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Numerical evaluation of Appell’sF1 hypergeometric function
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Abstract

In this work we present a numerical scheme to compute the two-variable hypergeometric functionF1(α,β,β′, γ ;x, y) of
Appell for complex parametersα,β,β′ and γ , and real values of the variablesx and y. We implement a set of analytic
continuations that allow us to obtain theF1 function outside the region of convergence of the series definition. These
continuations can be written in terms of the Horn’sG2 function, Appell’sF2 function related, and theF1 hypergeometric
itself. The computation of the function inside the region of convergence is achieved by two complementary methods. The first
one involves a single-index series expansion of theF1 function, while the second one makes use of a numerical integration of
a third order ordinary differential equation that represents the system of partial differential equations of theF1 function. We
briefly sketch the program and show some examples of the numerical computation. 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The numerical evaluation of special functions has been an active field of research in physics since the
introduction of the computer in science. There exists a variety of numerical approaches for each special function
of mathematics and nowadays this generally does not represent a particular problem [1]. However, there are some
special functions that still present difficulties. The most important of them is the Gauss hypergeometric function
commonly denoted as2F1(α,β, γ, z). This function is mathematically convergent for all values of|z| < 1 and can
be expanded as a series [2]:

2F1(α,β, γ, z) =
∞∑

m=0

(α)m(β)m

(γ )m

zm

m! (1)
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for γ �= 0,−1,−2, . . . and as usual(a)m = Γ (a + m)/Γ (a) represents the Pochhammer symbol andΓ (z) is the
Gamma function. The Gauss function presents a cut in the complex plane for real values ofz > 1. As quoted in
Ref. [1], “numerical computation of Gauss hypergeometric function for all values of the variables and parameters
is practically impossible”. From the numerical point of view, the series (1) can be summed with confidence for
|z| � rmax with rmax ∼ 0.5 in double precision arithmetic. There are several strategies that enable the calculation
of the Gauss function for|z| > 1. The first one is to solve parametrically the differential equation of the2F1
function [1]:

z(1− z)
∂2F

∂z2
+ [

γ − (α + β + 1)z
]∂F

∂z
− αβF = 0 (2)

with some numerical methods, such as Runge–Kutta, using the series expansion (1) as a starting point of the
calculation for az0 with |z0| � rmax. This gives good results for values not very close to the cut. In such cases
a different path of integration should be considered. On the other hand, the function2F1 has several analytic
continuations that are useful to compute the hypergeometric function in ‘problematic’ regions [2]. For example,
the continuation

2F1(α,β, γ, z) = Γ (γ )Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)
2F1(α,β,α + β − γ + 1,1− z)

+ Γ (γ )Γ (γ − α + β)

Γ (α)Γ (β)
2F1(γ − α,γ − β,γ − α − β + 1,1− z) (3)

allow the computation of the function in the vicinity ofz = 1. This approach has been taken by Forrey to obtain
the Gauss function for real values of the variables [3].

There are a lot of problems where the computation of the Gauss function is necessary. On the one hand, many
special functions can be obtained as particular cases of the hypergeometric2F1, such as the Jacobi, Legendre
polynomials, etc. On the other hand, the outcome of many integrals arising in physics can be expressed in terms of
2F1 functions. This is the case for three-dimensional integrals resulting in the computation of transition matrices
in atomic and molecular physics, such as the transitions that involve Coulombic continuum states given by the
Kummer1F1 function [4–6]. These integrals are commonly known as Nordsieck integrals and include a product of
two Kummer functions:

J1 =
∫

dr
r

e−zr+iq.rF1F2 (4)

with Fj = 1F1(iaj ,1, ipj r + ipj .r) andz, q, aj andpj are real parameters. Recently we have found analytic
solutions of generalized Nordsieck integrals where the second parameter ofFj is no longer one, but any complex
value. This result can be represented by a multivariable hypergeometric function [7]. When only one of these
parameters is one, the function reduces to the Appell’sF1 function [8]. This simplification has been useful to
compute ionization cross sections in ion–atom collisions [9].

The evaluation of two-variable hypergeometric functions is more difficult than the2F1 due to the increasing
number of parameters and variables. Besides, the mathematical regions where the functions are defined by series
expansion can be very rare. For example, the Appell’sF4(α,β, γ, γ ′, x, y) function is convergent in the region:√|x| + √|y| < 1. (5)

Moreover, analytic continuations of these functions are well known; however, as we will see in the case of Appell’s
F1, they are not as simple as their one-variable partners.

In this work we develop a numerical scheme to compute the functionF1 = F1(α,β1, β2, γ , x, y) defined as a
double series [8,10]:

F1(α,β1, β2, γ , x, y) =
∑
m,n

(α)m+n(β1)m(β2)n

(γ )m+nm!n! xmyn. (6)
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This series is mathematically convergent when:

|x| < 1 and |y| < 1. (7)

The plan of the paper is the following. In Section 2 we outline the main properties of Appell’sF1 function. In
Section 3 we present the numerical procedure to compute the function, pointing out the different regions of the
variables where the function can be computed. In Section 4 we summarize the computer code and present some
results. Finally we draw some conclusions and consider the generalization of this procedure for complex variables.

2. The Appell’s F1 function

In this section we review some important properties of the two-variable hypergeometric function of Appell.
Appell’s F1 function is a solution of the system of partial differential equations:

x(1− x)
∂2F

∂x2
+ y(1− x)

∂2F

∂x∂y
+ [

γ − (α + β1 + 1)x
]∂F

∂x
− β1y

∂F

∂y
− αβ1F = 0,

(8)

y(1− y)
∂2F

∂y2
+ x(1− y)

∂2F

∂x∂y
+ [

γ − (α + β2 + 1)y
]∂F

∂y
− β2x

∂F

∂x
− αβ2F = 0.

The series expansion (6) is the solution of the equation in the vicinity of the singular point(x, y) = (0,0). Further
solutions of the equations can be obtained by path integration in the complex plane. Le Vavasseur studied these
solutions and obtained a table of sixty integrals of the above system [8,10]. This table contains all the solutions
of the system of equations that are expressible in terms ofF1 functions. However, Erdélyi pointed out that there
exist other solutions of the equation that can not be associated withF1 functions [11]. These extra solutions can be
defined in terms of the two variableG2 function:

G2(α1, α2, β1, β2, x, y) =
∑

(α1)m(α2)n(β1)n−m(β2)m−n

xmyn

m!n! . (9)

As well as theF1 function,G2 belongs to the thirty four hypergeometric functions of two-variables of order two
given by Horn [12]. The whole set of functions given byF1 andG2 functions can be used to obtain solutions of the
system (8) near any singular point and is equivalent to the set of twenty four one-variable hypergeometric functions
given by Kummer that enable the computation of the Gauss function near every singular point of Eq. (2).

The simple inspection of the set of Eqs. (8) shows that there exists a variety of singular points and directions.
They are given by the(x, y) pairs:

(0, y) (1, y) (∞, y)

(x,0) (x,1) (x,∞) (10)

(x, x = y)

We can obtain analytic continuations of the solutions in the vicinity of any of these singular manifolds. However,
some particular points will deserve a special treatment since they can be intersections of two or three of these
manifolds. For example, the point(0,1) is the intersection of the(0, y) and(x,1). The situation is worse for the
(1,1) point, since it is a three manifold intersection. Olsson performed a detailed study of the analytic continuations
in these points [13]. In the next sections we make use of these analytic continuations to compute the function in the
whole{x, y} real plane.

3. Numerical scheme

The numerical approach to compute Appell’sF1 function is built upon both the set of analytic continuations
and the numerical solution of the system of partial differential equations. We make use of the first ones to reduce
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the computation of the function to the vicinity of the point(0,0). There we use different strategies to obtain the
functions.

3.1. Transformations of theF1 function

There are a variety of transformations of theF1 function, ranging from the simplest cases where one of the
variables or parameters is zero, to the analytic continuations obtained by Le Vavasseur and Olsson. We divide them
into simple transformations, that involve only one single-variable hypergeometric, and analytic continuations, that
in general include also the functionG2.

3.1.1. Simple transformations
The simplest transformations of the Appell’sF1 function are quoted in advanced textbooks on special functions.

If one of the parametersβ1 or β2 or only one of the variables become zero, the function reduces to a Gauss
hypergeometric [14]:

F1(α,0, β2, γ , x, y) = 2F1(α,β2, γ , y), (11)

F1(α,β1,0, γ , x, y) = 2F1(α,β1, γ , x), (12)

F1(α,β1, β2, γ ,0, y) = 2F1(α,β2, γ , y), (13)

F1(α,β1, β2, γ , x,0) = 2F1(α,β1, γ , x). (14)

There are also some simple transformations similar to the Gauss function:

F1 = (1− x)−β1(1− y)−β2F1

(
γ − α,β1, β2, γ ,

x

x − 1
,

y

y − 1

)
(15)

= (1− x)−αF1

(
α,γ − β1 − β2, β2, γ ,

x

x − 1
,
x − y

x − 1

)
(16)

= (1− y)−αF1

(
α,β1, γ − β1 − β2, γ ,

y − x

y − 1
,

y

y − 1

)
. (17)

Furthermore, there exists for this function a set of Kummer theorems:

F1(α,β2, β2, γ , x,1) = Γ (γ )Γ (γ − α − β2)

Γ (γ − α)Γ (γ − β2)
2F1(α,β1, γ − β2, x), (18)

F1(α,β1, β2, γ ,1, y) = Γ (γ )Γ (γ − α − β1)

Γ (γ − α)Γ (γ − β1)
2F1(α,β2, γ − β1, y), (19)

F1(α,β1, β2, γ ,1,1) = Γ (γ )Γ (γ − α − β1 − β2)

Γ (γ − α)Γ (γ − β1 − β2)
. (20)

3.1.2. Analytic continuations
We make use of some of the analytic continuations found by Olsson that we quote here for completeness [13].

In Table 1 we summarize the different regions related to each singular manifold as well as the equations involved.
Near the singular point(1,1) we have:

F1 = Γ (γ )Γ (γ − α − β1 − β2)

Γ (γ − α)Γ (γ − β1 − β2)
F1(α,β1, β2,1+ α + β1 + β2 − γ,1− x,1− y)

+ Γ (γ )Γ (α + β2 − γ )

Γ (α)Γ (β2)
(1− x)−β1(1− y)γ−α−β2
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Table 1
Analytic continuations of theF1(α,β1, β2, γ, x, y) function

Region Singular points Transformation variables Transformation

(x, y) (u,w) equation

1 (1,1) (1− x,1− y) (21), (22)

2 (0,∞) (x/y,1/y) (23)

3 (∞,0) (1/x,y/x) (24)

4 (1,∞) (1− x,1/y) (25)

5 (∞,1) (1/x,1− y) (26)

6 (∞,∞) (1/x,1/y) (27), (28)

7a (∞,∞), x ∼ y (
x−y

y(x−1)
, 1

y ) if |x − y| < |1− x| (29)

7b (∞,∞), x ∼ y ( 1
x ,

x−y
x(y−1)

) if |x − y| < |1− y| (30)

× F1

(
γ − α,β1, γ − β1 − β2, γ − α − β2 + 1,

1− y

1− x
,1− y

)

+ Γ (γ )Γ (γ − α − β2)Γ (α + β1 + β2 − γ )

Γ (α)Γ (β1)Γ (γ − α)
(1− x)γ−α−β1−β2

× G2

(
γ − β1 − β2, β2, α + β1 + β2 − γ, γ − α − β2, x − 1,

1− y

x − 1

)
. (21)

A similar equation can be obtained by interchanging the roles ofx with y andβ1 with β2:

F1 = Γ (γ )Γ (γ − α − β1 − β2)

Γ (γ − α)Γ (γ − β1 − β2)
F1(α,β1, β2,1+ α + β1 + β2 − γ,1− x,1− y)

+ Γ (γ )Γ (α + β1 − γ )

Γ (α)Γ (β1)
(1− y)−β2(1− x)γ−α−β1

× F1

(
γ − α,γ − β2 − β1, β2, γ − α − β1 + 1,1− x,

1− x

1− y

)

+ Γ (γ )Γ (γ − α − β1)Γ (α + β1 + β2 − γ )

Γ (α)Γ (β2)Γ (γ − α)
(1− y)γ−α−β1−β2

× G2

(
β1, γ − β1 − β2, γ − α − β1, α + β1 + β2 − γ,

1− x

y − 1
, y − 1

)
. (22)

To get into the convergence region, we use (21) when|1−y| < |1−x| and (22) otherwise. The analytic continuation
near the singular point(0,∞) is :

F1 = Γ (γ )Γ (β2 − α)

Γ (β2)Γ (γ − α)
(−y)−αF1

(
α,β1,1+ α − γ,α − β2 + 1,

x

y
,

1

y

)

+ Γ (γ )Γ (α − β2)

Γ (α)Γ (γ − β2)
(−y)−β2G2

(
β1, β2,1+ β2 − γ,α − β2,−x,−1

y

)
. (23)

Analytical continuation near(∞,0):
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F1 = Γ (γ )Γ (β1 − α)

Γ (β1)Γ (γ − α)
(−x)−αF1

(
α,1 + α − γ,β2, α − β1 + 1,

1

x
,
y

x

)

+ Γ (γ )Γ (α − β1)

Γ (α)Γ (γ − β1)
(−x)−β1G2

(
β1, β2, α − β1,1+ β1 − γ,−1

x
,−y

)
. (24)

Analytic continuation in the vicinity of(1,∞):

F1 = Γ (γ )Γ (β2 − α)

Γ (γ − α)Γ (β2)
(1− y)−αF1

(
α,β1, γ − β1 − β2,1+ α − β2,

1− x

1− y
,

1

1− y

)

+ Γ (γ )Γ (α + β1 − γ )

Γ (α)Γ (β1)
(1− x)γ−α−β1(1− y)−β2

× F1

(
γ − α,β2, γ − β2 − β1, γ − α − β1 + 1,

1− x

1− y
,1− x

)

+ Γ (γ )Γ (α − β2)Γ (γ − α − β1)

Γ (α)Γ (γ − β1 − β2)Γ (γ − α)
(1− y)−β2

× G2

(
β1, β2, γ − α − β1, α − β2, x − 1,

1

y − 1

)
. (25)

When the values of(x, y) approach to the point(∞,1) we make use of:

F1 = Γ (γ )Γ (β1 − α)

Γ (γ − α)Γ (β1)
(1− x)−αF1

(
α,γ − β1 − β2, β2,1+ α − β1,

1

1− x
,

1− y

1− x

)

+ Γ (γ )Γ (α + β2 − γ )

Γ (α)Γ (β2)
(1− y)γ−α−β2(1− x)−β1

× F1

(
γ − α,β1, γ − β1 − β2, γ − α − β2 + 1,

1− y

1− x
,1− y

)

+ Γ (γ )Γ (α − β1)Γ (γ − α − β2)

Γ (α)Γ (γ − β1 − β2)Γ (γ − α)
(1− x)−β1

× G2

(
β1, β2, α − β1, γ − α − β2,

1

x − 1
, y − 1

)
. (26)

There are several continuations near(∞,∞). The first ones

F1 = Γ (γ )Γ (β1 − α)

Γ (γ − α)Γ (β1)
(−x)−αF1

(
α,1 + α − γ,β2,1+ α − β1,

1

x
,
y

x

)

+ Γ (γ )Γ (α − β1 − β2)

Γ (α)Γ (γ − β1 − β2)
(−x)−β1(−y)−β2

× F1

(
1+ β1 + β2 − γ,β1, β2,1+ β1 + β2 − α,

1

x
,

1

y

)

+ Γ (γ )Γ (α − β1)Γ (β1 + β2 − α)

Γ (α)Γ (β2)Γ (γ − α)
(−x)−β1(−y)β1−α

× G2

(
β1,1+ α − γ,α − β1, β1 + β2 − α,−y

x
,−1

y

)
(27)
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F1 = Γ (γ )Γ (β2 − α)

Γ (γ − α)Γ (β2)
(−y)−α

× F1

(
α,β1,1+ α − γ,1+ α − β2,

x

y
,

1

y

)

+ Γ (γ )Γ (α − β1 − β2)

Γ (α)Γ (γ − β1 − β2)
(−x)−β1(−y)−β2

× F1

(
1+ β1 + β2 − γ,β1, β2,1+ β1 + β2 − α,

1

x
,

1

y

)

+ Γ (γ )Γ (α − β2)Γ (β1 + β2 − α)

Γ (α)Γ (β1)Γ (γ − α)
(−x)β2−α(−y)−β2

× G2

(
1+ α − γ,β2, β1 + β2 − α,α − β2,−1

x
,−x

y

)
(28)

are useful forx � y. As in the(1,1) case, we use (27) whenx < y and (28) in the other case. Ifx ∼ y, we can
make use of:

F1 = Γ (γ )Γ (α − β1 − β2)

Γ (α)Γ (γ − β1 − β2)
(−y)α−γ (1− x)−β1(1− y)γ−α−β2

× F1

(
γ − α,β1,1− α,1+ β1 + β2 − α,

x − y

y(x − 1)
,

1

y

)

+ Γ (γ )Γ (β1 + β2 − α)

Γ (γ − α)Γ (β1 + β2)
(−y)β1+β2−γ (1− x)−β1(1− y)γ−α−β2

× G2

(
β1, γ − β1 − β2,1− β1 − β2, β1 + β2 − α,

x − y

1 − x
,−1

y

)
(29)

F1 = Γ (γ )Γ (α − β1 − β2)

Γ (α)Γ (γ − β1 − β2)
(−x)α−γ (1− y)−β2(1− x)γ−α−β1

× F1

(
γ − α,1− α,β2,1+ β1 + β2 − α,

1

x
,

y − x

x(y − 1)

)

+ Γ (γ )Γ (β1 + β2 − α)

Γ (γ − α)Γ (β1 + β2)
(−x)β1+β2−γ (1− y)−β2(1− x)γ−α−β1

× G2

(
γ − β1 − β2, β2, β1 + β2 − α,1− β1 − β2,−1

x
,
y − x

1− y

)
. (30)

We found that this set of analytic continuations enables us to map the points outside the convergence region into
it. There are other analytic continuations for other singular manifolds (see Le Vavasseur, Ref. [10]). However, we
have found that the set presented here is complete enough to compute the Appell’sF1 outside the convergence
region. A larger set of analytic continuations could be useful when considering complex variables.

3.1.3. The convergence region
Once the pointP = (x, y) has been mapped into the convergence region, we define a key parametert0 to decide

whether to use a series expansion or to solve the differential equation. For practical purposes, a value oft0 = 0.5
works well since the series can be evaluated confidently for absolute values of the variables smaller than thist0. The
double series (6) is hard to be summed up, so we make use of a single index series expansion found by Burchnall
and Chaundy [16,17]:
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F1(α,β1, β2, γ , x, y) =
∑

r

(α)r (β1)r (β2)r (γ − α)r

(γ + r − 1)r (γ )2rr! (xy)r

× 2F1(α + r, β1 + r, γ + 2r, x)

× 2F1(α + r, β2 + r, γ + 2r, y). (31)

From a numerical point of view this series seems to be more difficult to evaluate since each term would require
the evaluation of two Gauss functions. However, we found that this series is strongly convergent and suitable for
numerical calculations. In the case

t0 < |P − 0| < 1 (32)

we solve numerically a third-order ordinary differential equation that represents the whole system of partial
differential equations (8) [11]. This equation has been found by Burchnall for the functionz(xt, yt) in terms
of the parametric variablet [15]. The equation is:

zδ(−2+ γ + δ)(−1+ γ + δ)

− z(α + δ)(−1+ γ + δ)t
(
x(β1 + δ) + y(δ + β2)

)
+ t2x y z(α + δ)(1+ α + δ)(β1 + δ + β2) = 0, (33)

whereδ = t ∂
∂t

. The Appell’sF1 function verifies this equation. This equation can be numerically integrated from
a proper initial condition to retrieve theF1 function, in the same way as that proposed by Press and co-workers in
Ref. [1]. The selectionz(0,0) = 0 and a numerical path integration following a straight line to the pointP gives
the desired result, that is, the function in the region (32). Furthermore, this enables us to check the result from the
sum of the series. This strategy cannot be used straightforwardly for a point outside the convergence regions, since
in that case the path would cross the linesx = 1 ory = 1 which are singular points of Eq. (33).

On the other hand, the use of analytic continuations results in a further problem, that is, the computation of the
G2 function. This function can be related to Appell’sF2 function by:

G2(β1, β2, γ1, γ2, x, y) = (1+ x)−β1(1+ y)−β2

×F2

(
1− γ1 − γ2, β1, β2,1− γ1,1− γ2,

x

x + 1
,

y

y + 1

)
(34)

and

F2(α,β1, β2, γ1, γ2, x, y) =
∑ (α)m+n(β1)m(β2)n

(γ1)m(γ1)nm!n! xmyn. (35)

There exists a single index series for Appell’sF2 function:

F2(a,β1, β2, γ1, γ2, x, y) =
∑

r

(a)r(β1)r (β2)r

(γ1)r(γ2)rr! (xy)r

× 2F1(a + r, β1 + r, γ1 + 2r, x)

× 2F1(a + r, β2 + r, γ2 + 2r, y) (36)

which enables us to compute theG2 function in its region of convergence. With these methods we can efficiently
compute the function in the whole real plane.

4. The structure of the program

In this section we make a more detailed description of the code. We have two versions of these routines. We
have first developed the general structure of the program in Mathematica, using their built-in Gauss and Gamma
functions. We then translated the code into a Fortran program. The structure of the program is the same, although in



F.D. Colavecchia et al. / Computer Physics Communications 138 (2001) 29–43 37

the latter case we should rely on numerical functions to compute the core parts of the program. There are a variety
of routines that compute Gamma and Gauss functions, and, for brevity, we will not comment here on the evaluation
of them. For example, the functions described in Ref. [1] are well suited to perform this task. Also, these functions
have been nicely programmed by Forrey [3]. The FORTRAN code uses double precision arithmetic.

4.1. Programming details

The computation of the Appell’s hypergeometric function is based on a careful determination of the most
convenient analytic continuation for each given pair of variables(x, y). These procedures are encapsulated in the
functionf1, that gets all the parameters and variables as arguments, returning the complex value of theF1 function.
First, the program checks the trivial cases: whether or not some of the variables are zero, see Eqs. (11)–(14) and
when they fulfill some particular relations (Eqs. (15)–(17)). These simple expressions imply the evaluation of only a
Gauss hypergeometric function. We found that the comparisons of double precision variables with the mathematical
zero can be performed against a numerical zero value defined as 10−12 for all practical purposes. The next step
is to determine the best analytic continuation to be used. Whenever the absolute values of the variables are less
than one, we call the routinef1bnl. This routine manages two possible behaviours: if the absolute values of both
variables are less thant0 = 0.5 we make use of the series expansion in terms of the hypergeometric2F1, Eq. (31),
which provides relative and absolute error criteria. Otherwise, the routine switches to the numerical solution of the
third-order differential equation, Eq. (33). This numerical integration is performed with the routineodeint from
Ref. [1], slightly modified to manage a set of complex coefficients in the differential equation. The relative error in
the integration is set to 10−10 through the variableeps.

If both variables in absolute value are greater than unity, we should choose an analytic continuation. We evaluate
the effective distance in each possible region as:

tmax=
√

w2 + u2,

wherew andu are given in Table 1 for each region. To obtain the minimum of all distances, we make a sequential
searching, storing in the integer variableflag the best region obtained. When the region is selected, we call the
corresponding analytic continuation. This in general would imply a computation of an Appell’sF1 function with
|x| < 1 and|y| < 1 through the routinef1bnl and an evaluation of theG2 function.

We must note that, in a similar way to the Gauss function2F1, there are many particular cases of the set of
parameters{α,β1, β2, γ } that would lead to simplifications in the computation of the function. Some of them are
associated with the occurrence of divergences in the analytic continuations. For example, if the routine is called with
the fourth parameterγ = −n with n a natural number or zero; the program first checks whether this function can
be evaluated using one of the simple transformations. If not, the program stops. To handle this kind of divergences,
a whole new routine should be written for these irregular solutions of Eq. (8). For practical purposes, we did not
include them in the present version of the program. The functions frequently called such as the Gamma functions
provide the corresponding error checking. To avoid some problems with the evaluation of the Gamma function
near negative integers, we make use of acgammar function that returns 1/Γ (z). If the variable is close enough to
a pole, the functions returns zero.

4.2. Numerical tests

To illustrate the functionality of the code, we show in this section some examples of the computation of the
Appell’s F1 function. The routines have been carefully tested for a variety of situations and have been shown to be
very fast. For example, a typical evaluation in the region 7a takes less than 0.01 s of CPU time in a 400 MHz
Pentium II single processor computer, involving the evaluation of ten Gauss functions. We note that also the
computing time strongly depends on the value of the parameters of theF1. There are several checks of the Appell’s
functions that involve the reduction to a Gauss function. First we study the ability of the methods proposed in the
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Table 2
Test of theF1 function, Eq. (37), in the convergence region withα = γ = 1, β1 = 2+ i andβ2 = 3

2 − i
2

x y |F1| Eq. (33) (1− x)−β1(1− y)−β2 ε

−0.95 −0.95 0.09657815 0.09657815 6.3[−12]
−0.95 −0.57 0.13368457 0.13368457 2.7[−12]
−0.95 −0.19 0.20258642 0.20258642 2.8[−12]
−0.95 0.19 0.36074743 0.36074743 7.4[−13]
−0.95 0.57 0.93267019 0.93267019 9.1[−12]
−0.95 0.95 23.52208260 23.52208260 4.4[−12]
−0.53 −0.95 0.15646981 0.15646981 3.8[−11]
−0.53 −0.57 0.21658730 0.21658730 8.2[−13]
−0.53 −0.19 0.32821773 0.32821773 3.2[−13]
−0.53 0.19 0.58446021 0.58446021 1.3[−12]
−0.53 0.57 1.51105333 1.51105333 1.1[−12]
−0.53 0.95 38.10899256 38.10899256 2.0[−11]
−0.11 −0.95 0.29592231 0.29592231 2.1[−15]
−0.11 −0.57 0.40961906 0.40961906 1.1[−12]
−0.11 −0.19 0.62073923 0.62073923 5.5[−13]
−0.11 0.19 1.10535582 1.10535582 1.7[−12]
−0.11 0.57 2.85776787 2.85776787 1.4[−12]
−0.11 0.95 72.07333626 72.07333626 1.9[−11]

0.30 −0.95 0.75810548 0.75810548 2.5[−12]
0.30 −0.57 1.04937829 1.04937829 7.3[−13]
0.30 −0.19 1.59023429 1.59023429 1.1[−11]
0.30 0.19 2.83174424 2.83174424 3.0[−14]
0.30 0.57 7.32114269 7.32114269 1.2[−12]
0.30 0.95 184.64032172 184.64032172 8.5[−12]
0.72 −0.95 4.75180494 4.75180494 3.1[−11]
0.72 −0.57 6.57750282 6.57750282 9.9[−12]
0.72 −0.19 9.96758802 9.96758802 2.2[−13]
0.72 0.19 17.74937206 17.74937206 1.2[−11]
0.72 0.57 45.88892014 45.88892014 6.0[−12]
0.72 0.95 1157.32548026 1157.32548030 3.0[−11]

aThe numbers between brackets denote multiplicative powers of 10. The relative errorε is defined in the text.

preceding sections to deal with variables in the convergence region. Whenα = γ the functionF1 reduces to a
simple expression:

F1(α,β1, β2, α, x, y) = (1− x)−β1(1− y)−β2. (37)

In Table 2 we show the results of the computation of theF1 in this case. The computation is restricted to the
convergence region and we make use only of the routine that numerically integrates the differential equation (33).
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The relative errorε is defined with respect to the exact value of the function given by the RHS of (37). We observe
that in all cases the relative error is smaller than 10−10, the specified relative error in the routine.

A similar comparison can be done with the computation of the series (31). However, whenα = γ all terms but
the first of this relation are equal to zero, because(γ −α)r = (0)r = 0 for r �= 0. Then in this case the series reduces
to the product of two Gauss functions that can be further simplified to get exactly the result (37).

Another useful expression with which make a test can be found whenγ = β1 + β2:

F1(α,β1, β2, β1 + β2, x, y) = (1− y)−α
2F1

(
α,β1, β1 + β2, (y − x)/(y − 1)

)
. (38)

In Table 3 we show the results of both the series summationF ser
1 and the numerical integrationF int

1 in the
convergence region, compared with the result given by the Gauss function. Both relative errorsεa and εb are
computed against the ‘exact’2F1. Again, both methods give a good accuracy in the whole convergence region. The
0.0 value in the relative error of the numerical integrationF int

1 whenx = y indicates that the numerical integration
is not possible since this line is also a pole of the differential equations even when|x, y| < 1 as in this example.
This does not represent a difficulty because there exists an exact result that has been included in the code:

F1(α,β1, β2, γ , x, x) = 2F1(α,β1 + β2, γ , x). (39)

Also, we note that when the variables approach the point(1,1) the numerical integration achieves better results
than the series expansion. Again, the last method also deteriorates when the parameters become large.

Finally, we show another simplification of the previous example. Whenα = −1
2, β1 = 2, β2 = 1 andγ = β1+β2

we have:

2F1
(−1

2,2,3, z
) = 4

15(1− y)−α
[
2− (2+ 3z)(1− z)3/2]. (40)

In Table 4 we show the results of theF1 program together with a result from a Gauss function and the exact
result (40). In this example we scan a whole set of variables,|x, y| < 7

2 that travel through all the possible regions
defined in Table 1. The computation has been performed with a relative error of 10−6. The obtained errorεF1

shows an excellent agreement of the computedF1 function relative to the exact values. Surprisingly, in a few cases
the relative error is smaller than the obtained with the2F1 function. The routine manages all the presented pair of
variables and moves into the best regions according to the criteria presented before.

5. Conclusion and outlook

In this work we have presented a numerical scheme implemented to compute Appell’sF1 hypergeometric
function of two variables. We make use of a mixed strategy, combining series computation and numerical
integration of differential equations. Even when theF1 function is a solution of a system of partial differential
equations and is usually defined as a double series, there exists a single index series representation of the function.
Also, the system of PDEs can be expressed as an ordinary third-order differential equation. These properties
are highly convenient for numerical purposes. Due to the convergence behaviour of the series definition and the
distribution of singularities, these methods are suitable inside the zone (7). However, there are several well known
analytical continuations that enable the transformation of the function from outside the convergence region into it.
The price to pay is that we need also to compute aG2 function, an Appell’sF1 relative. The numerical code has
been thoroughly tested and some of these runs have been presented as examples. We would like to remark that
the code is able to compute some simplified cases, when the variables and/or the parameters fulfill some particular
conditions, but do not manage all of them. For example, the introduction of simplifications that involve negative
integer values of the parameters would imply a high numerical cost in terms of computing time.

The scheme presented can be also applied to other Appell’s functions. We have found that it is possible to obtain
analytical continuations of Appell’s functions, but they present an important drawback: most of these continuations
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Table 3
Numerical test of theF1 function, Eq. (38) in the convergence region withα = 1, β1 = 3+ i, β2 = 2− i

2 andγ = β1 + β2

x y F ser
1 F int

1 F1 εser
a εint

a

(Eq. (31)) (Eq. (33)) (Eq. (38))

−0.95 −0.95 0.51282051 0.51282051 0.51282051 0.0 0.0

−0.95 −0.57 0.55535479 0.55535479 0.55535479 7.2[−09] 2.0[−10]
−0.95 −0.19 0.60791691 0.60791691 0.60791691 4.1[−09] 2.2[−10]
−0.95 0.19 0.67545324 0.67545323 0.67545324 6.8[−09] 1.1[−08]
−0.95 0.57 0.76755519 0.76755518 0.76755365 2.0[−06] 2.0[−06]
−0.95 0.95 0.90428982 0.90428984 0.90428984 1.9[−08] 3.5[−09]
−0.57 −0.95 0.58342152 0.58342152 0.58342152 2.7[−09] 8.9[−11]
−0.57 −0.57 0.63694268 0.63694268 0.63694268 0.0 0.0

−0.57 −0.19 0.70425421 0.70425421 0.70425421 8.8[−10] 4.8[−10]
−0.57 0.19 0.79279973 0.79279973 0.79279974 4.0[−09] 3.5[−09]
−0.57 0.57 0.91786342 0.91786341 0.91786346 4.0[−08] 5.1[−08]
−0.57 0.95 1.11675223 1.11675226 1.11675226 2.2[−08] 1.1[−09]
−0.19 −0.95 0.67982327 0.67982327 0.67982327 8.9[−10] 1.6[−09]
−0.19 −0.57 0.75004065 0.75004065 0.75004065 3.9[−09] 2.5[−10]
−0.19 −0.19 0.84033613 0.84033613 0.84033613 0.0 0.0

−0.19 0.19 0.96273876 0.96273876 0.96273876 5.1[−10] 4.7[−10]
−0.19 0.57 1.14366891 1.14366890 1.14366892 6.1[−09] 1.7[−08]
−0.19 0.95 1.45953732 1.45953734 1.45953733 1.2[−08] 7.4[−09]

0.19 −0.95 0.82196313 0.82196313 0.82196312 6.1[−09] 8.5[−09]
0.19 −0.57 0.92026724 0.92026724 0.92026724 5.7[−09] 2.1[−09]
0.19 −0.19 1.05054372 1.05054372 1.05054372 6.2[−10] 6.9[−10]
0.19 0.19 1.23456790 1.23456790 1.23456790 0.0 0.0

0.19 0.57 1.52444538 1.52444536 1.52444537 9.1[−09] 1.9[−09]
0.19 0.95 2.10562432 2.10562436 2.10562427 2.5[−08] 4.3[−08]
0.57 −0.95 1.06293284 1.06293284 1.06293284 3.5[−10] 5.8[−09]
0.57 −0.57 1.21816169 1.21816169 1.21816168 1.1[−08] 1.1[−08]
0.57 −0.19 1.43365812 1.43365813 1.43365812 4.1[−09] 8.3[−09]
0.57 0.19 1.75843150 1.75843151 1.75843150 1.9[−09] 2.5[−09]
0.57 0.57 2.32558140 2.32558140 2.32558140 0.0 0.0

0.57 0.95 3.77963829 3.77963837 3.77963715 3.0[−07] 3.2[−07]
0.95 −0.95 1.66982378 1.66982335 1.66982033 2.1[−06] 1.8[−06]
0.95 −0.57 2.02668624 2.02668669 2.02668322 1.5[−06] 1.7[−06]
0.95 −0.19 2.58134890 2.58135132 2.58134727 6.3[−07] 1.6[−06]
0.95 0.19 3.56763283 3.56764083 3.56763606 9.1[−07] 1.3[−06]
0.95 0.57 5.85733701 5.85737543 5.85737585 6.6[−06] 7.1[−08]
0.95 0.95 20.00000000 20.00000000 20.00000000 0.0 0.0

aSee note on Table 2.
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Table 4
Numerical test of theF1 function given by Eq. (40) forx < 0

x y Region F1 2F1 Exact εF1 ε2F1

(Eq. (38)) (Eq. (40))

−3.50 −3.50 b 2.12132034 2.12132034 2.12132034 0.0 0.0

−3.50 −2.50 7b 2.04040982 2.04040981 2.04040992 5.2[−08] 5.2[−08]
−3.50 −1.50 7b 1.95401180 1.95401180 1.95401190 5.0[−08] 5.0[−08]
−3.50 −0.50 3 1.86035462 1.86035566 1.86035569 5.8[−07] 1.7[−08]
−3.50 0.50 3 1.75598179 1.75598179 1.75598193 7.9[−08] 7.8[−08]
−3.50 1.50 5 1.62917838 1.62917838 1.62917847 5.9[−08] 5.9[−08]
−3.50 2.50 6 1.48548529 1.48548531 1.48548541 8.1[−08] 6.3[−08]
−3.50 3.50 6 1.35499406 1.35499406 1.35499419 9.5[−08] 9.7[−08]
−2.50 −3.50 7a 1.95697834 1.95697834 1.95697845 5.2[−08] 5.2[−08]
−2.50 −2.50 b 1.87082869 1.87082869 1.87082869 0.0 0.0

−2.50 −1.50 7b 1.77824921 1.77824921 1.77824930 5.1[−08] 5.1[−08]
−2.50 −0.50 3 1.67700137 1.67700356 1.67700363 1.3[−06] 4.4[−08]
−2.50 0.50 3 1.56257050 1.56257050 1.56257065 1.0[−07] 9.8[−08]
−2.50 1.50 5 1.41872399 1.41872399 1.41872407 5.9[−08] 5.9[−08]
−2.50 2.50 6 1.25857059 1.25857059 1.25857068 7.1[−08] 7.2[−08]
−2.50 3.50 6 1.12513362 1.12513362 1.12513380 1.6[−07] 1.6[−07]
−1.50 −3.50 7a 1.77471786 1.77471786 1.77471794 4.6[−08] 4.6[−08]
−1.50 −2.50 7a 1.68182193 1.68182193 1.68182202 5.2[−08] 5.2[−08]
−1.50 −1.50 b 1.58113883 1.58113883 1.58113883 0.0 0.0

−1.50 −0.50 c 1.46969378 1.46969383 1.46969392 9.4[−08] 6.2[−08]
−1.50 0.50 3 1.34118576 1.34118577 1.34118599 1.7[−07] 1.6[−07]
−1.50 1.50 5 1.17126079 1.17126079 1.17126086 5.9[−08] 5.9[−08]
−1.50 2.50 6 0.99247161 0.99247160 0.99247171 1.1[−07] 1.1[−07]
−1.50 3.50 6 0.86922669 0.86922668 0.86922703 4.0[−07] 4.1[−07]
−0.50 −3.50 2 1.56577391 1.56578858 1.56578860 9.4[−06] 1.4[−08]
−0.50 −2.50 2 1.46350101 1.46351856 1.46351861 1.2[−05] 3.1[−08]
−0.50 −1.50 c 1.35127910 1.35127918 1.35127925 1.1[−07] 4.9[−08]
−0.50 −0.50 b 1.22474487 1.22474487 1.22474487 0.0 0.0

−0.50 0.50 d 1.07407681 1.07407684 1.07407686 4.3[−08] 1.7[−08]
−0.50 1.50 2 0.85764535 0.85764535 0.85764540 6.3[−08] 6.3[−08]
−0.50 2.50 2 0.67330010 0.67330009 0.67330036 4.0[−07] 4.1[−07]
−0.50 3.50 2 0.61598960 0.61598957 0.61599065 1.7[−06] 1.8[−06]
aSee note in Table 2.
b In these casesx = y andF1 always reduces to a Gauss function.
c Simple continuations, Eqs. (15)–(17).
d Convergence region.
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Table 5
Same as Table 4 forx > 0

x y Region F1 2F1 Exact εF1
a ε2F1

a

(Eq. (38)) (Eq. (40))

0.50 −3.50 2 1.30813932 1.30814809 1.30814761 6.3[−06] 3.6[−07]
0.50 −2.50 2 1.19046476 1.19047288 1.19047262 6.6[−06] 2.2[−07]
0.50 −1.50 2 1.05833564 1.05834335 1.05834326 7.2[−06] 8.3[−08]
0.50 −0.50 d 0.90400843 0.90400846 0.90400847 4.4[−08] 1.4[−08]
0.50 0.50 b 0.70710678 0.70710678 0.70710678 0.0 0.0

0.50 1.50 1 0.38872999 0.38872999 0.38873015 4.0[−07] 4.1[−07]
0.50 2.50 2 0.42426224 0.42426219 0.42426409 4.4[−06] 4.5[−06]
0.50 3.50 2 0.60368908 0.60368899 0.60369237 5.5[−06] 5.6[−06]
1.50 −3.50 4 0.92086392 0.92086378 0.92086920 5.7[−06] 5.9[−06]
1.50 −2.50 4 0.77207798 0.77207787 0.77208236 5.7[−06] 5.8[−06]
1.50 −1.50 4 0.60368908 0.60368899 0.60369237 5.5[−06] 5.6[−06]
1.50 −0.50 3 0.42426219 0.42426219 0.42426409 4.5[−06] 4.5[−06]
1.50 0.50 1 0.38872999 0.38872999 0.38873015 4.0[−07] 4.1[−07]
1.50 1.50 b 0.70710678 0.70710678 0.70710678 0.0 0.0

1.50 2.50 4 0.90399999 0.90400846 0.90400847 9.4[−06] 1.4[−08]
1.50 3.50 4 1.05833564 1.05834335 1.05834326 7.2[−06] 8.3[−08]
2.50 −3.50 6 0.73484376 0.73484366 0.73484696 4.4[−06] 4.5[−06]
2.50 −2.50 6 0.65183291 0.65183285 0.65183505 3.3[−06] 3.4[−06]
2.50 −1.50 6 0.61598958 0.61598957 0.61599065 1.7[−06] 1.8[−06]
2.50 −0.50 3 0.67330009 0.67330009 0.67330036 4.1[−07] 4.1[−07]
2.50 0.50 3 0.85764534 0.85764535 0.85764540 6.5[−08] 6.3[−08]
2.50 1.50 5 1.07407624 1.07407684 1.07407686 5.7[−07] 1.7[−08]
2.50 2.50 b 1.22474487 1.22474487 1.22474487 0.0 0.0

2.50 3.50 7a 1.35127918 1.35127918 1.35127925 4.9[−08] 4.9[−08]
3.50 −3.50 6 0.79693132 0.79693127 0.79693294 2.0[−06] 2.1[−06]
3.50 −2.50 6 0.80691370 0.80691371 0.80691460 1.1[−06] 1.1[−06]
3.50 −1.50 6 0.86922668 0.86922668 0.86922703 4.0[−07] 4.1[−07]
3.50 −0.50 3 0.99247160 0.99247160 0.99247171 1.1[−07] 1.1[−07]
3.50 0.50 3 1.17126079 1.17126079 1.17126086 6.0[−08] 5.9[−08]
3.50 1.50 5 1.34118577 1.34118577 1.34118599 1.6[−07] 1.6[−07]
3.50 2.50 7b 1.46969385 1.46969383 1.46969392 5.0[−08] 6.2[−08]
3.50 3.50 b 1.58113883 1.58113883 1.58113883 0.0 0.0

a–dSee notes in Table 4.
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would require the computation of higher order single variable hypergeometric functions, such as3F2 or 4F3, which
are more complicated to implement numerically.

Finally, we would like to note that this method can also be used for complex variables, but some modifications
would be needed. Basically, the set of analytic continuations presented is not sufficiently complete to cover the
whole two-variable complex plane, and should be extended to include the regions not represented by this scheme.
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