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Abstract In this note we obtain results regarding the preservation of homogeneity
properties along the whole orbit of a given iterated function system (IFS). We have
essentially two types of results. The first class of them contains negative results: it is
possible for a classical IFS to have a complete non-homogeneous sequence of spaces
along the orbit, starting from very classical homogeneous spaces such as those de-
fined by Muckenhoupt weights. The second class contains positive results which can
be summarized here by saying that the sequence of spaces defined by the orbit of
contractive similitudes starting at a normal space in the sense of Ahlfors, Macías, and
Segovia, preserves doubling. As a consequence of these results we conclude bound-
edness properties of the Hardy–Littlewood maximal operator along the orbits.
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Boundedness of the Hardy–Littlewood Maximal Operator 1833

1 Introduction

Fourier and harmonic analysis, after the introduction of the methods of real analysis
in the first years of the second half of the 20th century, relies strongly on the bound-
edness properties of some crucial operators. Among them, the role of the Hardy–
Littlewood maximal operator M is central because of at least two reasons. The first
one is that in one sense or another M controls all the singular integral operators of
Fourier and harmonic analysis. The second is that it involves the subtle relationships
between the two underlying structures of the space on which functions are defined:
measure and metric. If (Y, d) is a metric space and μ is a positive Borel measure such
that the d-balls B = B(y, r) = {z ∈ Y : d(z, y) < r} have finite and positive measure,
the Hardy–Littlewood maximal operator is defined, for a locally integrable function
f , as

Mf (y) = sup
B�y

1

μ(B)

∫
B

∣∣f (z)
∣∣dμ(z),

where the supremum is taken over the family of the d-balls B containing y.
Singular integrals and Hardy–Littlewood type maximal operators are generally

not integral operators in the sense that they do not improve regularity. This fact
is reflected by the boundedness properties of singular integrals; they preserve the
Lebesgue Lp spaces for 1 < p < ∞. For the Hardy–Littlewood maximal operator
a natural setting for its Lp boundedness and for its weak type (1,1) is provided by
the structure of space of homogeneous type: a quasi-metric space with a doubling
measure. In other words, if μ is doubling then ‖Mf ‖Lp(dμ) ≤ Cp‖f ‖Lp(dμ) and
μ({Mf > λ}) ≤ C

λ
‖f ‖L1(dμ). Moreover, the theory developed by Muckenhoupt in

[12] provides necessary and sufficient conditions on a weight (positive density) w in
order to obtain weighted estimates of the type ‖Mf ‖Lp(w dμ) ≤ Cp,w‖f ‖Lp(w dμ) for
the maximal operator M . These functions w are known as Ap-Muckenhoupt weights,
and we shall recall them in the next section.

In [11] Mosco shows that the classical fractals obtained as fixed points of iterated
function systems have some precise homogeneity property. Hence, on those frac-
tals the Hardy–Littlewood maximal operator is a well-behaved operator in Lebesgue
spaces. Since, on the other hand, the uniqueness of the Banach fixed point leads us
to that limit space no matter what is the initial space, we ask whether or not having
good behavior of the Hardy–Littlewood maximal operator in the initial space and,
of course, in the limit space (the attractor) would guarantee good behavior of the
Hardy–Littlewood maximal operator on each one of the spaces determined by the or-
bit of the iterated function system. Loosely speaking, we would expect some kind of
interpolation of the behavior of the Hardy–Littlewood maximal operator, providing
boundedness properties in the middle spaces from the same properties in the extreme
spaces. We prove that the answer to this general question is negative, and we obtain
some positive results under more restrictive doubling conditions, such as those known
as Ahlfors conditions.

The geometric results are contained in Theorem 2.1, and some of their analytical
consequences in Theorem 2.2.
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1834 H. Aimar et al.

2 Statement of Results

Let us start by describing our general framework. Let (X,d) be a metric space.
A mapping φ : X → X is called contraction map if there exists a constant a > 1
such that

d
(
φ(x),φ(y)

) ≤ 1

a
d(x, y),

for every x, y ∈ X. The constant 1
a

is called the contractivity coefficient. We will
call a finite set of contraction maps {φ1, . . . , φM } on X an iterated function system
(IFS). We will use the term ISS as an acronym of iterated system of similitudes for
designating an iterated function system � consisting of

(a) a compact metric space (X,d) with finite metric dimension and d-diameter equal
to one;

(b) M contractive similitudes φi : X → X with the same contractivity coefficient
1/a, with a > 1. Precisely, each φi satisfies

d
(
φi(x),φi(y)

) = 1

a
d(x, y)

for every x, y ∈ X;
(c) a non-empty open set U such that

M⋃
i=1

φi(U) ⊆ U,

and φi(U) ∩ φj (U) = ∅ if i �= j .

A metric space (X,d) is of finite metric dimension (also known as finite Assouad
dimension) if there exists a constant N ∈ N such that for every x ∈ X, every r > 0,
and every r-disperse subset E of X, we have that card(E ∩ B(x,2r)) ≤ N . A set E

is said to be r-disperse if d(x, y) ≥ r for every x, y ∈ E, x �= y. If (X,d) has finite
metric dimension, then every r-disperse subset of X has at most Nm points in each
ball of radius 2mr , for all m ∈ N (see [4] and [3]). Property (c) is known as the open
set condition (OSC) for �, and U is called an open set for the OSC for � (see, for
example, [5, 8], and [10]).

For the sake of simplicity in further reference, we shall say that � as above is an
iterated system of similitudes, briefly � ∈ ISS(M,a) or simply � ∈ ISS.

Notice that a compact metric space (X,d), a positive integer M , a constant a > 1,
M similitudes φi , and an open set U are associated with each given � ∈ ISS.

Of course the basic examples are the systems generating the most classical and
best-known fractal sets, such as the ternary Cantor set and the von Koch snowflake.
For example, in the case of the ternary Cantor set the system � consists of X = [0,1]
equipped with the Euclidean distance d(x, y) = |x − y|, M = 2, a = 3, φ1(x) = x/3,
φ2(x) = x/3 + 2/3, and U = (0,1).

Let K = {K ⊆ X : K �= ∅, K closed}. With [A]ε we shall denote the ε-
enlargement of the set A ⊂ X, i.e., [A]ε = ⋃

x∈A B(x, ε) = {y ∈ X : d(y,A) < ε}.
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Boundedness of the Hardy–Littlewood Maximal Operator 1835

Here d(x,A) = inf{d(x, y) : y ∈ A}. Given two sets in K A and B , the Hausdorff
distance from A to B is given by

dH (A,B) = inf
{
ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε

}
.

It is well known that (K, dH ) is a complete metric space (see [6]).
Let us now introduce the Kantorovich distance dK on the set

P (X) = {
μ : μ is a non-negative Borel probability measure on X and μ(X) = 1

}
.

Given two measures μ and ν in P , dK(μ, ν) = sup{| ∫ f dμ − ∫
f dν| : f ∈ Lip1},

where Lip1 denotes the space of all Lipschitz continuous functions defined on X

with Lipschitz constant less than or equal to one, i.e., f ∈ Lip1 if and only if |f (x)−
f (y)| ≤ d(x, y) for every x and y ∈ X. Since (X,d) is compact, dK gives a distance
on P (X) such that the dK -convergence of a sequence is equivalent to its weak star
convergence to the same limit (see [5] or [2] for the metric case).

The family � gives rise to dynamical systems by iteration of some basic opera-
tions. We are interested in two of these dynamical systems. The first one is defined
on K and is given by

T1Y =
M⋃
i=1

φi(Y )

for Y ∈ K.
The second, T2, is defined on P . The operation T2 on μ ∈ P , which we denote

T2μ, is given by

T2μ(B) = 1

M

M∑
i=1

μ
(
φ−1

i (B)
)
,

where B is any Borel measurable subset of X.
The original result of Hutchinson and some further developments like those ob-

tained by Mosco in [11] refer to the pair of limit objects: the invariant measure and
the fractal set supporting it.

Then we consider, instead of two independent dynamical systems induced by T1

and T2, the system generated by a single operation T defined by

T (Y,μ) = (T1Y,T2μ)

on the set

E = {
(Y,μ) ∈ K × P : supp(μ) ⊆ Y

}
equipped with the inherited distance δ((Y1,μ1), (Y2,μ2)) = dH (Y1, Y2) +
dK(μ1,μ2) on K × P . Since E is closed in K × P , we have that (E , δ) is also a
complete metric space (see [2]).

From the Banach fixed point theorem we have that T has a unique fixed point
which we shall denote, from now on, by (Y∞,μ∞). Of course Y∞ is the attractor set

Author's personal copy



1836 H. Aimar et al.

and μ∞ is its invariant measure. Moreover, (Y∞,μ∞) can be achieved as the limit,
in the distance δ, of the iterations of T starting at any initial space (Y0,μ0) ∈ E .

For a given (Y0,μ0) ∈ E , we shall denote by O(Y0,μ0) the orbit of T with initial
point (Y0,μ0). In other words,

O(Y0,μ0) = {
T n(Y0,μ0) : n ∈ N0

} ∪ {
(Y∞,μ∞)

}
,

where T 0(Y0,μ0) = (Y0,μ0) and T n+1(Y0,μ0) = T (T n(Y0,μ0)), n ≥ 0. Let us
write (Yn,μn) to denote T n(Y0,μ0).

We shall now illustrate the above definitions in the case of the ternary Can-
tor set C. If we take Y0 = [0,1] and μ0 = Lebesgue measure on Y , we have that
T1(Y0) = [0,1/3] ∪ [2/3,1], T 2

1 (Y0) = [0,1/9] ∪ [2/9,1/3] ∪ [2/3,7/9] ∪ [8/9,1],
and in general, T n

1 (Y0) is the union of 2n disjoint intervals of the n-th step in the
usual construction of the Cantor set. Denoting this union by Cn, we have that T n

2 (μ0)

coincides with the uniform measure on Cn normalized to a probability. But if we now
take Y0 = {0} and μ0 = Dirac delta concentrated at 0, then T n

1 (Y0) is the collection
Ln of all the left endpoints of each interval in Cn, and T n

2 (μ0) is the counting mea-
sure on Ln divided by 2n. We point out, in accordance with the results of this work,
no matter what the starting space is, the limit (Y∞,μ∞) is the Cantor set C with the
Hausdorff s-dimensional measure on C, where s = log 2/ log 3 (see [5, 8]).

For (Y,μ) ∈ E we define the Hardy–Littlewood maximal operator by

MY f (y) = sup
B�y

1

μ(B)

∫
B

|f (z)|dμ(z),

for functions f ∈ L1(Y,μ).
So that, once an ISS � is given, our universal space shall be (E , δ). A basic ques-

tion regarding the above considerations is the preservation of some subclasses of E ,
in particular those that could guarantee the preservation of the boundedness prop-
erties of the Hardy–Littlewood operator along the orbits. From the results in [11],
subclasses of homogeneity, doubling, or normality are of particular interest.

Let us proceed to define, and briefly illustrate in the interval [0,1], the subclasses
DA, D, Nβ,C , Nβ , and N of E that we are going to consider.

• Doubling. For a given A ≥ 1, we say that a pair (Y,μ) ∈ E belongs to DA if
(Y, d,μ) is a space of homogeneous type or a doubling space with doubling con-
stant A, and we write (Y,μ) ∈ DA. In other words, DA is the collection of all
(Y,μ) ∈ E such that

0 < μ
(
B(y,2r)

) ≤ Aμ
(
B(y, r)

)
(1)

holds for every y ∈ Y and every r > 0. The constant A in 1 is called the doubling
constant for μ. Since supp(μ) ⊆ Y , we have that μ(B(y, s)) = μ(B(y, s) ∩ Y).
The family D = ⋃

A≥1 DA is the class of all doubling spaces in E . We say that a
subset F of E is uniformly doubling if there exists a constant A ≥ 1 such that
F ⊆ DA.
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Boundedness of the Hardy–Littlewood Maximal Operator 1837

For example, in X = [0,1] with the usual distance, the space (Y,μ) with Y = X

and μ the Lebesgue length, belongs to D2. But the subspace Y = [0, 1
2 ]∪[ 3

4 ,1] with μ

being normalized length does not belong to D2, since, for example, μ(B( 1
2 , 1

4 )∩Y) =
1
3 but μ(B( 1

2 , 1
2 ) ∩ Y) = 1. However, (Y,μ) ∈ D3. The Dirac delta at the origin in

[0,1], in other words the pair ([0,1], δ0), provides an example of an element of E
which is not in D.

Let us point out that if (Y,μ) ∈ DA then supp(μ) = Y . In fact for y ∈ Y \ supp(μ)

there exists an open set G containing y with μ(G) = 0. So that for some ball B in Y

we should have μ(B) = 0, which is impossible.
Another special class of metric measure spaces that we shall consider is that of

normal spaces. The concept of normality of a space of homogeneous type was in-
troduced by Macías and Segovia in [9]. Actually, they define the concept that in our
terminology is called 1-dimensional normality.

• Normality. For β > 0 and c ≥ 1, we shall write Nβ,c to denote the set of all pairs
(Y,μ) ∈ E such that

c−1rβ ≤ μ
(
B(y, r)

) ≤ crβ

for every y ∈ Y and 0 < r < 1. In other words, the measure of each ball of radius r

is comparable to rβ . The family Nβ = ⋃
c≥1 Nβ,c denotes the class of all β-normal

(also named Ahlfors β-regular or β-dimensional) spaces in E , and N = ⋃
β>0 Nβ

is the class of all normal spaces in E . For a given β > 0, we say that a subset F of
E is uniformly β-normal if there exists a constant c ≥ 1 such that F ⊂ Nβ,c . We
say that F is uniformly normal if F is uniformly β-normal for some β > 0.

The two examples of doubling given before are also normal and 1-dimensional
in the above sense. However, a measure can be doubling but not normal. For exam-
ple, if we take Y = [0, 1

2 ]∪{ 3
4 } with μ(E) = λ(E∩[0, 1

2 ])+ 1
2 card(E∩{ 3

4 }), where
λ denotes the Lebesgue length, we have that (Y,μ) is doubling but not normal.
Another example can even be obtained in the interval [0,1] for measures that are
absolutely continuous with respect to Lebesgue measure. In fact, Lebesgue mea-
sure is 1-normal on the interval [0,1] and dμ(x) = w(x)dx with w(x) = x−1/2 is
a doubling measure, but μ is not β-normal for any β > 0. This is a consequence of
the fact that for ε < 1/2 we have

∫ 1
1−ε

w dx � ε while
∫ ε

0 w dx � √
ε.

We note that for every (Y,μ) ∈ Nβ , the Hausdorff dimension of Y with respect
to d is exactly β . Moreover, every open set in Y has dimension β . Let us observe
that if β1, β2 > 0 and β1 �= β2, then Nβ1 ∩ Nβ2 = ∅. Note also that the attractor
(Y∞,μ∞) is normal; moreover, it is shown in [8] and [11] that (Y∞,μ∞) ∈ Ns ,
where s = loga M is completely determined by �.

We have the obvious inclusions N ⊂ D ⊂ E , which we depict schematically
with different shapes in Figure 1 with the goal of making self-explanatory the
diagrams in Figure 2.

For 1 < p < ∞ the Muckenhoupt class Ap(Y,μ) is defined as the set of all non-
negative, measurable, and locally integrable functions w defined on Y for which
there exists a constant C such that the inequality

(∫
B

w dμ

)(∫
B

w
− 1

p−1 dμ

)p−1

≤ C
(
μ(B)

)p
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1838 H. Aimar et al.

Fig. 1 Subclasses of E

holds for every d-ball B in Y . We say that w is a Muckenhoupt weight on (Y,μ) if
w ∈ Ap(Y,μ) for some 1 < p < ∞. It is well known (see [1]) that, if μ is doubling
on Y , then w ∈ Ap(Y,μ) suffices for the Lp(w dμ) boundedness of MY . Also, it
is a classical result in the theory of Muckenhoupt weights that if w ∈ Ap(Y,μ) and
(Y,μ) ∈ D, then wdμ is doubling on Y .

In the Euclidean space (Rn, λ), where λ denotes the Lebesgue measure, one of
the most classical examples of weights in Ap(Rn, λ) is given by w(x) = |x|α for
−n < α < n(p − 1), with 1 < p < ∞ (see [7, 12]).

The geometric results in this note can be summarized in the following theorem.

Theorem 2.1

(I) There exists � ∈ ISS such that for some (Y0,μ0) ∈ D we have that

O(Y0,μ0) ∩ D = {
(Y0,μ0), (Y∞,μ∞)

}
.

(II) There exists � ∈ ISS such that for some (Y0,μ0) ∈ D we have that O(Y0,μ0) ⊂
D and O(Y0,μ0) � DA for every A ≥ 1.

(III) For every � ∈ ISS and every (Y0,μ0) ∈ N with Y0 ∩ U �= ∅, we have that
O(Y0,μ0) ⊂ DA for some doubling constant A ≥ 1, where U is the open set
for the OSC in the definition of �.

(IV) For every � ∈ ISS, every β > 0, and every (Y0,μ0) ∈ Nβ with Y0 ∩ U �= ∅, we
have that O(Y0,μ0) ⊂ Nβ , where U is the open set for the OSC in the definition
of �. If β �= loga M then there is no c ≥ 1 such that O(Y0,μ0) ⊂ Nβ,c .

(V) For every � ∈ ISS and every (Y0,μ0) ∈ Ns with Y0 ∩ U �= ∅, we have that
O(Y0,μ0) ⊂ Ns,c for some constant c ≥ 1, where U is the open set for the OSC
in the definition of �.

A schematic picture of the results in Theorem 2.1 is contained in Figure 2, and a
loose description of these situations is as follows.

(I) There are orbits that start at doubling spaces but do not remain doubling.
(II) There are orbits that start at doubling spaces and remain doubling, but are not

uniformly doubling.
(III) All orbits starting at normal spaces are uniformly doubling.
(IV) All orbits starting at β-normal spaces remain β-normal, but if β �= loga M then

the orbit is not uniformly normal.
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Boundedness of the Hardy–Littlewood Maximal Operator 1839

Fig. 2 Behavior of orbits

(V) All orbits starting at s-normal spaces, where s = loga M , are uniformly s-
normal.

The analytic results are contained in the following result, which is essentially a
consequence of Theorem 2.1.

Theorem 2.2

(A) There exists � ∈ ISS such that for some (Y0,μ0) ∈ D, some 1 < p < ∞, and
some w0 ∈ Ap(Y0,μ0) we have that
(a) M0 is bounded on Lp(Y0,w0dμ0),
(b) M∞ is bounded on Lp(Y∞, dμ∞),

Author's personal copy



1840 H. Aimar et al.

(c) Mn is an unbounded operator on Lq(Yn,wndμn) for every n = 1,2, . . . and
every 1 < q < ∞.

Here Mk denotes the Hardy–Littlewood maximal operator on (Yk,μk).
(B) For all � ∈ ISS and every (Y0,μ0) ∈ N with Y0 ∩ U �= ∅, where U is the open

set for the OSC in the definition of �, the sequence of maximal operators Mn is
uniformly bounded on Lp(Yn,μn).

This paper is organized in four sections. Section 3 is devoted to providing three
examples showing that statements (I) and (II) are true. In Sect. 4 we prove three
lemmas from which statements (III), (IV), and (V) shall be corollaries. In Sect. 5 we
prove Theorem 2.2.

3 Proofs of Statements (I) and (II)

We shall show first that it may happen that the only point in the orbit satisfying the
doubling property is (Y0,μ0) and of course the limit space (Y∞,μ∞) but no other
T n(Y0,μ0), n ∈ N, is a space of homogeneous type. In these constructions we shall
use Muckenhoupt weights.

We shall construct our first example in the interval I = [0,1]. The iterated system
considered is � = {φ1, φ2} with φ1(x) = x/2 and φ2(x) = x/2 + 1/2, defined on
X = I with the usual distance d(x, y) = |x − y|. Here we have M = 2 and a = 2.
Notice that the attractor (Y∞,μ∞) is the interval I equipped with Lebesgue measure.

Now we shall describe the initial space (Y0,μ0). Take Y0 = I and μ0 the abso-
lutely continuous probability on I induced by the density w(x) = x−1/2. In other
words, dμ0 = 1

2w(x)dx. Since w ∈ A2(Y0, dx) we have that (Y0,μ0) ∈ D.
Next we shall prove that (Y1,μ1) := T (Y0,μ0) is not a space of homogeneous

type. In order to show the above statement, take 0 < ε < 1/4, Eε = ( 1
2 − ε, 1

2 ), and

Fε = ( 1
2 , 1

2 + ε). Notice that Y1 = Y0 = [0,1] and that dμ1 =
√

2
4 v(x)dx with

v(x) =
{

x−1/2 if 0 < x ≤ 1/2,

(x − 1
2 )−1/2 if 1/2 < x < 1.

(see Figure 3). Hence μ1(Eε) = 1
2 (1 − √

1 − 2ε) and μ1(Fε) = √
2ε/2. So that

μ1(Fε)/μ1(Eε) tends to ∞ when ε tends to zero.
If μ1 were doubling, for every r > 0 and every x1, x2 ∈ Y1 satisfying d(x1, x2) ≤

2r we have that

μ1
(
B(x1, r)

) ≤ μ1
(
B(x2,3r)

) ≤ A2μ1
(
B(x2, r)

)
,

where A denotes the doubling constant for μ1. Since Eε and Fε are balls with
the same radius ε

2 and with centers x1 = 1
2 − ε

2 and x2 = 1
2 + ε

2 respectively, by
taking ε → 0 we realize the impossibility of the doubling for μ1. For (Yn,μn) =
T n([0,1], 1

2wdx) = ([0,1],wn dx), the same situation appears at each point of the
form j/2n, j = 1,2, . . . ,2n − 1. Hence no (Yn,μn) is a space of homogeneous type
for n ∈ N.
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Boundedness of the Hardy–Littlewood Maximal Operator 1841

Fig. 3 T n([0,1], 1
2 wdx) = ([0,1],wndx)

Notice that in the above example we have that d(φ1([0,1], φ2([0,1]) = 0, and also
the attractor is the initial set [0,1].

The second example is given by a similar construction associated with the classical
Sierpinski contraction Ts . In this case, let X be the triangle in R

2 with vertices at
(0,0), (1,0), and (0,1), and take d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|} as
the distance on X. The ISS is given by φ1(x, y) = (x/2, y/2), φ2(x, y) = φ1(x, y) +
(0,1/2) and φ3(x, y) = φ1(x, y) + (1/2,0).

Let us define a weight function w̃(x, y) on the basic triangle X, given by
w̃(x, y) = 1

2w(y), where w is the weight function defined on [0,1] by w(y) = y−1/2.
It is not difficult to see directly or to deduce from Muckenhoupt theory that w̃ is a
doubling weight on the metric space (X,d). So that, in particular, (X,d, w̃ dxdy) is a
space of homogeneous type. Notice that d(φi(X),φj (X)) = 0 for every i, j = 1,2,3,
and taking Y0 = X again Ts(Y0, w̃ dxdy) is not a space of homogeneous type since
precisely at each contact point of φi(X) and φj (X) for i �= j , we have a singularity
of w̃ in one of these sets and boundedness on the other (see Figure 4). The limit space
(Y∞,μ∞) is the Sierpinski triangle with μ∞ being the restriction of the Hausdorff
measure of dimension log 3/ log 2, which is doubling.

Either one of the above two examples proves statement (I).
In order to prove (II) we give our third example, which shows that with some

separation of the sets {φi(X) : i = 1, . . . ,M}, no uniform doubling property for the
whole orbit can be expected. In fact, let us consider now (X,d) = ([0,1], | · |) and
� = {φ1, φ2} with φ1(x) = 2x/5 and φ2(x) = 2x/5 + 3/5. Take again w(x) = x−1/2

and (Y0,μ0) = ([0,1], 1
2w(x)dx) as the starting space. We already know that the

space (Y0,μ0) ∈ D. It is not difficult to show that O(Y0,μ0) ⊂ D. In fact, let us write
(Yn,μn) to denote T n(Y0,μ0). Each Yn is a finite union of 2n intervals which are at
a distance at least 5−n from each other. Since μn is doubling on each one of these
intervals, we readily see that μn is doubling on Yn. But we claim that if T n(Y0,μ0)

belongs to DAn then An ≥ 2n/2, for each non-negative integer n. To see this, for a
fixed n take y1 = ( 2

5 )n, y2 = 3
2 ( 2

5 )n, and r = d(y1, y2) = 1
2 ( 2

5 )n. Notice that y1 and
y2 belong to Yn and they are the endpoints of the first “gap” of Yn. It is easy to see that
μn(B(y1, r)) = C5−n/2 and μn(B(y2, r)) = C( 2

5 )n/2, where C is a constant which
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Fig. 4 T n
s (Y0, w̃ dxdy) =: (Yn, w̃ndxdy)

does not depend on n. Then

μn(B(y1,2r))

μn(B(y1, r))
≥ μn(B(y2, r))

μn(B(y1, r))
= 2n/2.

4 Proofs of Statements (III), (IV), and (V)

In this section, we prove the positive results contained in statements (III), (IV), and
(V). The basic tools will be the next two lemmas. The first one shows the scaling
properties of the approximating measure for different sizes of balls.

Lemma 4.1 Let � ∈ ISS(M,a), let U be an open set for the OSC for �, and Y0 a
closed subset of X such that Y0 ∩ U �= ∅.

(i) If (Y0,μ0) is β-normal and 0 < r ≤ a−n, then the μn-measure of the ball
B(y, r) scales like rβ , with constant depending on n. In other words, if
(Y0,μ0) ∈ Nβ,c for some β > 0 and c ≥ 1, then there exists a constant Ĉ =
Ĉ(β, c,Y0) ≥ 1 such that the inequalities

1

Ĉ

aβn

Mn
rβ ≤ μn

(
B(y, r)

) ≤ Ĉ
aβn

Mn
rβ

hold for every y ∈ Yn, every r such that 0 < r ≤ a−n, and every n ∈ N;
(ii) If a−n < r ≤ 1, then for all (Y0,μ0) ∈ E the μn-measure of the ball B(y, r)

scales like rs , where s = loga M . In other words, for every (Y0,μ0) ∈ E there
exists a constant C̃ = C̃(a,M,Y0) ≥ 1 such that the inequalities

C̃−1rs ≤ μn

(
B(y, r)

) ≤ C̃rs

hold for every y ∈ Yn, every r such that a−n < r ≤ 1, and every n ∈ N.
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The second lemma states that if a sequence of spaces is uniformly β-normal and
has a limit, then this limit remains β-normal. More precisely, we have the following
result.

Lemma 4.2 If {(Zn, νn) : n ∈ N} is a sequence in Nβ,c for some β and some c, such

that Zn
dH−→ Z and νn

dK−→ ν, then (Z, ν) ∈ Nβ,2βc.

Let us start by proving (III), (IV), and (V) assuming that Lemmas 4.2 and 4.1 hold.

Proof of (III) Take (Y0,μ0) ∈ N ; then there exist β > 0 and c ≥ 1 such that
(Y0,μ0) ∈ Nβ,c . Let Ĉ and C̃ be as in Lemma 4.1, and let C = max{Ĉ, C̃}. For a
fixed n, take y ∈ Yn and r > 0. We shall consider two cases:

(a) Assume first that 2r ≤ a−n. Then from (i) in Lemma 4.1 we have

μn

(
B(y,2r)

) ≤ C2β aβn

Mn
rβ ≤ C22βμn

(
B(y, r)

)
.

(b) For the case 2r > a−n we shall consider separately two possibilities for r :

(b.1) r > a−n. Using (ii) in Lemma 4.1, we have

μn

(
B(y,2r)

) ≤ C2srs ≤ C22sμn

(
B(y, r)

)

when 2r ≤ 1, and if 2r > 1 we have

μn

(
B(y, r)

) ≥ 1

C
rs ≥ 1

C2s
= 1

C2s
μn

(
B(y,2r)

)
,

where we have used that the d-diameter of Yn is less than or equal to 1, so
that μn(B(y,2r)) = μn(Yn) = 1.

(b.2) r ≤ a−n. If 2r > 1, since μn(B(y,2r)) = 1, we only need to prove that
μn(B(y, r)) is bounded below by a constant. In fact, from (i) in Lemma 4.1
and since n ≤ loga 2, we have

μn

(
B(y, r)

) ≥ μn

(
B(y,1/2)

) ≥ 1

C

anβ

Mn

1

2β
≥ 1

C2βM loga 2
.

We only have to deal with the case r ≤ a−n < 2r ≤ 1. In this case, we have
that rs−β

2|s−β| ≤ a−n(s−β), where s = loga M , so that

μn

(
B(y,2r)

) ≤ C2srs

= C2srs−βrβ

≤ C22srs−β Mn

aβn
μn

(
B(y, r)

)

≤ C22s+|s−β| Mn

asn
μn

(
B(y, r)

)
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= C22s+|s−β|μn

(
B(y, r)

)
,

where we have first used (ii) and then (i) in Lemma 4.1.

We have proved that there exists a constant A = A(c,β, a,M,Y0) such that
{(Yn,μn)} ⊆ DA. �

Proof of (IV) Take (Y0,μ0) ∈ Nβ ; then there exists c ≥ 1 such that (Y0,μ0) ∈ Nβ,c .
Let Ĉ and C̃ be as in Lemma 4.1, and let C = max{Ĉ, C̃}. The first statement in (IV)
is an immediate consequence of Lemma 4.1 and the fact that for r ∈ (a−n,1], the
function rs is comparable to the function rβ ; moreover, a−n|s−β|rβ ≤ rs ≤ an|s−β|rβ .
Thus, for each n ∈ N, when a−n < r ≤ 1 and y ∈ Yn, from (ii) in Lemma 4.1 we get
that

C−1a−n|s−β|rβ ≤ μn

(
B(y, r)

) ≤ Can|s−β|rβ .

On the other hand, for each n ∈ N and each y ∈ Yn, when 0 < r ≤ a−n we apply (i)
in Lemma 4.1 to obtain

C−1m−nrβ ≤ μn

(
B(y, r)

) ≤ Cmnrβ,

where m = max{ aβ

M
, M

aβ }. Hence, we get that (Yn,μn) ∈ Nβ,cn for every n ∈ N, with

cn = C max{mn,an|s−β|}.
The second statement in (IV) follows from Lemma 4.2 and the facts that the at-

tractor (Y∞,μ∞) ∈ Ns and that Nβ ∩ Ns = ∅ for β �= s. �

Proof of (V) Take (Y0,μ0) ∈ Ns ; then there exists c ≥ 1 such that (Y0,μ0) ∈ Ns,c.
Let Ĉ and C̃ be as in Lemma 4.1, and let C = max{Ĉ, C̃}. Since as/M = 1, from (i)
and (ii) in Lemma 4.1 we get (Yn,μn) ∈ Ns,C for every n. �

Proof of Lemma 4.2 Fix z ∈ Z and 0 < r ≤ 1. Since Zn
dH−→ Z, there exists a se-

quence {zn} with zn ∈ Zn and d(zn, z) → 0 as n → ∞. In order to estimate the
ν-measure of a d-ball B(x, t) with x ∈ X and t > 0, taking into account that the
dK -convergence is the weak star convergence, we approximate the indicator function
of B(x, t) by a Lipschitz function. Let ψ be the continuous function defined on R

+
0

which takes values 1 in [0,1], 0 out of [0,2], and is linear on the interval [1,2]. Let
ψx,t denote the function defined on X as ψx,t (y) = ψ(

d(y,x)
t

). Since (Zn, νn) ∈ Nβ,c

for each n, we have

c−1tβ ≤ νn

(
B(zn, t)

) ≤
∫

X

ψzn,t (y) dνn(y) ≤ νn

(
B(zn,2t)

) ≤ c2βtβ,

for every n. We also have that

∫
X

ψz,t (y) dνn(y) −−−→
n→∞

∫
X

ψz,t (y) dν(y).

Author's personal copy



Boundedness of the Hardy–Littlewood Maximal Operator 1845

On the other hand, since the convergence of ψzn,t (y) to ψz,t (y) is uniform in y for t

fixed, from the fact that each νn is a probability measure on X, we get
∫

X

[
ψzn,t (y) − ψz,t (y)

]
dνn(y) −−−→

n→∞ 0.

Now∫
X

ψz,t (y) dνn(y) =
∫

X

[
ψz,t (y) − ψzn,t (y)

]
dνn(y) +

∫
X

ψzn,t (y) dνn(y).

So that by taking the limit as n tends to ∞, we obtain

c−1tβ ≤
∫

X

ψz,t (y) dν(y) ≤ c2βtβ,

for every t > 0. Hence, applying the lower estimate with t = r/2 and the upper with
t = r , we have

c−12−βrβ ≤
∫

X

ψz,r/2(y) dν(y) ≤ ν
(
B(z, r)

) ≤
∫

X

ψz,r (y) dν(y) ≤ c2βrβ,

equivalently (Z, ν) ∈ Nβ,2βc , as desired. �

To prove Lemma 4.1 we shall state, and for the sake of completeness, prove some
basic results. Given i = (i1, i2, . . . , ik) ∈ {1,2, . . . ,M}k , we denote by φi the com-
position φik ◦φik−1 ◦ · · · ◦φi2 ◦φi1 . Also, if i0 ∈ {1,2, . . . ,M}, we write i′ = (i0, i) to
denote the (k + 1)-tuple (i0, i1, i2, . . . , ik).

Lemma 4.3 With U an open set for the OSC for �, we have

(a) if i, j ∈ {1,2, . . . ,M}k and i �= j , then φi(U) ∩ φj (U) = ∅;
(b) if i = (i, i′) with i′ ∈ {1,2, . . . ,M}k and i ∈ {1,2, . . . ,M}, then φi(U) ⊆ φi′(U);
(c) if i′ and j ′ are two different elements in {1,2, . . . ,M}k and i = (i, i′) where

i ∈ {1,2, . . . ,M}, then φi(U) ∩ φj ′(U) = ∅;
(d) for any fixed u ∈ U and each positive integer n, if we define

�n = {
φj (u) : j ∈ {1,2, . . . ,M}n},

then we have that

card
(
φ�(U) ∩ �n

) = Mn−k

for every k ≤ n and every � ∈ {1,2, . . . ,M}k .

Proof In order to prove (a), fix i = (i1, i2, . . . , ik) and j = (j1, j2, . . . , jk) such that
i �= j . Let us first assume that ik �= jk . Since φi(U) ⊆ φik (U), φj (U) ⊆ φjk

(U),
and φik (U) ∩ φjk

(U) = ∅, in this case we have that φi(U) and φj (U) are disjoint.
Assume now that i �= j but ik = jk . Let � be the largest index satisfying j� �= i�. So
that jm = im for every m > �, and then

φi(U) = (ϕ ◦ φi� ◦ · · · ◦ φi1)(U),
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φj (U) = (ϕ ◦ φj�
◦ · · · ◦ φj1)(U),

where ϕ = φik ◦ · · · ◦ φi�+1 = φjk
◦ · · · ◦ φj�+1 . From the OSC we have

(φi�−1 ◦ · · · ◦ φi1)(U) ⊆ U and (φj�−1 ◦ · · · ◦ φj1)(U) ⊆ U.

Hence,

φi(U) ⊆ ϕ
(
φi�(U)

)
,

φj (U) ⊆ ϕ
(
φj�

(U)
)
.

Since φi�(U)∩φj�
(U) = ∅ and ϕ is one-to-one, we have ϕ(φi�(U))∩ϕ(φj�

(U)) = ∅,
which implies (a).

To prove (b), let i′ = (i1, i2, . . . , ik) and i = (i, i′). Since φi(U) ⊆ U , we have that

φi(U) = (φik ◦ · · · ◦ φi1)
(
φi(U)

) ⊆ (φik ◦ · · · ◦ φi1)(U) = φi′(U).

To see (c), let i′ = (i1, . . . , ik), i = (i, i′), and j ′ ∈ {1, . . . ,M}k such that j ′ �= i ′.
Since φi(U) ⊆ φi′(U), and from (a) we have that

φi′(U) ∩ φj ′(U) = ∅,

we also have φi(U) ∩ φj ′(U) = ∅.
Finally, to prove (d), let us fix two positive integers n and k with k ≤ n, and let � =

(�1, �2, . . . , �k) ∈ {1,2, . . . ,M}k . If x ∈ φ�(U) ∩ �n, (c) implies that x = φi(u) for
some i = (i1, i2, . . . , in−k,�). Then card(φ�(U) ∩ �n) ≤ Mn−k . On the other hand,
from (b) we have that if j is any n-tuple of the type (j1, j2, . . . , jn−k,�), then φj (u) ∈
φ�(U) ∩ �n. We also have that φi(u) �= φj (u) for every i = (i′,�), j = (j ′,�), with
i′,j ′ ∈ {1,2, . . . ,M}n−k , i′ �= j ′. Then card(φ�(U) ∩ �n) ≥ Mn−k . �

Proof of Lemma 4.1 To prove (i), let (Y0,μ0) ∈ Nβ,c such that Y0 ∩U �= ∅. Fix n ∈ N,
y ∈ Yn, and r > 0. Set i = (i1, i2, . . . , in) to denote an element of {1,2, . . . ,M}n such
that y ∈ Y i

n := φi(Y0). Since 0 < r ≤ a−n we have

μn

(
B(y, r)

) = 1

Mn

∑
j∈{1,...,M}n

μ0
(
φ−1

j

(
B(y, r)

))

≥ 1

Mn
μ0

(
φ−1

i

(
B(y, r)

))

= 1

Mn
μ0

(
B

(
φ−1

i (y), anr
))

≥ c−1 aβn

Mn
rβ.

For the upper bound, let us start by noting that when j is such that B(y, r) ∩
φj (Y0) = ∅, then μ0(φ

−1
j (B(y, r))) = 0. Also, we claim that if

J (n, y, r) = {
j ∈ {1,2, . . . ,M}n : B(y, r) ∩ φj (Y0) �= ∅}

,
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Boundedness of the Hardy–Littlewood Maximal Operator 1847

then card(J (n, y, r)) ≤ � for some constant � which does not depend on y, r , and n.
In fact, fix u ∈ U ∩Y0 and set �n = {φj (u) : j ∈ {1, . . . ,M}n}. The OSC implies that
�n is a δa−n-disperse set, with δ = dist(u, ∂U). To see this, take j , i ∈ {1, . . . ,M}n
with j �= i, and set x

j
n = φj (u) and xi

n = φi(u). Since U is an open set, we have that
B(u, δ) ⊆ U . Then

B
(
x

j
n , δa−n

) = φj

(
B(u, δ)

) ⊆ φj (U),

B
(
xi
n, δa

−n
) = φi

(
B(u, δ)

) ⊆ φi(U),

and since φj (U) and φi(U) are disjoint, we have B(x
j
n , δa−n) ∩ B(xi

n, δa
−n) = ∅.

This implies that d(x
j
n , xi

n) ≥ δa−n.
On the other hand, if vj ∈ B(y, r) ∩ φj (Y0) for some j ∈ {1, . . . ,M}n, then

d
(
φj (u), y

) ≤ d
(
φj (u), vj

) + d(vj , y) < a−n + r ≤ 2a−n,

because diam(φj (X)) = a−n and r < a−n. Then

card
(

J (n, y, r)
) ≤ card

{
j ∈ {1, . . . ,M}n : φj (u) ∈ B

(
y,2a−n

)}
= card

(
�n ∩ B

(
y,2a−n

))
≤ Nm0,

where N denotes the constant in the definition of the finite metric dimension of (X,d)

and m0 is any integer satisfying 2m0 ≥ 2/δ (see p. 1834).
Furthermore, if there exists vj ∈ B(y, r) ∩ φj (Y0), then B(y, r) ∩ φj (Y0) ⊆

B(vj ,2r) ∩ φj (Y0). Hence, φ−1
j (B(y, r)) ⊆ B(φ−1

j (vj ),2ran). Finally,

μn

(
B(y, r)

) ≤ 1

Mn

∑
j∈J (n,y,r)

μ0
(
B

(
φ−1

j (vj ),2ran
)) ≤ cNm02β aβn

Mn
rβ,

and (i) is proved.
In order to prove (ii), let (Y0,μ0) ∈ E such that Y0 ∩ U �= ∅. For u ∈ Y0 ∩ U fixed,

let, as before, �n = {φj (u) : j ∈ {1, . . . ,M}n} and δ = dist(u, ∂U). Fix n, y ∈ Yn

and r with a−n < r ≤ 1. Let us also fix 1 ≤ k ≤ n such that a−k < r ≤ a−k+1. Since

μn

(
B(y, r)

) = 1

Mn

∑
j∈{1,...,M}n

μ0
(
φ−1

j

(
B(y, r)

))

= 1

Mn

∑
j∈J (n,y,r)

μ0
(
φ−1

j

(
B(y, r)

))
,

where, as before,

J (n, y, r) = {
j ∈ {1,2, . . . ,M}n : B(y, r) ∩ φj (Y0) �= ∅}

,
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we have that

μn

(
B(y, r)

) ≤ 1

Mn
card

(
J (n, y, r)

)
.

In this case, if vj ∈ B(y, r) ∩ φj (Y0) for some j ∈ {1, . . . ,M}n, then

d
(
y,φj (u)

) ≤ d(y, vj ) + d
(
vj ,φj (u)

)
< r + a−n < 2r.

In other words, if j ∈ J (n, y, r), then φj (u) ∈ B(y,2r). Hence,

μn

(
B(y, r)

) ≤ 1

Mn
card

(
�n ∩ B(y,2r)

)
.

For the fixed k, we define

J̃ = J̃ (y, r) = {
� ∈ {1,2, . . . ,M}k : B(y,2r) ∩ φ�(U) �= ∅}

.

Since {φ�(U) : � ∈ {1,2, . . . ,M}k} is a covering of �n, we have that

�n ∩ B(y,2r) ⊆ �n ∩
⋃
�∈J̃

φ�(U).

Hence, by (d) in Lemma 4.3, we have

card
(
�n ∩ B(y,2r)

) ≤
∑
�∈J̃

card
(
�n ∩ φ�(U)

)

= card(J̃ )Mn−k

= card(J̃ )Mna−ks

≤ card(J̃ )Mnrs.

To obtain the upper bound, we only have to show that card(J̃ ) is bounded by a
constant which does not depend on y, n, or r ∈ (a−n,1]. In order to prove it, since
φ�(U) are pairwise disjoint, let us identify each � ∈ J̃ with the point φ�(u) ∈ φ�(U),
and let us define the set A = {φ�(u) : � ∈ J̃ }. Then card(J̃ ) = card(A). Notice that
A ⊆ B(y,3r). In fact, if � ∈ J̃ , then there exists z ∈ B(y,2r) ∩ φ�(U), and

d
(
φ�(u), y

) ≤ d
(
φ�(u), z

) + d(z, y) < a−k + 2r ≤ 3r.

Take m1 ∈ N such that 2m1 ≥ 3a/δ. Since, being a subset of �k , the set A is δa−k-
disperse, we have that

card(A) = card
(
B(y,3r) ∩ A

) ≤ card
(
B

(
y,3a−k+1) ∩ A

) ≤ Nm1 .

For the lower bound, notice that

μn

(
B(y, r)

) = 1

Mn

∑
j∈{1,...,M}n

μ0
(
φ−1

j

(
B(y, r)

))
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≥ 1

Mn
card

({
j ∈ {1, . . . ,M}n : φj (Y0) ⊆ B(y, r)

})
.

If we show that

card
({

j ∈ {1, . . . ,M}n : φj (Y0) ⊆ B(y, r)
}) ≥ Mn−k, (2)

then we have

μn

(
B(y, r)

) ≥ 1

Mn
Mn−k = M−k = a−ks ≥ a−srs,

and the lemma is proved. In order to show (2), set y = φi(y0) for some y0 ∈ Y0
and some i ∈ {1, . . . ,M}n. Since it is easy to see that φi(Y0) ⊆ B(y, r), we obtain
(2) if k = n. Finally, if 1 ≤ k < n, let us write i = (i1, i2, . . . , in) = (i′′, i′), where
i′ = (in−k+1, in−k+2, . . . , in) and i ′′ = (i1, i2, . . . , in−k). If j = (j ′, i′) for some j ′ ∈
{1,2, . . . ,M}n−k , then φj (Y0) ⊆ B(y, r). In fact, if z ∈ φj (Y0) there exists v ∈ Y0
with z = φj (v), and

d(y, z) = d
(
φi(y0),φj (v)

) = a−kd
(
φi′′(y0),φj ′(v)

) ≤ a−k < r.

Hence,
{(

j ′, i′) : j ′ ∈ {1,2, . . . ,M}n−k
} ⊆ {

j ∈ {1, . . . ,M}n : φj (Y0) ⊆ B(y, r)
}
,

as desired. �

5 Proof of Theorem 2.2

Proof of (A) Let us consider the same � as in the proof of statement (I) of The-
orem 2.1. Since w(x) = x−1/2 on [0,1] is an A2 Muckenhoupt weight with re-
spect to the Lebesgue measure, we have that M , the standard Hardy–Littlewood
maximal operator on [0,1], is bounded on L2(wdx). This proves (a). Statement
(b) is clear since Y∞ = [0,1] and μ∞ is the Lebesgue measure on [0,1]. In order
to prove (c), we have only to recall that wn ∈ Aq is equivalent to the Lq(wndx)

boundedness of Mn = M0 = M∞, and that the doubling property of wndμn = wndx

is necessary for wn ∈ Aq . Since we have already proved that wndx is not dou-
bling, wn /∈ Aq , hence the Hardy–Littlewood Maximal operator is unbounded on
Lq(Yn,wndμn) = Lq([0,1],wndx). �

Proof of (B) It follows from statement (III) in Theorem 2.1. In fact, since each
(Yn, d,μn) is a space of homogeneous type, we have that Mn is bounded on
Lp(Yn,μn). Moreover, since the constant Cn in the inequality

‖Mnf ‖Lp(Yn,μn) ≤ Cn‖f ‖Lp(Yn,μn)

depends only on the doubling constant for μn, and statement (III) in Theorem 2.1
guarantees a uniform bound for Cn, we get the desired result. �
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