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• We explore entanglement features of a quantum position measurement.
• We consider instantaneous and finite-duration measurements.
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a b s t r a c t

Weexplore the entanglement-related features exhibited by the dy-
namics of a composite quantum system consisting of a particle and
an apparatus (here referred to as the ‘‘pointer’’) that measures the
position of the particle. We consider measurements of finite dura-
tion, and also the limit case of instantaneous measurements. We
investigate the time evolution of the quantum entanglement be-
tween the particle and the pointer, with special emphasis on the
final entanglement associated with the limit case of an impulsive
interaction. We consider entanglement indicators based on the ex-
pectation values of an appropriate family of observables, and also
an entanglement measure computed on particular exact analytical
solutions of the particle–pointer Schrödinger equation. The gen-
eral behavior exhibited by the entanglement indicators is consis-
tent with that shown by the entanglement measure evaluated on
particular analytical solutions of the Schrödinger equation. In the
limit of instantaneous measurements the system’s entanglement
dynamics corresponds to that of an ideal quantum measurement
process. On the contrary, we show that the entanglement evolu-
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tion corresponding to measurements of finite duration departs in
important ways from the behavior associated with ideal measure-
ments. In particular, highly localized initial states of the particle
lead to highly entangled final states of the particle–pointer system.
This indicates that the above mentioned initial states, in spite of
having an arbitrarily small position uncertainty, are not left un-
changed by a finite-duration position measurement process.

© 2015 Elsevier Inc. All rights reserved.

0. Introduction

Quantum entanglement [1,2] and the quantummeasurement process [3,4] are two closely related
and fundamentally non-classical aspects of quantum physics. If initially the system being measured
is described by a pure state (which, consequently, is factorized from the initial, standard state of the
measuring apparatus), themeasurement process in general generates entanglement between the sys-
tem and the apparatus [5,6]. Therefore, after the measurement takes place (but before the result of
the measurement is ‘‘read’’) the system and the apparatus are, in general, in an entangled state (ex-
cept in the case of an ideal measurement with the system starting in an eigenstate of the observ-
able being measured). Within the standard quantum formalism one can consider the measurement
of general physical observables described by appropriate hermitian operators acting on the rele-
vant Hilbert space. However, it is generally acknowledged that the measurement of the position of
quantum particles plays a particularly fundamental role among the set of all possible physical mea-
surements. In fact, most, if not all, physical measurements can be reduced to the measurement of
the position of some particle (for instance, a pointer in the measuring apparatus) [7,8]. This is one
of the main reasons why position observables play a central role in many approaches to the quan-
tum measurement problem and related aspects of the foundations of quantum mechanics. Among
the interesting position-centered contributions to these fundamental issues we can mention the de
Broglie–Bohmpilotwave approach to quantummechanics [9–11], the Ghirardi–Rimini–Webermodel
of wave-function collapse [12], non-linear modifications of Schrödinger equation describing the con-
tinuous measurement of a particle’s position [13,14], the Fisher information-based derivation of the
fundamental Lagrangians leading to relativistic wave equations [15], and the entropic-dynamics ap-
proach to quantum evolution [16].

A central point concerning the quantum measurement problem is whether one regards the mea-
surement process as arising from a physical interaction between the system and the measuring ap-
paratus describable by the standard, linear Schrödinger equation. A useful tool for analyzing the
conceptual issues associated with this point of view is given by the celebrated von Neumann model
for quantum measurements [17–19]. In this model the measuring apparatus is characterized by one,
single relevant coordinate Q (the ‘‘pointer’’ coordinate). If the system being measured is described by
a coordinate R, then the von Neumannmodel assumes that the system–apparatus Hamiltonian has an
interaction term of the form,

Gδ(t)F

R,

h̄
i
∂

∂R


h̄
i
∂

∂Q
, (1)

where F

R, h̄

i
δ
δR


corresponds to the observable being measured (which is here expressed as a func-

tion of the position and the momentum observables) and G is a coupling constant. Notice that this
interaction term is time-dependent, and describes an impulsive interaction that is switched on at the
instant t = 0. This means that the interaction between the system and the apparatus has a very short
duration and is very strong. Therefore, under the impulsive assumption, the contribution to the evolu-
tion of the system–apparatus composite due to the ‘‘free’’ Hamiltonians associated with the two parts
(i.e., the system and the apparatus) can be neglected during the measurement process.
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As already mentioned, after an ‘‘unread’’ measurement the measured system and the measuring
apparatus are, in general, in an entangled state. In an ideal measurement, however, this creation of
entanglement does not occur in the important case in which the initial state of the system is an eigen-
state |ψα⟩ of the observable F being measured. Indeed, in this case the (unitary) quantum evolution
describing an ideal measurement acts as follows,

|Σ0⟩|ψα⟩ −→ |Σψα ⟩|ψα⟩, (2)

where |Σ0⟩ and |Σψα ⟩ are respectively the initial and final states of the measuring apparatus. Note
that, while the standard, initial state of the apparatus |Σ0⟩ is always the same, the final state |Σψα ⟩

depends on the initial state of the system. That is, information concerning the system’s initial state
is transferred into the state of the apparatus. In fact, the result of the measurement is encoded in
the final state |Σψα ⟩ of the apparatus. Eq. (2) is at the heart of the basic property of repeatability
of quantum measurements: if one performs, in close temporal succession, repeated measurements
of the same observable F , one always gets the same result. It has been recently shown by Zurek
[20,21] that the implicit assumption behind Eq. (2) of the existence of a set of system’s states left un-
perturbed by the measurement process has itself the following important consequence: If two states
of the system |ψα⟩ and |ψα′⟩ are both left undisturbed by the measurement process and yield differ-
ent measurement results, then these states must be orthogonal. This constitutes a generalization of
the celebrated no-cloning principle [22–25]. It means that the orthogonality of the aforementioned
undisturbed states does not need to be assumed as a postulate [20,26], as is usually done in text-book
presentations of quantum mechanics.

An instantaneous measurement described by the Hamiltonian (1) generates the transformation

Φ0(Q )ψα(R) −→ Φ0(Q − Gfα)ψα(R), (3)

where ψα(R) is an eigenfunction of the observable F with eigenvalue fα , and Φ0(Q ) is the wave
function describing the initial, standard state of the measuring apparatus. The transformation (3)
constitutes a particular instance, corresponding to the Hamiltonian (1), of the general transformation
(2). The effect of the measurement process corresponding to an arbitrary initial wave function ψ(R)
of the system being measured is obtained expanding ψ(R) in the eigenbasis of the observable F ,
ψ(R) =


α cαψα(R), leading to,

Φ0(Q )

α

cαψα(R) −→


α

cαΦ0(Q − Gfα)ψα(R). (4)

In the present work we shall consider the entanglement generated during a position-measurement
process between the measuring apparatus and the particle whose position is measured. The particle
(of mass m) interacts with another particle of mass M (the ‘‘pointer’’) that represents the measuring
apparatus. The particle–pointer composite system is governed by the Hamiltonian [18]

H =
p2

2m
+ V (x)+

P2

2M
+

1
T
f (t)xP, (5)

where x (Q ) represents the position, p (P) the momentum of the particle (pointer), and the parti-
cle evolves under the effect of the potential function V (x). The last term of the above Hamiltonian,
1
T f (t)xP , describes the interaction between the pointer and the particle during the quantummeasur-
ing process, where T is the length of the time interval within which this interaction takes place and
f (t) is a dimensionless time-dependent coupling function. We assume that f (t) adopts a constant
value Gwithin the interval [0, T ] and vanishes for time values outside this interval. Consequently, the
interaction can be characterized by an effective, time-integrated coupling constant given by

G =
1
T

 T

0
f (t)dt. (6)

The Hamiltonian (5) allows for the study of non-instantaneous measurement processes of a finite du-
ration T . In the limit T → 0 one recovers the von Neumann, instantaneous measurement described
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by an impulsive interaction. For the particle’s potential function V (x)we consider two cases,

V (x) =


0 free particle,
1
2
mω2x2 harmonic oscillator.

(7)

As already mentioned, we are working with a time dependent Hamiltonian. The limit of an instanta-
neous measurement corresponds to an instantaneous change in the function f (t) characterizing the
Hamiltonian’s time dependence. This limit does not refer to any approximation in the solution |Ψ ⟩ of
the (time dependent) Schrödinger equation. That is, for a given form of f (t), we consider the exact dy-
namics determined by the concomitant Schrödinger equation. We either consider explicit exact time
dependent solutions |Ψ ⟩ of this equation or, alternatively, the exact time evolution of the expectation
values of an appropriate family of observables. Since we are considering the system’s exact evolution,
our results are fully consistent with any quantum ‘‘speed limit’’ derived from the Schrödinger equa-
tion [27]. Finally, it is worth tomention that our present (non-relativistic) analysis concerns only local
measurements and thus, it is not affected by relativistic constraints on the measurement of non-local
observables, such as the celebrated Landau–Peierls relation [28].

Given the (time-dependent) joint pure state |Ψ ⟩ describing the particle–pointer-system, a useful
quantitative indicator of the amount of entanglement existing between the particle and the pointer
is given by the linear entropy of the pointer’s marginal density matrix ρP , given by,

E = 1 − Tr

ρ2
P


, (8)

where the marginal density matrix ρP is obtained by computing the partial trace of the global density
matrix ρ = |Ψ ⟩⟨Ψ | over the degrees of freedom corresponding to the particle, ρP = Trpart. [ρ]. Lin-
ear entropy-based measures of quantum entanglement like (8) have been used for the study of the
entanglement properties of several quantum systems [29–31]. The entanglement measure (8) con-
stitutes a quantitative measure of the degree of mixedness of the marginal density matrix describing
the states of either the particle or the pointer at a given time. These two quantities are equal, that is,
1 − Tr


ρ2
P


= 1 − Tr


ρ2
p


, where ρp = TrP(|Ψ ⟩⟨Ψ |) is the marginal density matrix associated with

the particle. For pure states of bipartite systems the concurrence, another important entanglement
measure, is closely related to the linear entropy (8). Indeed, for pure states the concurrence is given

by C =


2(1 − Tr


ρ2
P


) [32]. In general, quantitative measures of entanglement for pure states of bi-

partite quantum systems are measures of the degree of mixedness of the marginal states describing
each of the parts constituting the system (or are closely related to such measures). For instance, the
entropy of entanglement is given by the von Neumann entropies of the marginal entropy matrices of
the two subsystems (which, for pure states, are equal to each other) [2]. When the composite system
under consideration is in amixed state, its entanglement cannot be assessed directly by entropic func-
tionals characterizing the degree ofmixedness of its parts (although entropic entanglement indicators
based upon the violation of classical entropic inequalities are still useful [32]). To assess quantitatively
the entanglement of composite systems in mixed states one needs other measures, such as positiv-
ity (see [33] and references therein). In the present work we are going to focus our considerations in
pure states of the particle–pointer systems. Consequently, when working with explicit solutions of
the concomitant Schrödinger equation, we are going to consider the entanglement measure (8).

In the present work we are going to explore entanglement-related effects during the quantum
evolution associated with the position measurement process governed by the Hamiltonian (5). First
we shall focus our attention on the (exact) time evolution of the expectation values of a family F of
relevant observables. The investigation of the entanglement created during the measurement will al-
low us to assess to what extent the ideal condition (2) is satisfied when one considers initial states of
the system increasingly localized, approaching therefore the eigenstates of the position observable. In
particular, we shall consider how the duration T of themeasurement affects the validity of (2). We are
also going to obtain a family of exact solutions for the particle–pointer system, and then explore the
evolution of the particle–pointer entanglement during the position-measurement process. The study
of the entanglement features of the solutions of the Schrödinger equation associated with the Hamil-
tonian (5) has connections to various lines of research that have been pursued in recent years. On
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the one hand, entanglement-related aspects and correlation properties of other quadratic Hamiltoni-
ans have attracted the interest of researchers (see, for instance [31,34–37]), although most of these
studies have focused upon the entanglement of the Hamiltonian’s eigenstates, and not upon the en-
tanglement of time-dependent solutions of the associated Schrödinger equation. On the other hand,
the interaction between the particle and the pointer can be regarded as a scattering process, and the
entanglement properties of these process have been the focus of some recent research activity [38].

1. Dynamical evolution of relevant expectation values

In this section we shall obtain the exact time evolution of the expectation values of a set F of
relevant observables of the particle–pointer system. It is possible to choose the setF in such away that
the commutator of the Hamiltonian H with any member of the set F is equal to a linear combination
of the members of F . Then, the time derivative of the expectation value of an observable A ∈ F ,
given by d

dt ⟨A⟩ =
ı
h̄ ⟨[H, A]⟩, it equal to a linear combination of the mean values of the members

of F , meaning that the evolution of the expectation values of the observables in F is governed by
a set of closed, ordinary differential equations that can be solved without explicitly solving the full
Schrödinger equation (this kind of treatment, based on a family of observables that is closed under the
commutation operation, is at the basis of powerful techniques for studying the dynamics of quantum
systems. See for example [39] for an interesting recent application). We choose the set of observables

F =

x, p, x2, p2, xp + px,Q , P,Q 2, P2,QP + PQ , xQ , xP, pQ , pP


. (9)

In what follows we are going to investigate separately two instances of a position measurement. On
the onehand,we shall consider themeasurement of the position of a ‘‘free particle’’, that is, of a particle
that interacts with the pointer but is not under the effect of any other force. On the other hand, we
shall consider a particle that, besides interacting with the pointer, is under the effect of a harmonic
force.

When the particle whose position is measured is under he effect of a harmonic potential, the
equations of motion for the relevant expectation values are the following,

d
dt

⟨x⟩ =
⟨p⟩
m
,

d
dt

⟨x2⟩ =
⟨xp + px⟩

m
,

d
dt

⟨Q ⟩ =
⟨P⟩

M
+

f (t)
T

⟨x⟩,

d
dt

⟨Q 2
⟩ =

⟨QP + PQ ⟩

M
+ 2

f (t)
T

⟨xQ ⟩,

d
dt

⟨p⟩ = −
f (t)
T

⟨P⟩ − mω2
⟨x⟩,

d
dt

⟨p2⟩ = −2
f (t)
T

⟨pP⟩ − mω2
⟨xp + px⟩,

d
dt

⟨P⟩ = 0,

d
dt

⟨P2
⟩ = 0,

d
dt

⟨xp + px⟩ =
2
m

⟨p2⟩ − 2
f (t)
T

⟨xP⟩ − 2mω2
⟨x2⟩,

d
dt

⟨QP + PQ ⟩ =
2
M

⟨P2
⟩ + 2

f (t)
T

⟨xP⟩,

d
dt

⟨xQ ⟩ =
1
m

⟨pQ ⟩ +
1
M

⟨xP⟩ +
f (t)
T

⟨x2⟩,



V.M. Apel et al. / Annals of Physics 354 (2015) 570–589 575

d
dt

⟨xP⟩ =
1
m

⟨pP⟩,

d
dt

⟨pQ ⟩ =
1
m

⟨pP⟩ +
f (t)
T

⟨px − PQ ⟩ − mω2
⟨xQ ⟩,

d
dt

⟨pP⟩ = −
f (t)
T

⟨P2
⟩ − mω2

⟨xP⟩,

d
dt

⟨px − PQ ⟩ =
1
m

⟨p2⟩ −
1
M

⟨P2
⟩ − 2

f (t)
T

⟨xP⟩ − mω2
⟨x2⟩. (10)

If one now considers a constant coupling function f (t) = G, the above equations admit an exact
analytical solution, which is given in the Appendix A. The equations of motion of the relevant
observables corresponding to the free particle case are obtained by setting ω = 0 in (10). The
concomitant solution is recovered by putting ω = 0 in the solution given in Appendix A.

1.1. Free particle

We first consider the measurement of the position of a free particle. That is, the particle interacts
onlywith the apparatus (pointer) and is not under the effect of any external potential. TheHamiltonian
of the particle–pointer system comprises the kinetic energy terms corresponding to the particle and
to the pointer, and the interaction term. We assume that before the measurement the pointer is
described by a symmetric wave packet centered at the origin, with ⟨Q ⟩0 = 0 and ⟨P⟩0 = 0. Let ⟨A⟩(T )
represent the expectation value of the observable A at the end of the measurement process (that has
a duration T ). It is interesting to see that some of the main features of the measurement process can
be appreciated from the analysis of the evolution of the mean values of the relevant observables. For
instance, let as consider the total displacement of the mean value of the pointer position. From our
previous results one obtains,

⟨Q ⟩(T )− ⟨Q ⟩0 = G
⟨x⟩(T )+ ⟨x⟩0

2
. (11)

We see that the total displacement ⟨Q ⟩(T )−⟨Q ⟩0 of themean pointer’s position is proportional to the
average of the initial and final mean positions of the particle. This means that information concerning
the position of the particle has been ‘‘transferred’’ from the state of the particle to the state of the
pointer, as is to be expected to occur after a position measurement. The result summarized in Eq.
(11), connecting the displacement of the pointer’s location after a position measurement of finite time
duration with the average initial and final positions of the particle, has been discussed by Roig [18]
using an approach based on path integrals, which is different from the one followed in the present
work, based on the evolution of the mean values of selected observables.

Of special interest is the behavior of quantities of the form ⟨AB⟩− ⟨A⟩⟨B⟩, where A is an observable
involving only the particle and B is an observable referred only to the pointer. These quantities vanish
for non-entangled, pure states of the particle–pointer system. Consequently, for pure states, non-zero
values of these quantities indicate the presence of entanglement. In other words, these quantities
constitute entanglement indicators. For the system investigated here we have,

(⟨xQ ⟩ − ⟨x⟩⟨Q ⟩)(T ) =
G

6m2


G2

2
−

2m + M
M


⟨P2

⟩0 T 2
+

G
2m2

∆2
p0 T

2

+
G
m


⟨xp + px⟩0 −

3
2
⟨x⟩0⟨p⟩0


T + G∆2

x0

(⟨pQ ⟩ − ⟨p⟩⟨Q ⟩)(T ) =
G
2m


G2

3
−

M + m
M


⟨P2

⟩0 T +
G
2m

∆2
p0 T

+
G
2
[⟨xp + px⟩0 − 2⟨x⟩0⟨p⟩0]
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(⟨xP⟩ − ⟨x⟩⟨P⟩)(T ) = −
1
2
G

⟨P2
⟩0

m
T

(⟨pP⟩ − ⟨p⟩⟨P⟩)(T ) = −G⟨P2
⟩0, (12)

where ∆2
A = ⟨A2

⟩ − ⟨A⟩
2. Defining now CAB = |⟨AB⟩ − ⟨A⟩⟨B⟩|, we have in the limit T → 0 of

instantaneous measurement,

CxQ (0) = G∆2
x0

CpP(0) = G⟨P2
⟩0

CxP(0) = 0

CpQ (0) =
G
2
[⟨xp + px⟩0 − 2⟨x⟩0⟨p⟩0] . (13)

Note that by ⟨A⟩0 and ⟨A⟩(0) we designate different things. By ⟨A⟩0 we denote the initial expectation
value of the observable A immediately before themeasurement, while ⟨A⟩(0) denotes the expectation
value of A immediately after an impulsive measurement (of duration T = 0). Similarly, CAB(0) desig-
nates the value adopted by the indicator CAB immediately after an instantaneous measurement. We
see from (13) that CxQ (0), which corresponds to the correlation in configuration space exhibited by an
(entangled) pure state of the particle–pointer system, is proportional to the initial dispersion ∆x0 of
the particle’s position. This result is consistent with Eq. (2) describing an idealmeasurementwhen the
initial state of the measured system (in our case, the particle) is an eigenstate of the observable being
measured. As indicated by Eq. (2), in this case we expect zero entanglement of the particle–pointer
system after themeasurement is performed. In themodel here discussedwe see that as∆x0 decreases
(which means that the initial particle’s state approaches an eigenstate of the position observable) the
quantity CxQ (0) goes to zero. The particle–pointer correlation in momentum space due to an instan-
taneous measurement, given by CpP(0), is equal to G∆p0. That is, CpP(0) is proportional to the initial
dispersion of the pointer’s momentum (taking into account that ⟨P⟩0 = 0). The final correlation be-
tween the particle’smomentum and the pointer’s position depends only on features of the initial state
of the particle, as indicated by CpQ (0) =

G
2 [⟨xp + px⟩0 − 2⟨x⟩0⟨p⟩0]. Finally, the instantaneous mea-

surement does not generate correlations between the particle’s position and the pointer’smomentum
(CxP(0) = 0).

In the case of measurements of finite duration, the particle–pointer correlation in momentum
space, given by CpP , is independent of the initial state of the particle and is also independent of the
duration T of the measurement. On the other hand, the correlation in configuration space, CxQ , grows
quadratically with T for measurements of large enough duration. In the case of m < M , and for mea-
surements of short duration, this configuration-space correlation can actually decrease with the du-
ration T . Indeed, for small values of the pointer’s massM the terms in T 2 in the right hand sides of the
first two equations in (12) become negative.When this happens there is a special value T ∗ of themea-
surement’s duration such that for T ≤ T ∗ the indicatorsCxQ andCpQ are decreasing functions of T (each
of these two indicators has a different critical value T ∗). For T > T ∗ the indicators increase with the
duration of the measurement process. This non-monotonic behavior of the indicators CxQ and CpQ has
a clear correlate with the behavior of the amount of entanglement corresponding to the exact time-
dependent solution of the particle–pointer Schrödinger equation studied in Section 3. In fact, in Fig. 3
one can see that for smallM there is an interval of T -values for which entanglement decreases with T .

It is also interesting to consider, for measurements of finite duration T , the dependence of the
spatial correlation indicator CxQ on the initial dispersion ∆x0 of the particle’s position. For ideal
position measurements one expects that CxQ → 0 when∆x0 → 0, since in this limit the initial state
of the particle (as it becomes more localized) approached an eigenstate of the position observable.
However, we see from the first equation in (12) that, for T ≠ 0 and ∆x0 small enough, CxQ increases
as ∆x0 decreases. This effect is due to the term G

2m2∆
2
p0T

2 appearing in the expression for CxQ (that
is, the modulus of the right hand side of the first equation in (12)). From the position–momentum
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uncertainty relation one gets,

G
2m2

∆2
p0T

2
≥

G
2m2

h̄2

∆2
x0
T 2, (14)

implying that CxQ actually diverges in the limit∆x0 → 0. This means that, with regards to this funda-
mental point a finite-time measurement, no matter how small its duration T is (as long as it is finite)
differs drastically from an instantaneousmeasurement. In the limit of an instantaneousmeasurement
the kinetic energy terms in the particle–pointerHamiltonian becomenegligible comparedwith the in-
teraction term. The same occurs in the limitM,m → ∞. In fact, in this last casewe recover a behavior
similar to the one associated with an instantaneous measurement, with CxQ → 0 when∆x0 → 0.

1.2. Harmonic oscillator

One can determine the final displacement of the mean pointer’s position,

⟨Q ⟩(T )− ⟨Q ⟩0 = G
tan(ωT/2)
ωT/2

⟨x⟩(T )+ ⟨x⟩0
2

, (15)

which again indicates that the displacement of the pointer’s location is proportional to the average
between the initial and final mean positions of the particle.

As occurs in the free particle case, the entanglement of the particle–pointer (pure) state leads to
correlations in position and in momentum that can be assessed with the indicators,

CxQ (T ) =

2

G
T

3
⟨P2

⟩0

m2ω5
sin2(ωT/2)(ωT − sin(ωT ))

+ 2
G
T

∆2
p0

m2ω3
sin(ωT ) sin2(ωT/2)+

1
2
G
T
∆2

x0

ω
sin(2ωT )

+
1
2
G
T

⟨P2
⟩0

m2Mω3 ((m − M) sin(ωT )+ (m + M) cos(ωT )ωT )

+
G
T

1
mω2

(1 + 2 cos(ωT )) sin2

ωT
2


[⟨xp + px⟩0 − 2⟨x⟩0⟨p⟩0] − G

⟨P2
⟩0

mMω2


CpP(T ) =

G
T

⟨P2
⟩0

ω
sin(ωT )


CxP(T ) =

2G
T

⟨P2
⟩0

mω2
sin2(ωT/2)

, (16)

In the impulsive limit we have,

CxQ (0) = G∆2
x0,

CpP(0) = G⟨P2
⟩0,

CxP(0) = 0. (17)

We see that in the limit of an instantaneousmeasurement the final values of the entanglement indica-
tors after the measurement are the same as in the case of an instantaneous measurement performed
on a free particle. This, of course, is consistent with the fact that in this limit the interaction term of
the Hamiltonian becomes dominant and determines completely the evolution of the particle–pointer
system during the measurement process.
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2. Exact time dependent Gaussian wave packet solutions of the Schrödinger equation

In the previous sections we have studied the behavior of the particle–pointer system by recourse
to the analysis of the evolution of the expectations values of an appropriate family of observables.
That analysis was general, in the sense of yielding results valid for arbitrary initial conditions of the
particle–pointer system. Nowwe shall consider an ansatz for the particle–pointer wavefunction lead-
ing to particular exact solutions of the concomitant Schrödinger equation, on which we can explicitly
evaluate an entanglement measure in order to determine its time evolution.

2.1. Gaussian particle–pointer wave packet

We introduce the following Gaussian wave packet ansatz for the particle–pointer wave function,

Ψ (x;Q ) = N exp(−λ1x − λ2x2 − λ3Q − λ4Q 2
− λ5xQ ) (18)

where the normalization constant N is given by,

N =



4l4l2 − l25
2π

exp


−
l21l4 + l23l2 − l3l1l5

l25 − 4l4l2

1/2

, (19)

with λj = lj/2+ ıλIj , lj = 2Re(λj), and λIj = Im(λj), (j = 0, 1, . . . , 5). After some algebra the real and
the imaginary parts of the coefficients λi can be expressed in terms of the set of selected expectation
values. For the lj’s we obtain,

l1 =
⟨xQ ⟩⟨Q ⟩ − ⟨x⟩⟨Q 2

⟩

D2
xQ

l2 =
∆2

Q

2D2
xQ

l3 =
⟨x⟩⟨xQ ⟩ − ⟨x2⟩⟨Q ⟩

D2
xQ

l4 =
∆2

x

2D2
xQ

l5 =
⟨x⟩⟨Q ⟩ − ⟨xQ ⟩

D2
xQ

, (20)

where (see Appendix B),

D2
xQ = −


⟨x2⟩⟨Q ⟩

2
− ⟨x2⟩⟨Q 2

⟩ + ⟨x⟩2⟨Q 2
⟩ + ⟨xQ ⟩

2
− 2⟨x⟩⟨xQ ⟩⟨Q ⟩


= ∆2

Q∆
2
x − (⟨x⟩⟨Q ⟩ − ⟨xQ ⟩)2 ≥ 0. (21)

The imaginary parts λIj , of the λi are,

λI1 =
1
h̄


⟨x⟩⟨p⟩ −

1
2
⟨xp + px⟩


l1 + (⟨Q ⟩⟨p⟩ − ⟨pQ ⟩)l3 − ⟨p⟩


λI2 = −

1
2h̄
(l1⟨p⟩ + l2⟨xp + px⟩ + l5⟨pQ ⟩)

λI3 =
1

2h̄∆2
Q
(⟨Q ⟩⟨QP + PQ ⟩ − 2⟨Q 2

⟩⟨P⟩ − D2
xQ (2l3⟨p⟩ + 4l4⟨pQ ⟩ + l5⟨xp + px⟩)l1)
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λI4 = −
1

4h̄∆2
Q
(⟨QP + PQ ⟩ − 2⟨Q ⟩⟨P⟩ + D2

xQ (2l3⟨p⟩ + 4l4⟨pQ ⟩ + l5⟨xp + px⟩)l5)

λI5 = −
1
h̄


l3⟨p⟩ + 2l4⟨pQ ⟩ +

1
2
l5⟨xp + px⟩


. (22)

From Eqs. (20) and (22) we can evaluate the λi’s at any time t if we know at that time the expectation
values of the relevant observables.

2.2. Initial conditions

We assume that before the beginning of themeasurement process the state of the particle–pointer
system is represented by a factorized Gaussian wave packet. That is, at t = 0 we have λ5 = 0.
The characterization of this initial Gaussian state requires three initial parameters for the particle,
⟨x⟩0 = x0, ⟨p⟩0 = p0 and ∆x = ∆x0. Similarly, the initial state of the pointer is determined by
⟨Q ⟩0 = Q0, ⟨P⟩0 = P0 y∆Q = ∆Q0.

Ψ (x;Q ) =
1

2π∆x0∆Q0
exp


i
p0
h̄
(x − x0)−

(x − x0)2

4∆2
x0



× exp


i
P0
h̄
(Q − Q0)−

(Q − Q0)
2

4∆2
Q0


. (23)

2.3. The impulsive limit: T → 0

In the limit of an instantaneous measurement the final state of the system when we measure the
position of a free particle is the same as the one obtained when the particle is under the effect of a
harmonic potential. If the pointer is initially represented by a factorized Gaussian wave packet, with
Q0 = ⟨Q ⟩0 = 0 and arbitrary widths∆x and∆Q , we have,

∆2
x(0) = ∆2

x0

∆2
Q (0) = G2∆2

x0 +∆2
Q0

DxQ (0) = ∆2
x0∆

2
Q0. (24)

Note that ∆A(0) and ∆A0 denote different things. The quantity ∆A(0) is the value adopted by ∆A
immediately after an instantaneous measurement (corresponding to the limit T → 0) while ∆A0
is the initial value of ∆A (that is, the value at t = 0). The values of the λ-parameters characterizing
our ansatz after an instantaneous measurement are,

λ1(0) = −
x0
2∆2

x
− i

⟨p⟩0
h̄

λ2(0) = G2 1
4∆2

Q
+

1
4∆2

x

λ3(0) = i
1

2h̄(∆2
x +∆2

Q )


2G +

∆2
Q

G∆2
x +∆2

Q


⟨x⟩0⟨p⟩0

λ4(0) =
1

4∆2
Q

λ5(0) = −G
1

2∆2
Q
. (25)
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In the above equations, and in the remaining equations of this Section we drop the ‘‘0’’ subindex from
1x and 1Q with the convention that when these quantities appear with no subindices they refer to
the initial values.

We have assumed that just before measuring, the system state is separable

Ψ (x;Q ) = φ0(x)Φ0(Q ), (26)

as described in Eq. (23), which corresponds to Eq. (18) with λ5 = 0. Due to the particle–pointer
interaction the system evolves to a final statewith λ5 ≠ 0, corresponding to a non-separable Gaussian
wave packet. It is instructive to compute the final marginal probability density for the positions of the
particle and the pointer. It is possible to verify after some algebra that for the final, non-separable
(that is, not of the form (26)) Gaussian wave packet the marginal probability density for the particle
is,

P(x) =


∞

−∞

|Ψ (x,Q )|2dQ

= |φ0(x)|2. (27)

The last equality in the above equation is due to the fact that the value of ∆x after an instantaneous
measurement is equal to its initial value. The marginal probability density for the pointer’s position
is,

P̃(Q ) =


∞

−∞

|Ψ (x,Q )|2dx

=
1

2
√
πσ

exp


−
(Q − Gx0)2

4σ 2


, (28)

where

σ 2
=

G2∆2
x +∆2

Q

2
. (29)

We see that the probability density for the particle’s position is the same before and after themeasure-
ment. This might suggest that the quantum state of the particle is unchanged by the measurement.
This, however, is not in general the case, because the act of measurement generates entanglement
between the particle and the pointer.

3. Particle–pointer entanglement

In order to investigate the time evolution of the particle–pointer entanglementweneed to consider
the global density matrix ρ = |Ψ ⟩⟨Ψ | describing the joint state of the particle–pointer system. From
this matrix we obtain the marginal density matrix ρP describing the pointer. The matrix elements of
ρP are ρP(Q ,Q ′) =


dxΨ (x,Q )Ψ ∗(x,Q ′). The entanglement measure (8) is then given by the linear

entropy of ρP , yielding

E = 1 − (4l2l4 − l25)|λ4|λ
2
5

1
√
B
exp


2
R1

R2


, (30)

where,

R1 = λ23λ4(λ
2
5 + |λ5|

2)2(l21l4 + l2l23 − l1l3l5)− λ23λ
2
5(λ

2
4 + |λ4|

2)(l21l
2
5 − 2l2l3)2

+ λ4λ5

λ3(|λ3|

2λ25 + |λ25λ
2
3| + λ23λ

2
5 + λ23|λ5|

2)l1 − λ5(λ
2
3 + |λ3|

2)2l2

(−4l2l4 + l25)

R2 = (4l4l2 − l25)(4λ
2
5(λ

2
4 + |λ4|

2)l2 − λ4(λ
2
5 + |λ5|

2)2)λ23

B = 16l22λ
4
5(λ

2
4 + |λ4|

2)2 + λ24(λ
4
5 − |λ5|

4)2

− 8l2λ4λ25(|λ
4
5λ

2
4| + λ25|λ4|

2
+ λ24(λ

4
5 + |λ5|

4)). (31)
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We now evaluated the post-measurement entanglement E for the impulsive limit (T → 0) using
Eq. (25) to obtain a compact closed form for expression (30), yielding,

E = 1 −
∆Q

∆2
Q +∆2

x

. (32)

Since in this impulsive limit the evolution of the particle–pointer system is determined exclusively
by the interaction term in the Hamiltonian, the final entanglement depends neither on the mass of
the particle nor on the mass of the pointer (in fact, it can be verified that expression (32) for the post-
measurement entanglement also holds for finite-duration measurements in the limit m,M → ∞

where, again, only the interaction term in the Hamiltonian survives). Note that the system is entan-
gled more strongly with decreasing ∆Q /∆x. In other words, if the initial position of the pointer is
defined with accuracy much greater than that of the particle, the system ends up in a highly entan-
gled state. In the limit of ∆Q /∆x → 0, we have E → 1. We see that when ∆x → 0 (for a given ∆Q )
the final particle–pointer entanglement tends to zero. This is consistent with an ideal position mea-
surement, since when ∆x decreases the particle becomes more localized and its state approaches an
eigenstate of the position observable.

It follows from (32) and from the uncertainty relation connecting∆Q and∆P , that,

E ≤ 1 −
1

1 +
∆2

x∆
2
P

h̄2

. (33)

We see that E → 0 when ∆P → 0. This occurs because the interaction term in the Hamiltonian (5)
admits an alternative interpretation as describing a measurement of the momentum P of the pointer.
From this point of view the particle (with coordinate x) plays the role of the measuring apparatus,
while the pointer (with coordinate Q ) is the system being measured.

The amount of entanglement E generated by an instantaneous (T → 0) measurement process
(with the initial state of the particle–pointer system given by the Gaussian wave packet ansatz (18))
is depicted in Fig. 1 as a function of (a) ∆x with fixed values of ∆Q = 0.1, 1, 10, and (b) ∆Q with
∆x = 0.1, 1, 10. It transpires from Fig. 1, that for given values of∆Q , E increases with∆x from zero
to the maximum value given by 1. On the other hand, for given∆x, the final entanglement decreases
with∆Q . We see that for small values of∆Q the final entanglement increases quickly with∆x while,
for large values of ∆Q the entanglement increases slowly with the initial dispersion of the particle’s
position. Similarly, for given values of∆x, the smaller the value of∆x the faster is the decrease of the
final entanglement with∆Q . The amount of entanglement E resulting from a non-instantaneousmea-
surement with a finite duration T = 1 is plotted in Fig. 2 as a function of ∆Q and ∆x, with the main
parameters adopting the values M = 100, m = 1 and G = 1. The results observed for M > 1 are
almost independent of the pointer’s mass M . The surface obtained for M = 10 practically coincides
with the one corresponding to M = 100. Any difference with the surface obtained for M = 1 is also
negligible. It is interesting that, contrary to what one expects for an ideal position measurement, for
small values of ∆x the entanglement of the particle–pointer system increases as ∆x decreases, ap-
proaching its maximum value E = 1 as∆x → 0. This is consistent with the behavior of the indicator
CxQ which, as was shown in Section 1.1, for measurements of finite duration diverges as∆x → 0.

In Fig. 3 the final particle–pointer entanglement resulting after measuring the position of a free
particle is depicted as a function of the measurement’s duration T . We assume G = 1 and initial
conditions x0 = 1, ∆x = 2, p0 = 1, Q0 = 0, and P0 = 0, with (a) ∆Q = 3 and (b) ∆Q = 0.1. It
transpires from Fig. 3 that, for a given value of the measurement duration T (and a given particle’s
massm) the amount of entanglement generated by themeasurement tends to increase with themass
M of the measuring apparatus (pointer). It can also be appreciated in Fig. 3 that the finite amount of
entanglement generated by an instantaneous measurement (T → 0) does not depend on M , as is to
be expected, since in the impulsive limit the contribution of the particle’s and pointer’s free Hamil-
tonians to the system’s evolution is negligible (in fact, in the limit T → 0 the post-measurement
entanglement does not depend onm either).
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Fig. 1. The entanglement E , for T → 0, is depicted as a function of: (a)∆x for several values of∆Q ; (b)∆Q for several values
of∆x .

Fig. 2. A surface is plotted to represent the entanglement E as a function of∆Q and∆x where main parameters areM = 100,
m = 1 and T = 1, and G = 1. It is observed that forM > 1 the results are almost independent of massM . The surface obtained
for M = 10 practically coincides with the one got for M = 100. Any difference with the surface obtained for M = 1 is also
negligible.
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Fig. 3. The particle–pointer entanglement is depicted as a function of the measurement’s duration T for different values of the
pointer’s mass. We have the following parameters h̄ = 1, G = 1, ∆x = 2, and m = 1, with (a) ∆Q = 3 and (b) ∆Q = 0.1. We
considered three values of the pointer’s mass,M = 0.1, 1, 10. The particle is not affected by any external potential, interacting
only with the pointer.

Fig. 4. The particle–pointer entanglement is depicted as a function of time for different values of the pointer’s mass. We have
the following parameters h̄ = 1, G/T = 1,∆x = 2,m = 1, with (a)∆Q = 0.1 and (b)∆Q = 3. Three values for the mass of the
pointer are considered, M = 0.1, 1, 10. The particle is not under the effect of any external potential, and interacts solely with
the pointer.

In Fig. 4 the final particle–pointer entanglement generated after the position’s measurement of a
free particle is depicted as a function of time for different values of the pointer mass. Note that in
this Figure we are not showing the dependence of entanglement on the total duration T of the mea-
surement process, but its dependence on the time t along the course of the measurement process. In
Fig. 4 we have the following parameters h̄ = 1, ∆x = 2, m = 1. The difference with the case rep-
resented by Fig. 3 is that G is not constant, we consider G/T = 1. In (a) ∆Q = 0.1 and (b) ∆Q = 3.
In every case, the mass of the pointer is fixed, as M = 0.1, 1, 10. The particle does not interact with
other potential except with the pointer. In Fig. 5 the dependence of entanglement on ∆Q is shown
for G = 1, T = 1, m = 1 and∆x = 1 and two particular values of M (M = 1,100). The entanglement
generated by the interaction Hamiltonian alone is also shown by the dot-dashed orange line. In Fig. 6
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Fig. 5. The entanglement E (full black line) is represented as a function of ∆Q for ∆x = 1. The parameters of the system are
m = 1, G = 1 and T = 1. The part of the entanglement produced by the interaction term alone (dash–dot–dot orange line) is
also represented. For the pointer’s mass we consider in (a) M = 100 and in (b) M = 1. Besides, it is plotted the entanglement
E (dash–dot–dot orange line) produced only by the interaction term. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. The entanglement E (solid black line) is represented as a function of ∆x with M = 100, m = 1, G = 1 and T = 1
for (a) ∆Q = 1, and (b) ∆Q = 0.5 having a minimum close to zero. In addition, the entanglement (dash–dot–dot orange line)
produced by the interaction term alone is depicted. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

the dependence of entanglement on ∆x is depicted for G = 1, T = 1, m = 1, M = 100, and the
pair of particular values∆Q = 1, 0.5. The entanglement (dash–dot–dot orange line) produced by the
interaction term alone is also depicted. In this last case, which is similar to an instantaneousmeasure-
ment where the effect of the free Hamiltonians of the particle and the pointer are negligible, we see
that the amount of entanglement generated by the measurement tends to zero when∆x → 0. On the
other hand, we see that when the kinetic energy terms make a finite contribution to the evolution,
the entanglement tends to its maximum value when ∆x → 0, illustrating again this already men-
tioned important aspect in which a finite-duration position measurement differs from an ideal one.
In general, the effect of an instantaneous measurement process on the initial particle–pointer wave
function ψ(x,Q , 0) = φ(x)Φ(Q ), is given by

φ(x)Φ(Q ) −→ φ(x)Φ(Q − Gx). (34)

This transformation corresponds to the particular instance of the general transformation (4) obtained
when the observable being measured is the position of a particle. Note that, in general, the final parti-
cle–pointer state is entangled. The final state of the particle is described by a marginal density matrix
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ρp with matrix elements given by,

ρp(x, x′) = φ(x)φ∗(x′)


Φ(Q − Gx)Φ∗(Q − Gx′)dQ . (35)

In order to determine the entanglement of the final particle–pointer state we first compute Tr[ρ2
p ].

We have,

Tr[ρ2
p ] =


|φ(x)|2|φ(x′)|2γ (x − x′)dxdx′, (36)

where γ (x − x′) =
 Φ(u)Φ∗(u + G(x − x′))du

2. Note that the function γ (x − x′) does not depend
on the initial state φ(x) of the particle whose position is to be measured. The function γ (x − x′) is
determined by the initial ‘‘setting’’ of the measuring apparatus, given by the apparatus initial wave
function Φ(Q ). Applying the Schwartz inequality to (36) one gets Tr[ρ2

p ] ≤ Γ


|φ(x)|4dx, with

Γ =
 γ 2(x − x′)dxdx′

1/2 . From this we obtain a lower bound for the entanglement (as measured
by the linear entropy of ρp) of the final state of the particle–pointer system,

E ≥ 1 − Γ


|φ(x)|4dx. (37)

This lower bound is given in terms of the initial wave function of the particle and of the constant Γ
(which depends solely on the initial setting of themeasuring apparatus). We see that for very delocal-
ized initial states of the particle the integral appearing in (37) adopts small values, leading to a final
entanglement between the particle and the pointer approaching the maximum value E = 1.

4. Conclusions

Wehave investigated some entanglement features of amodel system describing themeasurement
of the position of a quantum particle.We considered two complementary approaches to this problem.
On the one hand,we analyzed the evolution of the expectation values of an appropriate family of quan-
tum observables that obey a closed system of equations of motion. We obtained exact analytical so-
lutions to these equations and derived from them the behavior of some entanglement indicators. This
approach is general, in the sense of corresponding to arbitrary initial conditions of the particle–pointer
system and, consequently, to arbitrary solutions of the system’s Schrödinger equation. As a second ap-
proachwe obtained a particular exact solution to the system’s time-dependent Schrödinger equation.
This solution is given by a parameterized two-dimensional anisotropic Gaussian wave packet. We
computed exactly an entanglement measure on this solution and investigated its behavior.

From the time evolution of the expectation values of the aforementioned family of observables
we proved that for a finite-duration measurement the final shift in the mean position of the pointer
is proportional to the average between the initial and the final mean positions of the particle. This
constitutes a new, alternative proof of the shift-property for finite-duration measurements of the
position of a particle obtained in [18] on the bases of Feynman’s path integrals formalism. We also
used the time-depending expectation values to determined the evolution of some entanglement in-
dicators associated with the correlations between the particle and the pointer in configuration space
(CxQ ), in momentum space (CpP ), and ‘‘mixed’’ position–momentum correlations (CxP and CpQ ). Since
we are solely considering pure global states of the particle–pointer system, these indicators adopt
non-vanishing values only for entangled states of the system.We found that, whenmeasuring the po-
sition x of a free particle these indicators behave as follows. The indicator CxQ is given by a polynomial
of second degree on the duration T of the measurement process. On the other hand, the indicators CxP
and CpQ are linear functions of T , the former being a linear homogeneous function of T while the latter
involving an inhomogeneous term equal to G

2 [⟨xp + px⟩0 − 2⟨x⟩0⟨x⟩0]. The indicator CpP , giving the
correlation between the particle’s and the pointer’s momenta, adopts a constant value independent
of the duration of the measurement. In the limit T → 0, corresponding to an instantaneous measure-
ment, CxQ tends to the limit valueG∆2

x0, proportional to the squared initial uncertainty of the particle’s
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position (this limit value is also proportional to the coupling constant G characterizing the intensity of
the particle–pointer interaction). This limit value of CxQ occurs because in the instantaneous limit the
behavior of the model here analyzed corresponds to an ideal position measurement, implying that in
the limit ∆x0 → 0 the measurement does not generate entanglement between the particle and the
pointer. On the other hand, for finite non-vanishing values of the duration T one observes that, in this
important respect, the measuring process’ behavior exhibits drastic departures from that of an ideal
measurement. In fact, for very small values of ∆x0 the indicator CxQ actually increases when ∆x0 de-
creases, showing that for highly localized initial states of the particle (corresponding to awell-defined
initial position of the particle) a large amount of entanglement between the particle and the pointer
is generated during the measurement. Similar results are obtained when measuring the position of a
particle that moves in a harmonic potential, although in this case the entanglement indicators exhibit
a more complicated dependence on the measurement duration. In particular, the limit T → 0 yields
the same results for the free particle and for the harmonic oscillator, because in this limit the behavior
of the system is fully determined by the particle–pointer interaction term, and the contributions of
the free Hamiltonians of the particle and the pointer become negligible.

Finally, we obtained a particular exact solution for the system’s Schrödinger equation and inves-
tigated the evolution of the associated particle–pointer entanglement. The main features of the en-
tanglement dynamics are observed to be consistent with the ones indicated by the evolution of the
expectation values of the family (9) of observables. In particular, one can see in Fig. 3 that, for small
values of M , there is a range of T -values for which the final particle–pointer entanglement decreases
with the duration of the measurement process. We also see in Fig. 2 that there is an important aspect
in which finite-duration measurements differ from instantaneous ones. For small values of the initial
uncertainty ∆x in the particle’s position the final joint particle–pointer state is highly entangled. In-
deed, its amount of entanglement (asmeasured by the linear entropy of the particle’smarginal density
matrix) actually approaches its maximum value as∆x → 0. This means that, for finite-time position
measurements, highly localized initial states of the particle are not left unaffected by themeasurement
process, since the final marginal state of the particle is highly mixed. This implies that finite-duration
position measurements differ in essential ways from ideal quantum position measurements. In con-
trast towhat occurs in the finite-duration case, for ideal positionmeasurements initial particle’s states
of arbitrary small position uncertainty should tend to be unaffected by the positionmeasurement pro-
cess. Our present results suggest that the finite duration T of a quantummeasurement might impose
universal limitations on the extent to which the measurement under consideration is an ideal mea-
surement. Given the privileged role played by position measurements in Physics, these limitations
may also affect the measurement of other observables besides position. We plan to address some of
these issues in a future communication.
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Appendix A

If the particle whose position is measured is under the effect of an harmonic potential, the solution
to the equations of motion (10) for the relevant expectation values is,

⟨x⟩(t) =
⟨p⟩0
mω

sin(ωt)− 2
G
T

⟨P⟩0

mω2
sin2


ωt
2


+ ⟨x⟩0 cos(ωt)

⟨x2⟩(t) =
1
2


⟨xp + px⟩0

mω


sin(2ωt)+


⟨p2⟩0
m2ω2

−


G
T

2
⟨P2

⟩0

m2ω4


sin2(ωt)

− 4
G
T


⟨pP⟩0

m2ω3
sin(ωt)+

⟨xP⟩0

mω2
cos(ωt)−

G
T

⟨P2
⟩0

m2ω4


sin2


ωt
2
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Putting T = t yields the relevant expectation values at the end of the measurement. Setting ω = 0
in (38) one obtains the time dependent expectation values corresponding to the measurement of the
position of a free particle.
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Appendix B

The non-negativity of the quantity defined in Eq. (21) follows from the Cauchy–Schwarz inequality.
We have,

⟨xQ ⟩ − ⟨x⟩⟨Q ⟩

2
=


(x − ⟨x⟩)(Q − ⟨Q ⟩)|Ψ (x,Q )|2dxdQ

2

≤


(x − ⟨x⟩)2|Ψ (x,Q )|2dxdQ

 
(Q − ⟨Q ⟩)2|Ψ (x,Q )|2dxdQ


= ∆2

x∆
2
Q , (39)

from which follows that DxQ in Eq. (21) is non-negative.
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