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Excitation of two interacting electrons as a plasmon-decay mechanism
in proton-aluminum collisions

G. A. Bocan and J. E. Miraglia
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Projectile-induced plasmon excitation in an electron gas has been studied by several authors who proposed
two possible mechanisms for these plasmons to decay. In a previous work we considered one of these mecha-
nisms in which the plasmon transfers its energy to a nearly free electron that makes an interband transition. In
this paper, the other mechanism is analyzed. A simple model is developed to describe plasmon decay in
aluminum via the excitation of two interacting electrons. Results for the transition probability and the excita-
tion power are presented. When contributions from both mechanisms are considered, they account for more
than 60% of the excited plasmons. Also, the slope of the plasmon excitation curve is correctly reproduced. The
study of first and second differential spectra in angle and energy show that plasmon decay into two interacting
electrons is the main source of low-energy electrons moving in the forward direction~with respect to the
projectile initial velocity!.

DOI: 10.1103/PhysRevA.69.012901 PACS number~s!: 79.20.Ap, 34.10.1x
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I. INTRODUCTION

Collective excitations that occur in a degenerate elect
gas, due to the long range of Coulomb interactions, are u
ally referred to as plasmons. In the late 1950s both DuB
@1,2# and Nozières and Pines@3# developed formalisms to
describe these systems and found that, to the lowest pe
bative order@random-phase approximation~RPA! in a free-
electron gas model#, there was no available mechanism f
these plasmons to decay. However, DuBois suggested
for the electron densities found in metals, interactions
yond the RPA were important and gave the lowest-order c
tribution to the plasmon damping. That is, a plasmon exc
in the bulk could decay by transferring its energy to two,
more, interacting electrons. Alternatively, Nozie`res and Pines
suggested that, in a solid and under the influence of a p
odic potential due to the ion cores, plasmons would
damped even in the RPA since there existed some interb
transitions at the plasmon energy. Also, they estimated
heuristic grounds, that the two-electron contribution to
plasmon damping would be proportional to the square of
plasmon wave vectork2.

Early evidence was brought up by DuBois and Kivels
@4# about the failure of two-electron processes to expl
available experimental results. They had taken the tw
electron contribution to the plasmon damping and perform
some calculations of thek2 coefficient including screening
effects. Their estimation turned out to be an order of mag
tude below experimental values for Al. Also, they mention
that two-electron processes failed to explain the finite p
mon damping fork→0.

The first quantitative description of plasmon decay
interband transitions is due to Chung and Everhart@5#, who
demonstrated that this mechanism represented an impo
source of low-energy secondary electrons in nearly fr
electron metals. Their work was continued by Ro¨sler and
collaborators@6–9# who, in a series of publications, deve
1050-2947/2004/69~1!/012901~7!/$22.50 69 0129
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oped most of the theory presently available on the subje
The first attempt, to our knowledge, to include both tw

electron processes and interband transitions in a plas
linewidth calculation is due to Sturm and Oliveira@10#, who
obtained that interband transitions were the domin
plasmon-decay mechanism. Later experimental data
Platzman@11# confirmed the existence of strong non-RP
like correlations in an electron liquid where band-structu
effects are unimportant. This brought interest in two-elect
contributions to the plasmon damping back to life as can
seen in a couple of publications by Bachlechner and colla
rators@12,13#.

In a previous work@14#, henceforth referred to as I, w
developed a simple model to calculate the transition pr
ability and the stopping power for projectile-induced pla
mon creation and later decay via the excitation of a nea
free electron. First and second differential spectra in b
angle and energy were reported discriminating contributi
due to different lattice momenta.

In this paper, we develop a formalism~analogous to the
one used in I! to include two-electron contributions to ou
model and results. As will be shown, they turn out to
important to correctly reproduce the plasmon creation cu
slopes at high projectile velocities. Also, we find that th
plasmon-decay mechanism is the main source of low-ene
electrons in the forward direction~with respect to the projec
tile initial velocity!.

There is a third possible mechanism for plasmon de
that deserves some consideration. The excited plasmon c
transfer its energy to a single electron and a phonon~phonon-
assisted electron excitation!. Sturm and Oliveira considere
this possibility and found that for metals such as Li, Na, a
K this process represented just a minor contribution to
plasmon linewidth. Based on their result, we will not inclu
this plasmon-decay mechanism in the present paper.

It is important to mention that plasmon creation occu
not only in metals but also in semiconductors and insulato
In these latter cases both the plasmon creation probab
©2004 The American Physical Society01-1
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and the relative importance of the different mechanisms
plasmon decay can be quite different from the ones for m
als. Some early works for the case of semiconductors are
to Antonciket al. @15–17#. Also, there is an interesting wor
by Borisov et al. @18# about different excitations on ioni
insulators.

In the following sections we regard aluminum as a fre
electron gas~FEG, interacting electrons in a jellium!. The
two-electron wave function is expanded in a first-order Bo
series, the perturbing potential being an effective Yuka
electron-electron interaction. Results for the transition pr
ability and the excitation power are presented. First and s
ond differential spectra in both angle and energy are plo
and compared to nearly free-electron contributions as we
to binary@19# and inner-shell@20# ones. Neutralization of the
incident proton is considered negligible at the velocities h
considered@21,22#. We conclude that in many energy regio
and directions we can tell whether an electron was excited
the decay of a plasmon or not. What is more, we can disc
which plasmon process was involved.

In this paper we will speak of the FEG’s excitation pow
rather than of its stopping power. This is because we are
focusing on the projectile being ‘‘stopped ’’ by the FEG b
on electrons being excited by or via the FEG. For binary
inner shell processes it is clear that both the excitation
the stopping power per unit time will be equal. For the ca
of plasmons, we will speak of the stopping power in the c
of plasmon creation~the projectile loses energy to create
plasmon! and of the excitation power in the case of plasm
decay~an electron is excited due to the decay of the pl
mon!. We regard this expressions as more precise than
ones used in I.

All nearly free electron calculations were performed f
polycrystalline aluminum. Atomic units are used througho
this paper.

II. THEORY

A. The Hamiltonian

We are interested in the interaction of a projectile~a pro-
ton in this case! with two electrons~labeled 1 and 2!, all of
them embedded in a FEG. In particular, we want to study
case in which this interaction is via the excitation and de
of a plasmon in the FEG. Schematically we have

ZPK i
1FEG→ZPK f

1FEG* ,

FEG* 1ek1i
1ek2i

→FEG1ek1 f
1ek2 f

, ~1!

whereZPK i , f
, ek1i , f

, and ek2i , f
are the projectile, electron 1

and electron 2 in their initial~final! states and FEG* stands
for the excitation of a plasmon in the FEG.

The full Hamiltonian can be written asH5K1Vtot,

K52
1

2M P
¹R

2 2
1

2
¹ r1

2 2
1

2
¹ r2

2 2
1

2 (
j >3

¹ r j

2 ,
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Vtot5V(P)1V(e)

5(
j >3

VP j1VP11VP21(
j >3

Vj
(e)1V1

(e)1V2
(e)1V12,

~2!

where VPa 52ZP /uR2rau is the projectile-electron Cou
lomb attraction (a5 j ,1,2), V1,2

(e)5( j >3(1/ur j2r1,2u) is the
interaction of electron 1 or 2 with the FEG,Vj

(e)

5 1
2 ( l>38 Vl j 5

1
2 ( l>38 (1/ur l2r j u) is the total electron-electron

Coulomb repulsion for electronj in the FEG due to its inter-
actions with the rest of the FEG, andV1251/ur22r1u is the
interaction of electrons 1 and 2 with each other. Coordina
R and ra represent the projectile and electron-a positions,
respectively. Note that if the projectile is a proton, thenM P
@1.

The total potential will be approximated by

Vtot;VP1
e f f1VP2

e f f1V12
e f f . ~3!

In the spirit of RPA, we will define effective potentialsVP1
e f f ,

VP2
e f f , andV12

e f f that will represent interactions in the presen
of the FEG. These potentials are expressed as follows (VP2

e f f

is not shown as it is completely analogous toVP1
e f f):

VP1
e f f5VP11(

j >3
~V1 jG0

1VP j1VP jG0
1V1 j !

1 (
j ,l>3,lÞ j

~V1lG0
1Vl j G0

1VP j1VP jG0
1Vl j G0

1V1l !

1•••,

V12
e f f5V121(

j >3
~V1 jG0

1Vj 21V2 jG0
1Vj 1!

1 (
j .l>3,lÞ j

~V1lG0
1Vl j G0

1Vj 21V2lG0
1Vl j G0

1Vj 1!

1•••, ~4!

whereG0
15(E2H01 i01)21 is the usual free Green opera

tor, and each equation is a Born series for the potential c
sidered where we have kept only those terms that can
interpreted as interactions via a number of intermediary e
trons form the FEG@14#.

In the case ofVP1
e f f and VP2

e f f , this expansion leads to a
expression of their Fourier transforms in terms of Lindha
dielectric response. That is,ṼP1

e f f(p)5ṼP1(p)/«(p,v) and

ṼP2
e f f(p)5ṼP2(p)/«(p,v) @14#.
As for V12

e f f , its expansion is formally equal to those o

VP1
e f f and VP2

e f f , therefore it is natural to arrive atṼ12
e f f(q)

5Ṽ12(q)/«(q,v). However, in order to simplify our calcu
lations we will approximate this by the standard Yukaw
potential. That is,Ṽ12

e f f(q)54pZ12/@(2p)3(q21l2)#, with
l5A3vp /kF , wherevp is the plasmon energy andkF is the
Fermi velocity.
1-2
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Finally, in order to allow for two-electron excitations t
occur we will go beyond RPA by adding a finite widthg to
the plasmon line in Lindhard dielectric response@23#. As in
I, we follow Mermin and do«(p,v)→«(p,v,g) with g
50.037.

B. Hartree wave functions

In general, the initial and final Hartree~orbital! states of
the system are simply

C i
H5FK i

fk3i
fk4i

•••zk1i ,k2i

1
•••,

C f
H5FK f

fk3 f
fk4 f

•••zk1 f ,k2 f

2
•••, ~5!

where FK i , f
is the projectile wave function~plane wave!,

fk j i , f
is the wave function of an electron in the FEG~also a

plane wave@24#!, andzk1i ,k2i

1 andzk1 f ,k2 f

2 stand, respec-

tively, for the initial and final combined wave functions o
electrons 1 and 2. BothFK i , f

andfk j i , f
are normalized to the

Dirac d.
We will focus on the case when the FEG final state is s

that fk3i
5fk3 f

, fk4i
5fk4 f

, etc., andkji ,kF for j >3, that
is, the bulk ends in its ground state. Under these assu
tions, the system’s Hamiltonian can be expressed asH5H0
1V with

H052
1

2M p
¹R

2 2
1

2
¹ r1

2 2
1

2
¹ r2

2 1V12
e f f ,

V5VP1
e f f1VP2

e f f . ~6!

Therefore we have a system composed of two interac
electrons~via the FEG! and a free projectile that is perturbe
by projectile-electron interactions.

The H0 eigenfunctions are the combined wave functio
zk1i ,k2i

1 andzk1 f ,k2 f

2 which can be expressed as nonintera

ing two-electron wave functions corrected by factorsui , f
6 ,

that is,

zk1i ,k2i

1 5fk1i
~r1!fk2i

~r2!ui
1~r22r1!,

zk1 f ,k2 f

2 5fk1 f
~r1!fk2 f

~r2!uf
2~r22r1!, ~7!

satisfying the two-electron Shro¨dinger equation

F2
1

2
¹ r1

2 2
1

2
¹ r2

2 1V12
e f f2« i , f

112Gzk1(i , f ) ,k2(i , f )

6 50, ~8!

where« i , f
112 is the energy of the pair of electrons. Equati

~8! can alternatively be expressed in a different set of co
dinates @we make r5r22r1 , r5(r11r2)/2, k5(k2
2k1)/2, k5k21k1] as

F2¹ r
22

1

4
¹r

21V12
e f f2« ( i , f )Gzk( i , f ) ,k( i , f )

6 50. ~9!

The combined wave functions in this new set are
01290
h

p-

g

s
-

r-

zki ,ki

1 5fki
~r!fki

~r !ui
1~r ![fki

~r!cki

1~r !,

zkf ,k f

2 5fkf
~r!fk f

~r !uf
2~r ![fkf

~r!ck f

2~r !. ~10!

We will choose this latter set of coordinates over the form
as it will make the calculations in the following section mu
easier.

C. The transition matrix

We build the first-order Born series for theT matrix cor-
responding to the excitation of two electrons as

TH5^C f
HuVP1

e f f1VP2
e f fuC i

H&

5E E E FK f
* ~R!fkf

* ~r!ck f

2* ~r !@VP1
e f f~r12R!

1VP2
e f f~r22R…#FK i~R!fki

~r!cki

1~r !dRdrdr .

~11!

Now, expressing both potentials in terms of their Four
transforms, making use of some previous definitions and
forming some integrations we obtain

TH5ṼP
e f f~p!d~ki2kf1p!E ck f

2* ~r !

3@e2 ip•r /21eip•r /2#cki

1~r !dr , ~12!

where p5K i2K f and we have supposed thatṼP1
e f f(p)

5ṼP2
e f f(p)[ṼP

e f f(p).
To the first perturbative order inV12

e f f , the wave function
reads

cki

1~r !'fki
~r !1g0

1V12
e f f~r !fki

~r !,

c f
2~r !'fk f

~r !1g0
2V12

e f f~r !fk f
~r !, ~13!

whereg0
65@k21¹ r

26 i01#21.
Again these wave functions are expressed in terms

their Fourier transforms and we get

ck f

2* ~r !cki

1~r !5
1

~2p!3E E ei (q2q8)•rF d* ~k f2q8!

1
Ṽ12

e f f* ~q82k f !

kf
22~q8!21 i01GF d~k i2q!

1
Ṽ12

e f f~q2k i !

ki
22q21 i01Gdqdq8. ~14!

If we substitute Eq.~14! into Eq. ~12! keeping our calcu-
lations to zeroth order inṼ12

e f f , we find that one of the elec
trons has not made any transition and this is not the case
are interested in. So, we keep only terms of first order
Ṽ12

e f f . The final result for the transition matrix is
1-3
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TH5ṼP
e f f~p!d~ki2kf1p!$Ṽ12

e f f~p2!@g~k i ,p2!

1g~k f ,2p2!#1Ṽ12
e f f~2p1!@g~k i ,2p1!1g~k f ,p1!#%,

~15!

whereg(k,q)5@k22(k1q)21 i01#21.

D. Hartree-Fock corrections to the wave function
and transition matrix

The fact that we are dealing with two identical particles
easily added to the previous formalism. Initial and fin
states for the pair of electrons consist of both a spin and
orbital part. There are four possible spin states: the symm
ric triplet states (us51,m561,0&) and the antisymmetric
singlet one (us50,m50&). The orbital part of the combined
wave function must also be either totally symmetric (zS) or
totally antisymmetric (zA). Therefore, instead of Eq.~10!,
we should write

~zki ,ki

1 !S/A5
fki

~r!@cki

1~r !6c2ki

1 ~r !#

A2
,

~zkf ,k f

2 !S/A5
fkf

~r!@ck f

2~r !6c2k f

2 ~r !#

A2
. ~16!

As Coulomb interactions are spin independent, the s
state for the pair of electrons remains unchanged. It follo
that the symmetry of the orbital state must remain cons
as well.

The Hartree-Fock transition matrix@analogous to Eq.
~11!# is therefore given by

TS/A5^C f
S/AuVP1

e f f1VP2
e f fuC i

S/A&

5^sf ,mf usi ,mi&^FK f
~zkf ,k f

2 !S/AuVu

3~zki ,ki

1 !S/AFK i
&,

5dsi ,sf
dmi ,mf

E E E FK f
* ~R!

3@zkf ,k f
* 2 ~r,r !#S/A

3@VP1
e f f~r12R!1VP2

e f f~r22R…#FK i~R!

3@zki ,ki

1 ~r,r !#S/AdR dr dr , ~17!

and after some algebra the final expression for the trans
matrix, analogous to Eq.~15!, reads

TS/A5ṼP
e f f~p!d~ki2kf1p!$Ṽ12

e f f~p2!@g~k i ,p2!

1g~k f ,2p2!#1Ṽ12
e f f~2p1!@g~k i ,2p1!1g~k f ,p1!#

6Ṽ12
e f f~k2 f2k1i !@g~k i ,2k2 f1k1i !

1g~k f ,2k2 f1k1i !#6Ṽ12
e f f~2k1 f1k2i !

3@g~k i ,k1 f2k2i !1g~k f ,k1 f2k2i !#%. ~18!
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E. Final formula and considerations

We call binary region to the area in thev-p plot where
single free-electron excitations are possible. A point (p,v)
inside this region satisfiesv1(p).v(p).v2(p) @v6(p)
5(p262pkF)/2# wherep and v5vi•p are the momentum
and energy lost by the projectile. Note that although pl
mons could be excited inside this region, they would be
sorbed in the continuum of single-electron excitations a
would not constitute independent modes. In order to prev
the inclusion of these pseudoplasmon processes in ou
sults, we will keep our calculations outside the binary regi

With these considerations in mind and according to
Fermi golden rule we find that the differential probability p
unit time for a given spin statePt(s,m) of two electrons
being excited from (k1i ,k2i) to (k1 f ,k2 f) by a projectile that
loses momentump and energyv5«1 f1«2 f2«1i2«2i via
the excitation and decay of a plasmon is given by

dPt~s,m!52pd~«1 f1«2 f2«1i2«2i2vi•p…uT~s,m!u2Q~kF

2k1i !Q~kF2k2i !Q~2kF1k1 f !Q~2kF1k2 f !

3$12Q@v1~p!2v~p!#Q@v~p!2v2~p!#%

3dp dk1idk2idk1 fdk2 f . ~19!

The transition matrix is symmetric for the spin singlet a
antisymmetric for the spin triplet @That is, T(0,0)
5TS,T(1,m)5TA]. The total probability per unit time is

Pt5(
s50

1

(
m52s

s

dPt~s,m!, ~20!

which can be written as

Pt5E 2pd~«1 f1«2 f2«1i2«2i2vi•p…uTu2

3Q~kF2k1i !Q~kF2k2i !Q~2kF1k1 f !Q~2kF1k2 f !

3$12Q@v1~p!2v~p!#Q@v~p!

2v2~p!#%dp dk1idk2idk1 fdk2 f , ~21!

with

uTu25uTSu213uTAu2. ~22!

The two electrons considered are in fact two electrons fr
the FEG that have been singled out. Their initial and fin
energies are such that«1i ,2i,«F and«1 f ,2f.«F , that is, the
FEG is initially in its ground state.

III. RESULTS

A. Total transition probability and excitation power

Throughout this section and the next two section, the f
lowing acronyms will be used to refer to different projectil
induced electron excitation mechanisms: NFe—plasmon
1-4
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EXCITATION OF TWO INTERACTING ELECTRONS . . . PHYSICAL REVIEW A 69, 012901 ~2004!
cay via the excitation of a nearly free electron. The latt
contributes with momentum associated with a site of the
ciprocal lattice. Data taken from I; 2e—plasmon decay
the excitation of two interacting electrons; Bin—binary e
citation of a single free electron; ISh—single inner-sh
electron excitation, 1s, 2s, and 2p shell of Al were included
in the calculations; Dec—Total plasmon decay~NFe12e!.

In Fig. 1~a!, Pt is plotted against the projectile velocityv i

for NFe and 2e. Also, the sum of both contributions~Dec! is
shown together with the plasmon excitation probability. It
interesting to note that Dec accounts for most of the exc
plasmons~around 60% at high velocities and more than 70
for v i;2 a.u.) and that the inclusion of two-electron pr
cesses is important to correctly reproduce the slope of
plasmon excitation curve.

In Fig. 1~b!, the excitation power per unit time is plotte
against the projectile velocity. The curves shown are an
gous to the ones in Fig. 1~a!. Again, two-electron excitation
is important to reproduce the slope of plasmon excitati
There is no energy equipartition between NFe and 2e.
high projectile velocities, the NFe contribution is domina
while for v i;2 a.u. 2e is slightly greater.

However, one should not think that the relative impo
tance of the two mechanisms considered will be the same
every metal. For a hypothetical element with the same da
ing as aluminum but with a larger volume per particle (r s
53 a.u. instead of the real valuer s52.09 a.u.) we found
that the importance of the 2e mechanism was diminishe
around 30%~considering the probability per unit time!. One
can conclude from this that a larger electronic density fav
the 2e mechanism.

FIG. 1. ~a! The total transition probability per unit time is show
for NFe and 2e contributions together with Dec5NFe12e and the
plasmon creation probability.~b! The excitation power per unit time
as a function of the projectile initial velocity is shown for NFe a
2e contributions together with Dec5NFe12e and the plasmon cre
ation stopping power.
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Coming back to real aluminum, the two processes co
bined account for most of the energy spent in the plasm
excitation; around 60% at high velocities and above 80%
v i;2 a.u. The question of whether plasmon excitation a
decay rates were equal was put forward in I. From the p
vious analysis, one is inclined to think that they are in fa
similar to each other. Minor contributions to the plasm
damping due to other, less important, processes, toge
with corrections for the two processes considered here co
account for the underestimation found for the decay ra
For the case of NFe, we think contributions from fourt
order ~and higher-order! neighbors in the reciprocal lattic
(G4) could lightly improve the total results. Also, slight co
rections in the potential coefficients could produce no
negligible changes in the total transition probability and e
citation power. As for 2e, corrections due to exchang
correlation effects should be estimated and added to
calculations.

It is important to mention that 2e results were obtain
setting the imaginary part of the Green functions in Eq.~15!
equal to zero. In relation to this choice we must remark t
both the transition probability and the excitation power a
very sensitive to changes in this parameter. There is an
plicit limit operation here to be performed after the integr
tion. It is often the case that, for reasons of numerical c
venience, a finite value is assigned to this parameter. In
2 we have plotted the transition probability and the excitat
power per unit time, labeledPt and St , for two interacting
electrons to be excited by the decay of a bulk plasmon a
function of the projectile initial velocityv i . We considered
different possible values for 01 and found that not only the
limit exists and is well behaved but also that we can set
parameter equal to 0 right from the start. The integrand

FIG. 2. The total transition probability per unit time and th
excitation power per unit time as a function of the projectile init
velocity are shown for the 2e contribution considering differe
values for the imaginary part added to the denominators in
Green functions.
1-5
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no numerical complications in the region considered. Eac
the denominators is forced to be nonzero because both
trons must make a transition~therefore bothp1 and p2 are
finite!. Note also that it is only in the limit 01;0 that the
plasmon excitation slope is correctly reproduced.

B. Single-differential spectra in angle and energy

We are interested in being able to tell if an electron w
excited by the decay of a plasmon or by some other proc
Two possible mechanisms for plasmon decay are conside
the excitation of a single nearly free electron~NFe! and the
excitation of a pair of interacting electrons~2e!. The energy
and angular distributions for the final states of these electr
~the excited nearly free electron on one hand and electro
of the excited pair, on the other! are compared with those o
electrons coming from nonplasmon processes such as
excitation of a single free electron~Bin! and the excitation of
a single inner-shell electron~ISh!. The projectile~proton!
velocity was set to 3 a.u. (v i53 a.u.). Energies are referre
to the bottom of the band.

In I, we analyzed the single-differential energy spectru
for an electron excited by NFe, Bin, and ISh processes
found that around«2 f;1 a.u. NFe was the most importa
one. In Fig. 3~a!, this energy spectra is reproduced with t
addition of 2e contributions. The solid line stands for t
electrons excited by plasmon decay no matter by which
the mechanisms~Dec5NFe12e!. We can see that 2e repre
sents just a minor contribution for«2 f;1 a.u.~so the results
of I remain essentially the same!. However, for lower ener-
gies («2 f*«Fer;0.41 a.u.) it becomes the leading term t

FIG. 3. ~a! Single-differential transition probability as a functio
of electron 2 final energy~measured from the bottom of the band!.
~b! Single-differential transition probability as a function ofu2 f

~electron 2 outgoing direction with respect to the projectile init
velocity!. In both spectra, the projectile velocity wasVi53.0 a.u.
Notation is indicated in the graph.
01290
of
c-

s
s.
d:

ns
2,

he

d

f

gether with Bin. Therefore, we conclude that electrons
cited by plasmon decay concentrate in different ene
regions depending on which decay process was involved

In a completely analogous fashion, we perform the ana
sis of the single-differential angular spectrum shown in F
3~b!. The angleu is defined relative to the projectile’s direc
tion of motion. The four processes considered are plot
together with Dec. It is clear that 2e is just a slight correcti
to Dec in the backward direction~so, the main result of I
remains unchanged! but it is as important a contribution a
NFe both in the forward and in the normal directions.

C. Double-differential spectra in angle and energy

If we look at Fig. 3~a!, it is natural to wonder how 2e an
Bin compete in the low-energy region and whether it is p
sible to distinguish between the two processes. Therefore
go on to analyze the second-differential angular spectrum
«2 f50.5 a.u. shown in Fig. 4~a!. It turns out that there are no
Bin electrons either in the extreme forward or the extre
backward directions while most of 2e electrons move in
forward direction. So, we can tell if a low-energy electro
comes form plasmon decay or not according to its direct
of motion. Also, note that, for this energy, 2e constitutes
main contribution to Dec throughout the angular spectrum

Likewise, Fig. 3~b! leads to the analysis of second
differential energy spectra. We consider the forward direct
(u2 f50.02 radians) where 2e and ISh are the leading te
and 2e reaches its highest values. We see in Fig. 4~b! that ISh
spreads quite uniformly throughout the energy range. The
contribution, on the other hand, is localized in th

l

FIG. 4. ~a! Double-differential transition probability as a func
tion of u2 f ~excited electron outgoing direction with respect to t
projectile initial velocity!. Electron 2 final energy was set equal
0.5 a.u.~b! Double-differential transition probability as a functio
of e2 f . The outgoing directionu2 f was set equal to 0.02 rad. No
tation is indicated in the graph.
1-6
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intermediate-low energy area and for«2 f*«Fer50.41 a.u. is
clearly an order of magnitude above ISh. So, in the forw
direction we can tell if an electron comes from plasmon
cay or not according to its energy.

IV. SUMMARY AND CONCLUSIONS

In this paper, a simple formalism was developed to
scribe plasmon decay in aluminum via the excitation of t
interacting electrons. The results were added to those of
~plasmon decay via the excitation of a nearly free elect
that makes an interband transition!, calculated in I, to obtain
the total plasmon decay probability and excitation pow
When both mechanisms for plasmon decay are conside
more than 60% of the plasmon excitation is accounted
Also, the slope for high projectile velocities is correctly r
produced. From these results we are inclined to think t
plasmon excitation and decay rates are similar to each o
and that there is no other major mechanism of plasmon
cay. In I, we concluded that our estimation for NFe con
bution could be improved by including higher-order neig
bors in the reciprocal lattice and by slight corrections in
potential coefficients. For the case of 2e contributions,
think a better wave function~for example, a Coulomb-type
wave @25#! would produce higher results. Also, correctio
due to exchange-correlation effects could account for so
of the underestimation found.

For the case of aluminum, which was treated in this pa
it was found that forv i<2 a.u. most of the excited plasmon
decay via the excitation of two interacting electrons while
.E
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v i>4 a.u. the dominant mechanism is NFe. These resu
however, should not be carelessly generalized to other me
where the relative importance of the two processes con
ered might not be the same.~For example, an element with
larger electronic density will favor the 2e mechanism.!

First- and second-differential spectra in angle and ene
were plotted and compared to NFe ones. Nonplasmon
cesses such as Bin and ISh were added to the graphs in
to establish a comparison. From the analysis of these spe
we concluded that in certain energy regions and certain
rections it is possible not only to identify if an electron w
excited by the decay of a plasmon or not, but also to
which plasmon-decay mechanism was involved in the ex
tation.

Finally, we found that most low-energy electrons trav
ing in the forward~with respect to the projectile initial ve
locity! direction had been excited by 2e mechanism for pl
mon decay. Regarding this, we reckon our results combi
with transport and emission estimations might explain so
low energy yields found in experimental spectra for alum
num surfaces@26#.
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