presence of a ring vortex near the centerline (see figure 13.c) yields relatively high values of the
Reynolds stresses (< u 't > < v > < ww'™ >and — < w0 >). At x4, the presence
of a large coherent structure that mixes the flow with the highest possible intensity is located
near the centerline. This coherent structure is identified in the peak of < u "t >, < T >,
< w w" >and — < «"v'" >. Downstream the peak position (z3), good agreement is found
between reference data and present results near the wall (y* < 20). In the logarithmic region,
profiles still evolve to reach a fully developed turbulent regime at x5. These two facts suggest
that the decrease of the friction Reynolds number in this region (see figure 12) can be associated

with the variations of the second order parameters in the logarithmic layer. Comparing the



space evolution of the second order parameters of both cases, we observe that both transitions
are essentially similar downstream x5 showing that the influence of the perturbations is limited

to the first state of the super-late stage (70 < x < 90 for case B).
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3.2.5 Budget of the streamwise turbulent fluctuating velocity

In this subsection we will discuss the larger component of the TKE, the streamwise turbulent
fluctuating velocity. For that purpose, a study of the budget of < u'v' > is carried out for both

cases considering the balance:

o< uu > L O<u> Ly O<u>
<u>T=—2<uu> 5 -2<uv > 3y ..(P)
o<uuu > o<du >
- 5 - 3y ..(TD)
8 )
-2 < u'a—z; > ...(V—-PGCorr.) (19)

1 2 2

E(afax <uu > +ajay <uu >) ..(VD)
2 ou' o' ou' o' ou' o'

—E(< %a—x > —-< a—ya—y > —-< EE >) ...(DZSS.)

where the L.h.s. of equation 19 is the convective term (Conv.), and the terms on the r.h.s. are
respectively: Production (P), Turbulent Diffusion (TD), Velocity-Pressure Gradient correlation
(V-PG Corr.), Viscous Diffusion (VD) and Dissipation (Diss.).

In figure 21 the six components of the budget are shown in nondimensional units (averaged
in time, spanwise and wall-normal direction). Considering the magnitude, this budget is domi-
nated by the production, dissipation and velocity-pressure gradient terms. This was also found
by He and Seddighi (2013) in the turbulent transient channel flow, but different from that, here
the velocity-pressure gradient correlation term has a greater intensity in the peak zone than that
corresponding to the dissipation term. This can be explained considering that we are simulating
a K-type transition at a moderate Reynolds number while the other study considers a bypass
transition, where the TS wave 1s bypassed. Additionally, in comparison with the temporal tran-
sition, where the periodic boundary condition in the streamwise direction avoids any influence
of the convective term in the budget, here, this term places a role in the transitional zone as the
time derivative does in the temporal transition.

Another relevant aspect is that the onset of the V-PG Corr. term is at x = 70 (downstream



the onset of Production and Dissipation terms). This quantity is a source for the wall-normal
and spanwise turbulent fluctuating velocities (see figure 19 and 18). Thus, the departure of this
quantity can also be employed as the onset of the transition.

The comparison between both cases shows that case B presents a larger growth of the Pro-
duction and Dissipation terms in the late stage (20 < x < 70) than those calculated for Case
A. Also, in the first state of the super-late stage (70 < = < 90) both cases present differences
in the Production, Velocity-pressure gradient correlation and Convection terms. Downstream
Zo (the last state of the super late stage) there are no significant differences between both cases

showing, again, that both transitions are essentially similar.
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Figure 21: Space evolution of the cross-section averaged components of the streamwise tur-

bulent fluctuating velocity budget. —case A, ----- case B. —Production, —Turbulent
diffusion, —Viscous diffusion, — Velocity-pressure gradient correlation, —Dissipation and
Convection.

With DNS results we can compute the space evolution of the profiles of each term of the
< uut > budget at the six different streamwise positions indicated in figure 12. Figure 22
shows this evolution together with fully developed reference values.

With respect to the transitional process, at x; and x,, the presence of large coherent structures
yields higher intensity of the components near the wall and in the centerline region, than those

found at fully developed values. Specifically, at x,, the Production, velocity-pressure gradient

correlation, turbulent-diffusion and convection terms present a peak near the centerline as a



consequence of the large population of coherent structures (see figure 13). Downstream z3, the
convection term is negligible and the components of the budget have approximately reached
their fully developed stages. This suggests that the mechanism that governs this budget in this
region is related to the self-sustained turbulence mechanism.

Considering a comparison between both cases, despite the fact that at x; the components
of the budget differ, downstream z,, where the population of vortices have grown across the
height of the channel, both cases display a strong similarity showing that this budget is no

longer influenced by the TS wave amplitude imposed at the inlet.
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3.3 Peak in the transitional zone

In this section we will discuss aspects related to the formation of a peak in the spatial evo-
lution of Re, using the mechanism described in section 1. That is the increase of the Reynolds
shear stress is due to the multilevel sweep and ejection mechanisms that are present in the evo-
lution of the hairpin vortex structures (Liu and Lu, 2012; Liu et al., 2014). Quantitatively, both
mechanisms can be analyzed by the theory of quadrant analysis (Shaw et al., 1983; Adrian,
2007; Chen and Liu, 2011), where the sweep and ejection mechanisms can be quantified by
(u' < 0, v'>0)and (u' < 0, v > 0), respectively. Both mechanisms mix the flow increasing the
Reynolds shear stress (Chen and Liu, 2011). Moreover, in the evolution of the coherent hairpin
vortices, spikes are generated by the first sweep and second sweep of the ring vortices, which
generate high shear layer areas. Then, it is clear that after the spike, the Reynolds shear stress
increases significantly its absolute value. Using this information, the high shear layer areas can
be identified employing the analysis of streamwise velocity fluctuations (u) together with the
spanwise vorticity (Lu and Liu, 2012).

In figure 23 we show the mean and instantaneous values (f = 460) of Re, as a function
of streamwise coordinate (case A of the previous section). There are five zones with different
characteristics (see figure 13): the quasi-linear zone (0 < x < 10), where the TS wave are
predominant ( see the oscillations of the instantaneous Re,); the late stage (10 < z < 20),
where the A vortex are predominant and a decrease of the amplitude of the TS wave is present
at the final of this stage (see the instantaneous Re, in figure 23 at x = 20); the super-late stage or
spike stage (20 < x < 50), where the ring vortex is present; the peak transitional zone (z = 50);
the zone right after the peak location (50 < x < 70), the post-transitional zone; and finally, the

turbulent zone (70 < = < 100). We first consider the zone upstream the peak transitional zone.
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Figure 23: Time-average and instantaneous Re. at t = 460.

In figure 24, the streamwise velocity fluctuation u' and the absolute value of the spanwise
vorticity |w,| are shown for different = positions upstream the peak transitional zone (x = 50).
At x = 26 we already observe relatively high values of velocity fluctuations near walls and
relatively high shear layer areas (w, = g—;‘). These areas correspond to the legs of the hairpin
vortices (see case A in figure 13.b at = = 26 ), which yield the first sweep-ejection mechanism.
Atz = 29 and x = 32, these relatively high values appear also at the bulk of the channel. This
is because the hairpin vortex moves away from the walls (see figure 13.c) and generates the
second sweep-ejection mechanism. Downstream z = 32, the physical phenomenon is more
complex because the coherent hairpin vortices spread across the entire height of the channel
interacting between them. This mechanism increases the high shear layer areas in the entire
channel cross-section as can be seen at x = 41. This zone is not completely chaotic and a sort
of symmetry can be identified in the spanwise vorticity and velocity fluctuations around z = 1.5
(note the walls and centerline zones). This symmetry indicates that coherent vortices are present
and bring high energy from the centerline to the walls increasing the shear layer (see spanwise
vorticity at x = 41). Along with this evolution, the increase of the shear layer translates as an

increase of the friction Reynolds number.



This analysis is complemented with figure 25, in which the instantaneous streamwise ve-
locity at ¢ = 460 as a function of z is shown at different streamwise positions and y = 0.01
(bottom wall). At x = 26 the legs of the hairpin vortex increase/decrease the velocity due to
the first sweep-ejection mechanism (e.g. note the peak at z = 0.75). At x = 29, two spikes
can be observed at z = 1.1 and z = 1.8 respectively. These spikes are generated by the second
sweep of a ring vortex (see also «' in figure 24 in = 29 at bottom wall), and generate high
shear layer areas increasing the Reynolds shear stress value (Chen and Liu, 2011; Liu and Lu,
2012; Liu et al., 2014; Liu and Lu, 2014). At x = 32, the population of ring vortices is growing
which generate quasi-streamwise vortices and more intense spikes than those found upstream.
Downstream x = 32, the coherent structures expands in z direction with a complex vortex inter-
action, which generate high intensity fluctuation zones on the entire channel cross-section (see
figure 24 and 25 in x = 41). This is exemplified in Figure 25 with relative high values of the
instantaneous streamwise velocity at the walls at x = 41. At this location there is still some

symmetry around z = 1.5.
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To continue the analysis downstream x = 41 (last state of the super-late stage), the key is
to consider the coherent ring vortices (see figure 13.c), that yield, through the second sweep
mechanism (Chen and Liu, 2011; Guo et al., 2010), the generation of high positive spikes and
high shear layer areas. Nevertheless, when these hairpin vortices lose their coherence, they lose
their capacity to bring energy from the centerline (high energy zone) to the walls. We will then
analyze the coherence of vortex structures near the peak zone. In figure 26, at x = 43, high
intensity zones are shown near the centerline and near the wall, which indicates the presence of
large structures (ring vortex, see figure 13.c). In this position (super-late stage) there is still a
certain symmetry about z = 1.5. These coherent structures yields a near-centerline peak in the
profile of < u'"u'" > (see figures 20 and 22 at x, position). At = = 50, Figure 26 still displays
high intensity zones of the quantities in the entire section but the symmetry about z = 1.5 is
practically lost and the ring vortices do not longer occupy the channel bulk. Continuing, at
x = 63 and z = 72, there is no evidence of the presence of the coherent hairpin vortices.
The high intensity zones and structures are being dissipated in the bulk of the channel and are

located only near walls generating small scales flow structures (see case A of figure 13.d in these



two positions at the bulk). In this process the friction Reynolds number is decaying to its fully

turbulent value and the flow is mainly governed by the self-sustained turbulent mechanism.
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wise vorticity (right) along the transition at ¢t = 460.



4 SUMMARY AND CONCLUSIONS

A methodology to model the spatial transition in a plane channel flow employing the open
source code Incompact3D was described in this study. Simulations are characterized by the im-
position of a Poiseuille flow perturbed by the most unstable modes of the Orr-Sommerfeld and
Squire eigenvalue problem as an inlet BC. In most of the cases simulated the complete transition
was achieved in domains of 90 channel half-heights in length in the streamwise direction.

First and for Re = 5000, eleven simulations with different amplitudes of the TS and 3D
waves were studied to show two important aspects: the shape of Re. in the transition (growth,
peak and decay to a fully developed value) is roughly independent on the amplitude of pertur-
bations and the location of the peak is, on the contrary, strongly dependent on it.

Second, we considered two cases with different TS wave amplitudes (Ay; = 6% and Aoy =
3% respectively) that present friction Reynolds number peaks separated by approximately 50
channel half-height diameters.

The study of the streamwise evolution of integral quantities shows that both cases present a
quasi-linear growth at the inlet region, where the TS waves dominate and the integral quantities
are approximately constant. A late stage follows, with the formation of A vortices and a mod-
erate growth of Re, and shape factor. At the end of this region, a hairpin vortex is generated,
which is the onset of the spike stage (super-late stage). In this stage, the STWF mechanism
acts and the velocity-pressure gradient correlation term of the budget of < w'u' > increases
significantly its value giving place to the increase of the spanwise and wall-normal turbulent
fluctuating velocities. At this stage, approximately all quantities increase their values at a rela-
tively high speed and, therefore, the onset of the present K-type transition can be defined with
the onset of the spike stage. Downstream the peak transitional zone, vortex structures lose their
coherence and integral quantities decay to reach a fully developed turbulent state.

The study of the < ' > budget along the transition shows that the most important terms,
considering the magnitude, are the production, dissipation and velocity-pressure gradient cor-
relations being the last one more important than the dissipation in the near peak zone.

We computed profiles of different turbulent quantities at six streamwise positions down-



stream the onset of the spike stage to find that upstream the peak position (z, in the last state of
the super-late stage), the Reynolds stresses and all the streamwise turbulent fluctuating velocity
budget terms (except the viscous diffusion term), present a peak near the centerline as a result of
the presence of large coherent structures in this region. Downstream the peak transitional zone,
these quantities are in good agreement with the reference data in the near-wall region while, in
the logarithmic region, profiles are still evolving to reach a fully developed turbulent regime at
x5 (final state of the post-transitional zone). Also, the mechanism that governs the < utut >
budget downstream the peak location is related to the self-sustained turbulence mechanism.
Overall, we can observe that despite the fact that both cases need different distances to
achieve the transition, the information imposed at the inlet through the perturbations is essen-
tially lost downstream z, (the last state of the super-late stage). The influence of the TS wave
in both cases is present in the quasi-linear stage, in the late stage and in the first state of the
super-late stage. However, downstream x,, we found a very similar evolution of both cases.
Finally, the spatial evolution of the friction Reynolds number was discussed employing
streamwise velocity fluctuations and the spanwise vorticity as tools to explain the sweep-ejection
mechanism. Upstream the friction Reynolds number peak zone we show that there is coherence
in the vortex structures. This coherence allows bringing high energy from the centerline to the
wall increasing the friction Reynolds number up to the peak transitional zone. After this zone,
vortices near the centerline lose their coherence and dissipate, and the high shear layer areas

are limited to the near-wall region. In this process we observe a decay of the friction Reynolds

number to its fully developed value.
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Highlights

¢ The friction Reynolds number in the transition region is roughly independent on
the amplitude of the perturbations at the inlet.

¢ The location of the departure of the transition process is strongly dependent on the
amplitudes of the perturbations.

e Two spatial transitions triggered by very different amplitude of perturbations were
compared.

¢ Five stages were identified in both transitional scenarios: quasi-linear stage, late
stage, spike stage, peak transitional zone, post-transitional zone and fully
turbulent zone.

* The influence of the amplitude of the perturbations is limited to the first state of
the super-late stage.

e The peak transitional zone in the friction Reynolds number can be explained
considering the coherent vortices packet found across the height of the channel in
the super-late stage of the transition.
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