
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Two-dimensional modeling of material failure in reinforced concrete
by means of a continuum strong discontinuity approach

J. Oliver a,*, D.L. Linero b, A.E. Huespe c, O.L. Manzoli d

a E.T.S. d’Enginyers de Camins, Canals i Ports, Technical University of Catalonia (UPC), Campus Nord UPC, Mòdul C-1,
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Abstract

The paper presents a new methodology to model material failure, in two-dimensional reinforced concrete members, using the Con-
tinuum Strong Discontinuity Approach (CSDA). The mixture theory is used as the methodological approach to model reinforced con-
crete as a composite material, constituted by a plain concrete matrix reinforced with two embedded orthogonal long fiber bundles
(rebars). Matrix failure is modeled on the basis of a continuum damage model, equipped with strain softening, whereas the rebars effects
are modeled by means of phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond–
slip and dowel effects. The proposed methodology extends the fundamental ingredients of the standard Strong Discontinuity Approach,
and the embedded discontinuity finite element formulations, in homogeneous materials, to matrix/fiber composite materials, as rein-
forced concrete. The specific aspects of the material failure modeling for those composites are also addressed. A number of available
experimental tests are reproduced in order to illustrate the feasibility of the proposed methodology.
� 2007 Elsevier B.V. All rights reserved.
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1. Motivation

As it is well known, the mechanical behavior of rein-
forced concrete structural members is very affected by the
formation of cracks during loading. In many situations,
the ultimate loading capacity of these members is deter-
mined by a collapse mechanism induced by the formation
of one or several dominant cracks, which, however,
develop as concrete is already very damaged by previous
secondary cracking. Therefore, in order to model the ulti-
mate (post-critical) behavior of reinforced concrete mem-
bers it is fundamental to have available numerical tools
capable to appropriately describe the formation and prop-

agation of multiple cracks in a non-homogeneous (compos-
ite) solid, constituted by a plain concrete matrix with steel
reinforcement embedded in it.

Despite the important progress achieved in the last
years, modeling formation and propagation of discontinu-
ities in solids still remains an open issue in computational
mechanics. The major obstacles to be overcome are related
to the multiple scale character of those problems, involving
the formation of tiny dissipative zones preceding the cracks
(crack process zones), and the material instabilities caused
by the progressive deterioration of the mechanical proper-
ties in these zones.

In the context of the Finite Element Method (FEM), the
use of local constitutive models to describe the deterioration
of the mechanical properties, characterizing the crack
formation, yields, in many cases, spurious mesh-size and

0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2007.05.017

* Corresponding author.
E-mail address: xavier.oliver@upc.edu (J. Oliver).

www.elsevier.com/locate/cma

Available online at www.sciencedirect.com

Comput. Methods Appl. Mech. Engrg. 197 (2008) 332–348



Author's personal copy

mesh-bias dependences. The popular smeared crack models

[24,37], based on orthotropic constitutive models derived
from the assumption that the cracks are smeared over an ele-
ment, are also amenable to the mentioned mesh depen-
dences. Dependencies on the finite element size can be
overcome if the softening law is related to the element size,
as in the crack band method [2,19]. However, this procedure
does not preclude the mesh alignment sensitivity of the
results. Despite this, and possibly due to the lack of other
alternatives, in current practice cracking in reinforced con-
crete is nowadays predominantly modeled with smeared
crack models.

On the other hand, in discrete interface models cracks
are modeled by interface (zero-thickness) elements placed
between two adjacent solid finite elements. The material
degradation in the crack process zone is captured at those
elements by means of discrete constitutive models, relating
cohesive stresses and relative displacements (crack opening
and sliding), belonging to the fictitious crack models intro-
duced by Hillerborg [10]. Using discrete interface models to
capture arbitrary crack propagation is not an easy task.
The mesh topology must be continuously updated during
the analysis in order to adjust the sides of the solid elements
to the propagating crack surface. This type of approach
does not exhibit the mesh dependence of the smeared crack
model, but demands very sophisticated automated mesh
regeneration techniques [1,6].

An alternative way for capturing arbitrary cracks is
based on a fixed mesh in which all the solid elements are
surrounded by cohesive interface surfaces [42,45]. Some
encouraging results have been obtained with this method-
ology by Pandolfi and Ortiz [34]. However, the results
can exhibit mesh alignment sensitivity.

In addition, the objectivity problems found in the meth-
odologies described so far can be incremented in reinforced
concrete problems, exhibiting multiple crack patterns.
Those difficulties can be alleviated by resorting to the con-
cept of strong discontinuity and to the so-called embedded
strong discontinuity finite elements (E-FEM) [8,16,21], or to
the extended finite elements (X-FEM) [3,44] which allow
introducing a displacement discontinuity into the finite ele-
ment, independently of its boundaries. This ability makes
this class of approaches very appealing to capture arbitrary
crack propagation with fixed finite element meshes without
loss of mesh objectivity.

A specific formulation of this family, the Continuum
Strong Discontinuity Approach (CSDA) [17,20,23,25,39],
is of interest here. In this approach, instead of using an
explicit fictitious crack model for modeling the constitutive
behavior at the embedded discontinuity interface (strong
discontinuity), a continuum type (stress vs. strain) constitu-
tive model is used. Then, the so-called strong discontinuity

kinematics projects that model onto the interface as a trac-
tion–separation law. This procedure seems especially suit-
able when it is intended to model material failure in
composite materials, as modeling some phenomena is eas-
ier via continuum constitutive models.

As a crucial ingredient, the CSDA requires the use of
tracking algorithms that ensure continuity of the crack
path when passing from one element to another [12,30].
In initial stages of its development, local tracking algo-
rithms limited the application to cases involving propaga-
tion of just one or very few cracks. More recently, global
tracking algorithms for multiple cracks simultaneously
developing, have been proposed [25,31], extending the
range of applicability of the embedded crack elements to
larger and more realistic structures in 2D and 3D settings.

Another issue, always present in simulations involving
multiples cracks, concerns the computational robustness.
As it is well known, in material failure simulations numer-
ical instabilities, inherent to the presence of the strain or
displacement softening in the constitutive models, appear
mainly in the post-critical branch of the structural behav-
ior. Moreover, formation of new cracks can deactivate
the ones existing in their neighborhood. This interaction
between cracks can be another important source of insta-
bilities, which can translate into loss of robustness and lack
of convergence of the non-linear computations. Related to
this issue, recent advances to improve stability and robust-
ness of material failure simulations, based on the CSDA,
have been presented in Refs. [5,27], in which, to face con-
vergence problems, an implicit–explicit integration scheme

of the constitutive model, that leads to a positive definite
constitutive operator, is proposed. A specific arc-length
method is also proposed to improve the controllability of
the time advancing algorithm.

With the aforementioned recent developments, the
material failure modeling using the CSDA exhibits the nec-
essary maturity to be applicable to reinforced concrete,
provided that the effects of rebars in plain concrete are
properly included. These effects should reflect the mechan-
ical behavior of the steel bars, usually described by a differ-
ent constitutive law, as well as the interfacial interaction
between concrete and bars (bond–slip and dowel action).

A mesoscopic scale treatment could be done by using
homogenous elements of concrete and reinforcement, with
appropriate interface elements between them to account for
their mutual interaction. However, for practical reinforced
concrete problems, this mesoscopic approach would
demand a very large computational capacity. On the con-
trary, in a macroscopic scale treatment, rebars could be
assumed embedded into solid finite elements, allowing the
use of coarser meshes and reducing the computational
costs [11].

The mixture theory [43] also offers a suitable framework
to account for the reinforcement in a macroscopic level.
Using this theory, fibers (rebars) can be mixed up with
the matrix material (plain concrete). If fibers are long
enough, as it is the case for rebars, a parallel mechanical
mixture scheme, assuming that all the constituents share
the same strain field (or specific components of it), can be
adopted. Then, the composite material stress field can be
evaluated as the (weighted) sum of the stresses returned
from every individual constituent constitutive model. A
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similar approach can be found in Ref. [9]. To formulate
those constitutive models, one can resort to the available,
and well established, phenomenological models based on
standard continuum theories and, then, the CSDA appears
as a natural setting to account for the material failure of
the composite material.

In this scenario, this paper proposes a new methodology
to model material failure in two-dimensional reinforced
concrete members by means of the CSDA. Mixture theory
concepts are used to model reinforced concrete as a com-
posite material constituted of a plain concrete matrix with
long fibers bundles, oriented in two orthogonal directions,
embedded in it. The effects of the plain concrete matrix and
the individual rebars in the composite material are cap-
tured by phenomenological continuum constitutive models
devised to reproduce the 2D material failure of the matrix,
the axial non-linear behavior of the fibers, as well as the
fiber/matrix bond–slip and dowel effects. Since the treat-
ment of the composite material is totally done at the con-
stitutive level, the proposed methodology preserves the
fundamental ingredients of the standard formulation of
the CSDA for homogeneous materials [5,25,27]. Because
of this, this paper focuses on the constitutive models
assumed for the constituents and the compatibility condi-
tions chosen to define the composite. In order to obtain
information about the propagation of the cracks, some spe-
cific aspects related to the material bifurcation analysis of
the resulting composite material are also addressed.
Finally, numerical simulations of existing experimental
tests are presented to illustrate the capabilities of the pro-
posed methodology.

2. Composite material model

In the proposed approach, reinforced concrete is
assumed to be a composite material constituted by a matrix
and two orthogonal long fiber bundles oriented in r and s

directions (see Fig. 1). According to the basic hypothesis
of the mixture theory, a composite is a continuum in which
each infinitesimal volume is occupied simultaneously by all
constituents [43]. Assuming a parallel mechanical system,
all constituents are subjected to the composite strains and
the corresponding composite stresses are given by the
weighted (in terms of the volume fraction) sum of the stres-
ses of each constituent. As a consequence, the matrix strain
field, em, and the composite strain field, e, are identical. The
axial fiber strain corresponds to the component efr = r Æ e Æ r

for fiber r (in direction r) and efs = s Æ e Æ s for fiber s (in
direction s), while the fiber angular strain is given by

r

s

x

n

x

y

matrix

fiber s

fiber r

discontinuity

S
Ω+

Ω-

Composite
material 

Fig. 1. (a) Solid with a discontinuity surface S, (b) representative material
point of the composite material.
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Fig. 2. Stresses composition scheme for the composite material (reinforced concrete).
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cf = 2r Æ e Æ s. Supra-indices m, fr and fs refer to the matrix
and the fibers oriented in r and s directions, respectively.

Then, according to the assumed model, the composite
material stress tensor is computed as the sum of the stresses
of each constituent, (•), weighted by the corresponding vol-
umetric fraction k(•):

rðeÞ ¼ kmrmðeÞ þ kfrrfðefrÞðr� rÞ þ kfsrfðefsÞðs� sÞ
þ 2sfðcfÞðkfr þ kfsÞðr� sÞS ; ð1Þ

where rm(•), rf(•) and sf(•) stand for the matrix and fibers
constitutive relations, returning the stresses from the corre-
sponding strains. As we will see later, the last component of
the stress field in Eq. (1) corresponds to the contribution
due to the dowel action.

The rate form of the resulting composite constitutive
equation can be written as

_r ¼ Ctg : _e; ð2Þ

where the constitutive tangent tensor, Ctg, can be obtained
by substitution of the constitutive relations of the constitu-
ents into the rate form of Eq. (1), yielding:

Ctg ¼ kmCm
tg þ kfrEfr

tgðr� rÞ � ðr� rÞ þ kfsEfs
tgðs� sÞ

� ðs� sÞ þ 4Gfs
tgðkfr þ kfsÞðr� sÞs � ðr� sÞs ð3Þ

in which Cm
tg ¼ orm=oe;Efð�Þ

tg ¼ orf=oefð�Þ and Gfs
tg ¼ osf=ocf

are the tangent operators of the corresponding constitutive
relations.

Fig. 2 illustrates the stress composition scheme for rein-
forced concrete, according to the presented approach.

3. Constitutive models of the constituents

General aspects of the constitutive modeling are the
following:

• The matrix behavior is described by means of a non-
symmetric tensile/compressive strength isotropic dam-
age model, belonging to the family of damage models
proposed by Simo and Ju [41], as presented in [24] and
summarized in the Appendix.

• The rebar bond–slip effects are taken into account via a
combination of the uniaxial elasto-plastic model, for the
rebars, and a uniaxial slip dissipative model for the
interface concrete-rebars, resulting in a unique constitu-
tive model for the constituent slipping fiber.

• Additionally, the contribution of the rebars to the shear
strength of the concrete (dowel action) is accounted by a
combination of the previous slipping-fiber constitutive
model with a uniaxial shear stress–strain dissipative
model, resulting in a constitutive model for the constit-
uent slipping-shear-resistant fiber.

The material instability and failure of the composite is
determined via the discontinuous bifurcation analysis and
the strong discontinuity analysis of the mixed model, pro-

viding: (a) the time of crack onset and (b) the propagation
direction (exactly as if it were a single material).

3.1. Matrix constitutive model: the distinct

tensile-compression damage model

The damage criterion is expressed in terms of the matrix
strain field, em, and the effective stress field �rm:

f ðem; rÞ ¼ se � r 6 0; se ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rm : ðCmÞ�1

: �rm

q
;

�rm ¼ Cm : em; rðtÞ ¼ max
s2½0;t�
½r0; seðemðsÞÞ�; r0 ¼

rm
uffiffiffiffiffiffi
Em
p ;

ð4Þ
where Cm is the Hooke’s elastic constitutive tensor of the
concrete, r is the strain-like internal variable, rm

u is the ten-
sile strength, Em is the Young’s modulus. In Eq. (4) the fac-
tor a is defined as

a ¼
P3

i¼1h�rm
i iP3

i¼1j�rm
i j

1� 1

n

� �
þ 1

n
; ð5Þ

where �rm
i is the ith principal effective stress, h•i is the Mac-

Auley bracket and n is the ratio between the compression
and tensile strengths (see Fig. 3).

The stress rate _rm is related to the strain rate _em as

_rm ¼ Cm
tg : _em; ð6Þ

where the constitutive tangent tensor Cm
tg is given by

Cm
tg ¼

q
r

Cm ðunloading caseÞ; ð7Þ

Cm
tg ¼

q
r

Cm � q� Hmr
r3

� �
� r2

a
ð�rm � AÞ þ a2ð�rm � �rmÞ

� �
ðloading caseÞ; ð8Þ

A ¼ Cm : o�ra;

where q is the stress-like internal variable, dual of r. The
evolution of the internal variables are related by the soften-
ing law _qðtÞ ¼ HmðtÞ_rðtÞ with initial values rjt¼0 ¼ qjt¼0 ¼
r0 ¼ rm

u =
ffiffiffiffiffiffi
Em
p

, where Hm < 0 is the continuum softening
modulus (see Appendix for additional information).
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Fig. 3. Damage model with distinct tensile and compressive strengths: (a)
initial elastic domain in the stress space, (b) one-dimensional stress–strain
response.
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3.2. Constitutive model of the reinforcement bars

(slipping-shear-resistant fiber model)

3.2.1. Uniaxial elasto-plastic model

The axial behavior of the steel bars is described by
means of a one-dimensional elasto-plastic model, endowed
with a linear softening law, defined by the following equa-
tions [40]:

rf ¼ Efðef � ef
pÞ ðconstitutive relationÞ; ð9Þ

_ef
p ¼ kf signðrfÞ; _af ¼ kf ðinternal variables evolutionÞ;

ð10Þ
f fðrf ; afÞ ¼ jrf j � ðrf

y þ qfÞ ðyield functionÞ; ð11Þ
_qf ¼ H f _af ðsoftening lawÞ; ð12Þ

f f
6 0; kf P 0; kf f f ¼ 0

kf _f f ¼ 0 ðf f ¼ 0Þ

)
ðloading=unloading and persistency conditionsÞ; ð13Þ

where ef
p is the plastic strain, af is the strain-like internal

variable, conjugate of the stress-like variable qf, kf is the
plastic multiplier, rf

y is the yield stress, Ef is the elastic mod-
ulus and Hf is the hardening/softening modulus (supra in-
dex f refers to fiber r or s).

The rate form of the constitutive relation between the
fiber axial stress, rf, and axial strain, ef, can be written as

_rf ¼ Ef
tg _ef ; ð14Þ

where the tangent modulus Ef
tg is expressed in terms of Ef

and Hf, depending on the loading or unloading situation,
i.e.

Ef
tg ¼

Ef ðelastic=unloadingÞ;
Ef H f

EfþH f ðloadingÞ:

(
ð15Þ

Fig. 5c depicts the typical stress–strain curve obtained with
this model.

3.2.2. Axial resisting + bond–slip model (slipping-fiber

model)

To take into account the sliding and debonding mecha-
nisms of the fiber–matrix interface, the fiber strain ef is
assumed as an additive composition of two parts: one

due to the intrinsic fiber mechanical deformation, ed, and
another associated with the interface sliding, ei, such that:

ef ¼ ed þ ei: ð16Þ

Assuming a two-component serial system constituted by
the fiber and the interface, as shown in Fig. 4, the corre-
sponding slipping-fiber stress rf is identical to the stress
of each component:

rf ¼ rd ¼ ri: ð17Þ

Both stress–strain relations (r � e), describing the interface
sliding mechanism and the fiber mechanical deformation,
are also assumed to follow a one-dimensional elasto-plastic
model, as shown in Fig. 5a and b. In this case, the resulting
slipping-fiber constitutive model is still governed by Eqs.
(9)–(13), but with material parameters defined from the
composition of both models, i.e.

Ef ¼ 1

1=Ed þ 1=Ei
; ð18Þ

rf
y ¼ min½rd

y ; r
i
adh�; ð19Þ

H f ¼
H d if rd

y < ri
adh;

H i otherwise;

(
ð20Þ

in which Ed and rd
y are the steel Young’s modulus and yield

stress, respectively, Ei is the interface elastic modulus and
ri

adh is the interface bond limit stress, which is an upper
bound for the fiber–matrix interface adherence (see
Fig. 5b).

Notice that if Ei!1 and ri
adh > rd

y, the system pro-
vides only the mechanical behavior of the fiber, reproduc-
ing a perfect connection between concrete and
reinforcement bars.

3.2.3. Properties characterization of the bond–slip model

The parameters required for the bond/slip model char-
acterization can be calibrated from the pull-out test, in

dσ iσ
fσ

ε ε
ε

σ σ
σ

dε iε
fε

Fig. 4. Slipping-fiber model.

Fig. 5. Slipping-fiber model composition.
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which a bar embedded into a concrete core is subjected to a
force applied at its free end, as shown in Fig. 6. From the
force–displacement curve obtained with this test (see
Fig. 6b), it is possible to evaluate the equivalent interface
elastic modulus, bonding limit stress and softening modu-
lus as

Ei ¼ P
d

� �
� Ls

Af

� �
; ri

adh ¼
P max

Af
;

EiH i

Ei þ H i
¼ k � Ls

Af

� �
;

Af ¼ pd2=4;

ð21Þ

where P and d are, respectively, the values of the applied
force and the corresponding measured displacement, d is
the diameter of the bar, Ls is the embedded length and k
is the observed softening slope.

3.3. Constitutive model for rebars in shear mode

(shear-resistant fiber): dowel action model

The strengthening effect introduced by the rebar in rein-
forced concrete members loaded in shear has been widely
studied (see Ref. [35] for instance) and several authors have
included this effect into their numerical simulations
[4,13,36].

In a reinforced concrete member, when cracks open in
mode II, the internal locking between particles (aggregate
interlock) withstands some shear forces across the crack
interfaces. The steel bars also introduce an important con-
tribution to the shear strengthening effect, known as dowel

action. This phenomenon is due to the following distinct
mechanisms acting on the rebars embedded in the concrete:

(a) The beam bending mechanism, which is mainly acti-
vated in mixed-mode crack opening, where the crack inter-
face separation l (in mode I) is large enough to make
relevant the bending of the bar [35]. To account for this
effect one can assume a steel beam of length l clamped at
both ends, which are shifted, one with respect to the other,
a displacement d, as shown in Fig. 7a. Following the clas-
sical Timoshenko’s beam theory, in the elastic range, the
relative displacement d determines the bar shear force, V,
providing an equivalent shear elastic modulus, Gf, as
follows:

V ¼ 12EdI

l3
d ¼ Gf d

l

� �
Af ) Gf ¼ Ed 12I

l2Af
; ð22Þ

where I ¼ pd4=64 and Af ¼ pd2=4 are the momentum of
inertia and the area of the cross section of a bar of
diameter d.

The elastic regime of the beam is admissible whenever
the maximum bending moment M = Vl/2 is smaller than
the plastic moment My = ry(d3/6), where ry is the steel
yield stress. Therefore, the shear force corresponding to
the elastic limit and the equivalent shear yield stress, sf

y,
can be determined as

V y ¼
4

3p
� d

l
� Afrd

y ¼ sf
yAf ) sf

y ¼
4

3p
d
l
rd

y : ð23Þ

(b) The shear mechanism, which is dominant when the
crack opens in mode II (or in a mixed-mode opening but
with a dominant mode II), see Fig. 7b. The interface shear
strength is introduced by means of the bar shear force,
which is given by

V ¼ GfAf

l
d; Gf ¼ Ed

2ð1þ mÞ ; ð24Þ

where m is the steel Poisson’s ratio. Assuming the von
Mises’ yield criterion, the yield shear force Vy for a pure
shear stress state is

V y ¼
rd

yffiffiffi
3
p Af ¼ sf

yAf ) sf
y ¼

rd
yffiffiffi
3
p : ð25Þ

In early stages of the inelastic regime, the cracks are distrib-
uted in the concrete matrix such that their opening remains
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Fig. 6. Pull-out test: (a) test specimen, (b) experimental force–displacement curve, (c) bond–slip constitutive model.
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small. Therefore, the second mechanism of the dowel ac-
tion might describe more closely the bar strengthening ef-
fect in these stages. Since in this formulation the crack
openings are assumed small, only that second mechanism
is considered in Section 6.

Based on the previous considerations, the dowel action is
modeled by means of a one-dimensional shear stress–strain
elasto-plastic constitutive model, similar to the previously
mentioned one for the axial stress–strain. In this case, the
1D constitutive model relates the fiber shear stress, sf, asso-
ciated to the local coordinate system (r, s) (see Fig. 7), with
the corresponding fiber shear stain, cf, by means of

_sf ¼ Gfs
tg _cf ; ð26Þ

where the shear tangent modulus Gfs
tg is given by

Gfs
tg ¼

Gf ðelastic=unloadingÞ;
Gf H fs

GfþH fs ðloadingÞ:

(
ð27Þ

The constitutive elastic shear modulus, Gf, is given either
by Eq. (22) or by Eq. (24), depending on which aforemen-
tioned dowel action mechanisms is dominant. In the same
way, the yield shear stress, sf

y, is given either by Eq. (23) or
by Eq. (25). The fiber shear hardening/softening modulus is
commonly assumed as Hfs = 0.

The uncoupled axial stress–strain, rf(ef), and shear
stress–strain, sf(cf), constitutive relations, defined by the
previous equations, constitute the slipping-shear-resistant
fiber model adopted for the rebars.

4. The continuum strong discontinuity approach (CSDA) to

material failure

Some ingredients of the CSDA, the framework where
the present model is inserted, are presented in the following
sections. Detailed aspects of the approach can be found in
Refs. [20,21,26,29].

4.1. Kinematical description of discontinuous displacement

fields

The CSDA aims at modeling discontinuous displace-
ment/velocity fields (strong discontinuities) across a failure
(discontinuity) line. Let X be a two-dimensional body dis-
playing a strong discontinuity line S with normal vector n.
The body is then splitted by this line into two parts: X+

and X� (see Fig. 1a). The velocity field at a point x and time
t is then expressed as

_uðx; tÞ ¼ _�uðx; tÞ þMSðxÞ � s _utðx; tÞ; ð28Þ

where _�u and s _ut are, respectively, the rates of the regular
(continuous) displacement and displacement jump; MS(x)
is the unit jump function, defined by MS (x) = HS(x) �
u(x), where HS(x) is the Heaviside’s (step) function and
u(x) an arbitrary continuous function with a small support
in Xh � X (see Fig. 8):

HSðxÞ ¼
0 8x 2 X�;

1 8x 2 Xþ;

�
ð29Þ

uðxÞ ¼ 0 8x 2 X�=Xh;

1 8x 2 Xþ=Xh:

(

The strain rate compatible with the velocity field of Eq.
(28) is then given by

_e ¼ rs _u

¼ rs _�u
z}|{compatible

�ðru� s _utÞS
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{bounded enhancement

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regular

þ ðdSn� s _utÞS
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{unbounded enhancement

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
singular

; ð30Þ

where dS stands for the line Dirac’s delta function, whose
regularized version, related to a regularizing volume Sk,
of thickness k (a regularization parameter as small as per-
mitted by the machine precision) surrounding S, reads:

dk
SðxÞ ¼ lim

k!0
lSðxÞ

1

k
; lSðxÞ ¼

1 x 2 Sk;

0 x 62 Sk:

(
ð31Þ

From Eqs. (30) and (31), the strain rate jump in Sk is given
by

s_et ¼ _eXþ=S � _eS ¼ lim
k!0

1

k
ðn� s _utÞS

� �
: ð32Þ

4.2. Softening modulus regularization

In order to keep the bounded character of the stresses in
front of the unbounded strains at the failure line (see Eq.
(30)) the continuum softening modulus, H(•), appearing
in the constitutive model for all the constituents (•), has
to be regularized as H ð�Þ ¼ kH ð�Þ, where k is the regulariza-
tion parameter used in Eq. (31) and H ð�Þ is the so-called
intrinsic softening modulus, a material property to be deter-
mined in terms of the fracturing properties of the material
[25]. For instance, for the damage (matrix) model for plain
concrete, in Section 3.1, H m is determined as

Hm ¼ � ðr
m
u Þ

2

2EmGm
f

; ð33Þ

where Gm
f is the tensile fracture energy for plain concrete

(to be determined by a direct or indirect tensile test). In
the Appendix a detailed derivation of Eq. (33) is supplied.
As for the plastic (fiber) models for rebars, the value H f is

Fig. 8. (a) Heaviside’s function, (b) u function and (c) unit jump function.
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considered itself a material property to be determined from
specific tests.

4.3. Field equations

The classical momentum equation and Neumann’s
boundary conditions can be written as

r � _rþ _b ¼ 0; in X=S; ð34Þ
_r � m ¼ _t�; in Cr; ð35Þ
where b stands for the body forces, t* is the (prescribed)
traction vector on the boundary, Cr, and m is the outward
normal vector at that boundary.

In addition, the following boundary conditions should
be prescribed at the discontinuity interface S:

_rX� � n� _rXþ � n ¼ 0 in S; ð36Þ
_rS � n� _rXþ � n ¼ 0 in S: ð37Þ
Eqs. (36) and (37) impose, respectively, the outer and inner
traction continuity across the failure interface S.

The previous equations can be written in weak form by
defining the test functions and the corresponding virtual
strains:

c ¼ rs�g|{z}
compatible

þ�ðru� ~cÞS þ dSð~c� nÞS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
enhanced

; �g 2 Vu; ~c 2 ~Ve;

ð38Þ
where Vu and eVe are the functional spaces for the admissi-
ble regular displacements, �g, and element-wise constant dis-
placement jumps, ~c, respectively. Then, after insertions into
the standard Virtual Work Principle, the weak form of Eqs.
(34)–(36) can be written asZ

X
_r : rs�gdX�

Z
X

_b � �gdXþ
Z

Cr

_t� � �gdC

� �
¼ 0; �g 2 Vu;

ð39ÞZ
Xe

_r � rudX�
Z

Se
_r � n dS ¼ 0 8e 2 PX; ð40Þ

where Xe is the domain of element (e), S(e) is the elemental
counterpart of the discontinuity line, S, and PX stands for
the set of elements intersected by S. It is worth nothing that
the inner traction continuity condition (37) is introduced in
weak form via Eq. (40). Additional information can be
found in Ref. [29].

5. Onset of failure: material bifurcation analysis

Material bifurcation (localization) analysis introduces
some specific features for the considered composite mate-
rial with respect to the classical homogeneous case. Indeed,
in this case, the localization direction and onset time
depend on the mechanical properties of all constituents
and not only on the matrix ones.

Considering a discontinuity line S with normal vector n,
the rate form of the traction continuity condition reads:

s _r � nt ¼ s _rt � n ¼ _rXþ � n� _rX� � n ¼ 0: ð41Þ

By considering the existence of solutions of Eq. (41) involv-
ing discontinuous deformations fields, _e ¼ _�eþ lSð _b� nÞS ,
from Eqs. (2) and (41) it is possible to obtain the classical
localization condition:

½n � Ctg � n� � _b ¼ Qlocðt; nÞ � _b ¼ 0; ð42Þ

where _b 6¼ 0 is a sufficient requirement for the existence of a
localized strain discontinuity mode. Localization time, tloc,
and localization direction, nloc, can be determined by
means of the singularity of the localization tensor Qloc, cor-
responding to the tangent constitutive tensor of the com-
posite material:

detðQlocðtloc; nlocÞÞ ¼ 0: ð43Þ

Inserting Ctg of Eq. (3) into Eq. (42), the localization tensor
can be written as

Qloc ¼ kmQm
loc þ kfrEf

tgðn � rÞ
2ðr� rÞ þ kfsEf

tgðn � sÞ
2ðs� sÞ

þ 4ðkfr þ kfsÞGf
tg½n � ðr� sÞs � ðr� sÞs � n�; ð44Þ
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Fig. 9. Localization analysis of a composite material under pure shear. Material properties: concrete: Em = 20.0 GPa, m = 0.2, Gm
f ¼ 100 N=m,
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u ¼ 2:00 MPa, n = 10; steel: Ef = 200.0 GPa, uf = 30�, kfr = kfs = 0.01785.
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in which Qm
loc is the matrix localization tensor for the iso-

tropic damage model described in Section 3.1:

Qm
loc ¼ n � Cm

tg � n

¼ q
r
ðn � Cm � nÞ

� q� H mr
r3

� �
r2

a
ð�sm � �sAÞ þ a2ð�sm � �smÞ

� �
ð45Þ

with �sm ¼ n � �rm and �sA ¼ n � A.
For the considered 2D problems, the localization time,

tloc, and the discontinuity direction, nloc, are evaluated by
means of a numerical procedure to minimize det(Qloc) with
respect to the localization angle, h ðn ¼ ½cos h; sin h�Þ,
formed by n and the first principal direction. Fig. 9 shows
the typical evolution of det½QlocðhðnÞÞ� up to reaching the
localization condition. It can be observed that, unlike for
homogeneous material, which may exhibit two different
localization angles as solution of Eq. (43), the localization
condition for the composite material provides, due to the
anisotropy supplied by the rebars, a single value for the
localization angle hloc.

6. Sample tests

In order to assess the ability of the proposed model to
capture material failure phenomena in reinforced concrete
members, some experimental tests have been reproduced.

For a better understanding of the presented numerical
results, the following remarks have to be done:

• Developing (active) cracks can be identified via the inelas-
tic loading (active) or the elastic unloading (inactive) sta-
tus of the corresponding material points. Therefore, plots
of the variable describing the inelastic loading of the ele-
ments identify developing crack patterns in the figures.

• Developed crack patterns can be identified from the iso-
displacement contour lines. In fact, full development of
a crack is due to a strain localization process, which trans-
lates into grouping of the displacement contours. There-
fore, the concentration of these contours into a band of
elements identifies a developed crack in the figures.

• Graphic descriptions of developed and developing crack
patterns, via the aforementioned procedure, may not
coincide. Typically, a distributed developing crack pat-

tern will show a diffuse spot in terms of the loading var-
iable and no displacement contour concentration. On
the contrary, a fully developed crack will translate into
a band of elements in loading status, along the crack
path, surrounded by inactive elements in elastic unload-
ing. In this case the crack path can also be identified by a
concentration of the displacement contours.

6.1. Reinforced concrete panel under tension

The reinforced concrete panel subject to uniaxial tension
reported by Ouyang and co-workers [32,33] has been mod-

eled. The test consists of a panel with dimensions
686 mm · 127 mm and 50.8 mm of thickness, reinforced
with three steel bars of diameter 9.5 mm. A weaker zone
was introduced by means of a notch placed at its middle
section, as shown in Fig. 10a.

The concrete mechanical properties are: Young’s modu-
lus: Em = 27.35 GPa, Poisson’s ratio: mm = 0.2, fracture
energy: Gm

f ¼ 100 N=m and tensile strength: rm
u ¼

3:19 MPa. The steel rebars correspond to 3.3% of the total
panel volume. The steel elastic modulus and yield stress were
Ed = 191.6 GPa and rd

y ¼ 508:0MPa, respectively.
The debonding phenomenon between matrix and fibers

has been characterized by means of the pull-out experiment
reported by Naaman et al. [18]. Since the slope of the load–
displacements curve (P/d) is into the range 8.01–9.26 kN/
mm, the pseudo-elastic modulus, Ei, evaluated with expres-
sion (21), is in the range 1111–1283 GPa and the resulting
sliding fiber modulus, Ef, evaluated with expression (18),
corresponds to 85–87% of the steel Young’s modulus.
The peak bond stress was evaluated via Eq. (21), yielding
ri

adh ¼ 311:1 MPa.
The finite element mesh is made of linear triangular ele-

ments arranged as follows: (a) three bands (one-element
width) of composite material with uniformly distributed
rebars (concrete + steel in Fig. 10b), modeled as described
in Section 3; (b) a plain concrete material in the rest of the
panel (concrete in Fig. 10b), modeled by the damage model
described in Subsection 3.1. Notice that the rebars are mac-
roscopically modeled by assuming uniform distribution
across the elements in the concrete + steel zone.

The iso-displacement contours, shown in Fig. 11,
describe the developed crack patterns at different stages
of the loading process illustrated in Fig. 12. In stage 1,
the behavior corresponds to the elastic branch in Fig. 12,
in which no fully developed crack can be observed. Stages
2 and 3 correspond to the development of a distributed
crack pattern, equi-spaced, at the upper and lower zones
of the panel. Notice that this reproduces the well known
phenomenon of the saturation distance [15], which is natu-
rally captured in this approach without introducing any ad

concrete concrete + steel
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12
7 

m
m

50.8 mm

F, d

notchesconcrete steel: 3φ 9.5mm

concrete concrete + steel

L=686 mm

12
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m
m

50.8 mm

F, d

notchesconcrete steel: 3φ 9.5mm

Fig. 10. Reinforced concrete panel under uniaxial tension: (a) geometrical
description, (b) finite element mesh.
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hoc parameter. At these stages, crack penetration towards
the panel core is arrested by the reinforcement, which is
still in elastic (full bonding) regime. The corresponding loss

of structural stiffness can be noticed in Fig. 12, agreeing
very well with the experimental results (in grey). Although
no experimental results after this stage were reported, the
numerical simulation could be taken further on to steps 4
and 5, beyond the onset of the rebars debonding. As it
can be seen in Fig. 11, the slipping-fiber failure of the
rebars substantially modifies the crack pattern: some
cracks get arrested while others develop penetrating the
panel core, leading to the structural failure mode of the
panel. The failure is characterized by the complete loss of
stiffness at the critical stage 4 with a subsequent softening
branch in Fig. 12.

6.2. Three-point reinforced concrete beam

To demonstrate the ability of the model to properly
describe the fiber–matrix slipping mechanism, the numeri-
cal simulation of the three-point beam tested by Ruiz
et al. [38] is presented. The experimental setting and the
geometrical dimensions are shown in Fig. 13. Four steel
bars, of diameter d = 2.5 mm each, reinforce the concrete
beam with a percentage of steel/concrete (in volume) equal
to 0.13%. Two types of material are assumed in the finite
element model shown in Fig. 13d: the elements in light grey
represent the plain concrete, which is assumed a homoge-
nous material described by the damage model of Section
3. The elements in deep grey, forming a band of width
he = 4d, represent a composite material constituted by con-
crete and rebars. With the adopted dimensions, the com-
posite material has a volume fraction kf = 0.0393. The
properties of concrete and steel bars are given in Table 1.

The characterization of the interface model is based on
results of the pull-out test reported in Ref. [18,38], render-
ing Ei = 611.1 GPa and ri

adh ¼ 570:4 MPa.
Fig. 14a shows the experimental and predicted structural

responses, as well as the six stages chosen for analysis.
Fig. 14b–d shows the stress evolution for each constituent
of the mixture at the material point P1 indicated in
Fig. 13d. As it can be seen, the ultimate loading capacity
(stage 2) corresponds to the matrix failure in b. The early
post-critical response, between stages 2 and 4, corresponds

Fig. 11. Reinforced concrete panel under uniaxial tension. Developed
crack patterns identified via the norm of displacements contours.
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Fig. 12. Reinforced concrete panel under uniaxial tension. Experimental
and numerical force–displacement results for different stages of the
loading process.
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to the degradation process of the concrete and the elastic
behavior of the steel bars. In consequence, the slope of
the structural curve in this branch depends strongly on
the steel participation. After stage 4, the structural capacity
is slightly recovered due to the predominance of the rebars
(elastic) contribution. This recovering ceases around
stage 5, in which the system bars-interfaces (slipping-
fiber) undergoes plastic regime. Notice the close corres-
pondence between the experimental and numerical
responses.

Finally, Fig. 15 illustrates the evolution of the localiza-
tion process at the chosen loading stages. It can be
observed the propagation of the main macro-crack as well
as the development of an orthogonal micro-cracking pat-
tern in the concrete surrounding the rebar.

6.3. Heavily reinforced beams

The next example shows the ability of the proposed
methodology to predict crack patterns in heavily reinforced
beams. For this purpose, the set of reinforced beams
reported by Leonhardt [14] is considered.

The experimental setting is shown in Fig. 16a: a set of
heavily reinforced concrete beams, with different aspect
ratios is subjected to bending/shear under a couple of ver-
tical forces, so that the central part of the beam works
under pure bending (no shear force) and the remaining
works under a combined bending/shear action. Lower
aspect ratios, a/d, correspond to dominant shear in the
member, whereas dominant bending corresponds to high
aspect ratios.

Table 1
Material parameters of the slightly reinforced concrete beam

Concrete

Young’s modulus
Em = 29 GPa

Poisson’s ratio
mm = 0.2

Compression strength
rm

uðcÞ ¼ 38:0 MPa
Tensile strength
rm

u ¼ 3:8 MPa
Fracture energy
Gm

f ¼ 62:5 N=m

Steel bars

Young’s modulus Ed = 162 GPa Softening modulus Hd = 0 GPa Yield stress rd
y ¼ 587 MPa
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Fig. 14. Slightly reinforced concrete beam: (a) load vs. vertical displacement curve; (b) matrix stress rm
xx in point P1; (c) fiber stress rf in point P1;

(d) composite stress rxx in point P1.
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The reinforcement is constituted by two longitudinal
steel bars of diameter / = 24 mm, distributed as shown
in Fig. 16a. The assumed properties of the concrete and
steel bar are shown in Table 2.

The interface fiber–matrix model parameters is evalu-
ated from the experimental pull-out test of Naaman [18],
rendering Ei = 1111.1 GPa and ri

adh ¼ 311:1 MPa.
The dowel action is introduced by assuming Gf = Ed/

2(1 + md) = 83.3 GPa, sf
y ¼ rd

y=
ffiffiffi
3
p
¼ 263:3 MPa and per-

fect plasticity.
The finite element mesh is shown in Fig. 16b, where, due

to the symmetry shown by the experimental results, only
one half of the beam has been modeled.

The elements in light grey represent a homogeneous
material with the properties of concrete in Table 2. The
zone in deep grey, of height equal to 30 mm, represents a
composite material with a volume fraction kf = 0.151.
The fiber properties are those of the steel in Table 2.

In Fig. 17a the typical action–response curve obtained
for one of the beams (aspect ratio: a/d = 3.0) is presented.
As it can be observed there, the totality of the curve (pre-
critical and post-critical responses) can be obtained.

Before reaching the structural limit load, heavily rein-
forced members typically present multiple crack patterns
propagating in a stable mode during a long period. In

the post-critical regime, most of them become inactive
and the collapse mechanism is characterized by one or
few active cracks. Fig. 18 illustrates the predicted evolution
of the active cracks for the simulated beam, at the stages
signaled in Fig. 17a, which reproduces well the aforemen-
tioned phenomenon: at initial stages a multiple crack pat-
tern develops from the center of the span to the end, and
from the bottom to the top. In later stages, most of the ver-
tical cracks arrest and a typical, inclined, shear/bending
crack characterizes the final failure mode (see also Fig. 17).

Fig. 19 shows the comparison between the numerically
predicted and the experimentally obtained crack pattern
for beams with different aspect ratios. The numerical crack
patterns are illustrated by iso-displacement contours taken
at the stage of analysis with largest number of active
cracks. As it can be seen, calculated and observed crack
patterns resemble very well in all cases.

6.4. Reinforced concrete panel under pure shear loading

In order to check the model ability to reproduce shear
dominant stress states, the experimental test PV27 reported
in Collins et al. [7] has been chosen. In this test, a rein-
forced concrete panel is loaded in pure shear, as illustrated
in Fig. 20a. The panel is 890 mm square by 70 mm thick,

Table 2
Material parameters of the heavily reinforced concrete beam

Concrete

Young’s modulus
Em = 20 GPa

Poisson’s ratio
mm = 0.2

Compression strength
rm

uðcÞ ¼ 20 MPa
Tensile strength
rm

u ¼ 2 MPa
Fracture energy
Gm

f ¼ 60 N=m

Steel bars

Young’s modulus Ed = 200 GPa Poisson’s ratio md = 0.2 Softening modulus Hd = 0 GPa Yield stress rd
y ¼ 456 MPa

Fig. 15. Slightly reinforced concrete beam: active crack pattern at different stages pf the process.
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Fig. 16. Heavily reinforced beams.
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equally reinforced in two orthogonal directions, with a vol-
ume fraction of 1.785% each.

The assumed material properties are the following: (a)
Concrete: Young’s modulus Em = 20 GPa, Poisson’s ratio
mm = 0.2, Fracture energy Gm

y ¼ 100 N=m, tensile strength
rm

u ¼ 2 MPa and compression strength ru(c) = 20. MPa

(n = 10). (b) Steel rebars: Young’s modulus Ed = 200 GPa
and yield stress rd

y ¼ 402 MPa (rebars are considered
highly adherent so that bond slip effects at the interface
are neglected). (c) Dowel effect: elastic modulus
Gf ¼ Ed=2ð1þ tdÞ ¼ 83:33 GPa, yield shear stress
sf

y ¼ rd
y=

ffiffiffi
3
p
¼ 263:3 MPa and softening modulus Hfs = 0.

P/2

δvδvδv

δ (mm)

P
(k

N
)

0

50

100

150

200

0 6 9 120 6 9 123

Fig. 17. Heavily reinforced beams (a/d = 3.0): (a) force–displacement curve, (b) amplified deformed mesh at the final stage of the analysis.

Fig. 18. Heavily reinforced beam (a/d = 3.0): active crack pattern evolution, for increasing stages of the loading process.

Fig. 19. Heavily reinforced beams: comparison between numerical (indicated by concentration of the displacements contours) and experimental crack
patterns for different aspect ratios.

344 J. Oliver et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 332–348



Author's personal copy

Due to the very homogeneous distribution of the rein-
forcement, a uniform composite material model is assumed
throughout the adopted finite element mesh shown in
Fig. 20b. The homogenous shear strain state, displayed in
Fig. 20c, has been applied in the numerical model.

The numerical results are compared with the experimen-
tal ones in Fig. 21. As it can be seen, numerical predictions
agree very well with the experimental pre-critical branch of
the structural behavior (points 1–3). Despite the inexistence
of reported experimental results, the numerical simulation
has been driven up to the very post-critical stages of the
structural material failure (points 4 and 5).

Fig. 22a displays the final crack pattern from the exper-
imental test. At initial stages of the experiment, a distrib-
uted crack pattern, inclined 45� with respect to the

horizontal, was observed. These cracks, shown as solid
lines in Fig. 22a, correspond to the expected cracking in
a concrete matrix subjected to a pure shear stress state,
according to the maximum principal stresses failure crite-
rion. In this early stage, no strength contribution from
the rebars should be expected, since neither horizontal
nor vertical stretching takes place. However, after the
structural collapse, a very pronounced horizontal crack,
displayed in grey in Fig. 22a, was reported. This macro-
crack formation, parallel to the reinforcement, was respon-
sible for the sliding failure of the concrete panel.

As for the numerical simulation, the coalescence of a
large number of inclined cracks, displayed by the active
crack pattern (inelastic loading points) in Fig. 22b, as well
as the deformed (amplified) mesh in Fig. 12c, demonstrate
the good prediction of the reported collapse mechanism.

The numerical failure process is traced in Fig. 23, where
the displacement contours and the active crack patterns are
displayed for different stages of the loading process marked
in Fig. 21. At the pre-critical stages 1 and 2, the distributed
cracking pattern at 45� translates into a complete spread of
the active cracks over the panel, without concentration of
the displacement contours. After stage 1, as the deforma-
tion increases, the dowel effect supplies additional strength
to the composite material, giving rise to the hardening
branch in Fig. 21 (stages 2 and 3). Around stage 3, the yield
shear stress in the rebars is attained and localization pro-
cesses start, leading to horizontal fully developed cracks
in stages 3–5. These cracks correspond to the horizontal
coalescence of some inclined distributed cracks, which
remain in inelastic loading while those in their neighbor-
hoods experience elastic unloading. As subsequent defor-
mation develops (stages 4 and 5), some of those cracks

Fig. 20. Reinforced concrete panel under shear: (a) geometrical descrip-
tion, (b) finite element mesh, (c) loading system for the numerical
simulation.

Fig. 21. Reinforced concrete panel under pure shear stress. Structural
shear stress vs. equivalent shear-strain curves.

Fig. 22. Reinforced concrete panel under pure shear. Results at the end of
the analysis: (a) experimental crack patterns [7], (b) elements in inelastic
loading (numerical active cracks) and (c) amplified deformed shape at the
end of the simulation.
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get arrested and the final failure mechanism is character-
ized by the unique active macro-crack shown in Fig. 22.

7. Concluding remarks

A new methodology to model reinforced concrete mem-
bers has been proposed. It is based on the combination of
the mechanical theory of mixtures and the framework of
the CSDA using embedded crack finite elements.

The presented approach displays some advantages of
using a continuum theory of material failure, in front of
alternative discrete approaches based on traction–separa-
tion laws. Actually, here the different individual phenom-
ena, appearing in material failure of reinforced concrete,
have been individually identified: concrete matrix failure,
rebar mechanical failure, bond/slip effects and dowel
action. Then, they have been separately modeled, on the
basis of simple and familiar continuum dissipative models,
and their relative contribution in the reinforced concrete
has been accounted by using the classical mixture theory.
The resulting continuum composite model can then be
inserted in the CSDA framework, providing a material fail-
ure response for composite material accounting for all the
aforementioned phenomena. Thus, there is no necessity of
deriving a complex traction–separation law for such a com-
plex material; it is implicitly and automatically fulfilled, in
virtue of the projective properties of the CSDA, from the
derived continuum composite model.

Therefore, the main attractive of the proposed approach
is that, besides the individual mechanical behavior of the
concrete and rebars, the most relevant interaction effects
between those constituents are considered in the macro-
scopic representation of the composite provided by the
mixtures theory. The dowel action and bond–slip effects
can be introduced by means of simple one-dimensional
elasto-plastic constitutive models, of easy characterization,
applied to specific components of the macroscopic strain
field. Then, the material failure, responsible for cracks for-
mation and loss of strength in the composite material, can

be treated using the CSDA in the same way than for a
homogeneous material, but accounting for the participa-
tion of the constituents and their interactions.

The presented numerical simulations demonstrate the
ability of the proposed methodology to predict the different
stages of the mechanical behavior of tested reinforced con-
crete members, performed in distinct loading scenarios.
The experimental curves of structural behavior, crack pat-
terns and the collapse mechanisms could be reproduced
with a remarkable accuracy.

The extension of the proposed methodology to three-
dimensional problems, although not tackled here, seems
to be quite straightforward.
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Appendix. Damage model with distinct tensile and

compressive strengths

Consider the material model belonging to the family of
damage models proposed by Simo and Ju [41], described by
the following set of equations:

r ¼ q
r

�r; �r ¼ C : e ðconstitutive relationÞ; ð46Þ

f ðe; rÞ ¼ se � r 6 0;

se ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r : ðCÞ�1 : �r

q
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e : C : e
p

ðdamage criterionÞ;
ð47Þ

_q ¼ H _r ðsoftening lawÞ; ð48Þ
rðtÞ ¼ max

s2½0;t�
½r0; seðsÞ�; r0 ¼

ruffiffiffiffi
E
p

ðstrain-like internal variable evolutionÞ; ð49Þ

Fig. 23. Reinforced concrete panel under pure shear stress: (a) displacement contours for the different loading stages and (b) active crack patterns
(elements in inelastic loading are plotted in black).
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where �r stands for the effective stress, C is the Hooke’s elas-
tic constitutive tensor, q and r are the stress-like and
the strain-like internal variables, respectively, H (<0) is
the softening modulus, ru is the tensile strength, E is the
Young’s modulus and se is the norm of the strains in the
metric defined by C. As expressed by Eq. (49) the strain-
like internal variable, r, is the maximum historical value
of the norm of the strains, se, while the corresponding
stress-like variable, q, is related to the strain-like one by
means of the softening modulus, H, in Eq. (48) (see Refs.
[22,28] for additional information). Factor a is defined
as

a ¼
P3

i¼1h�rm
i iP3

i¼1j�rm
i j

1� 1

n

� �
þ 1

n
; ð50Þ

where �ri is the ith principal effective stresses, h•i is the
Mac-Auley bracket and n is the ratio between the compres-
sive and tensile strengths.

Constitutive tangent tensor

The rate form of the constitutive relation (46) can be
written as

_r ¼ q
r

C : _eþ Hr � q
r2

_r�r; ð51Þ

where the softening law of Eq. (48) was used. In unloading
cases, _r ¼ 0 and the constitutive relation reduces to

_r ¼ q
r

C : _e ðunloading caseÞ: ð52Þ

From Eqs. (47) and (49), in the loading case, the rate of the
strain-like variable is given by

_r ¼ _se ¼
r
a

C : ðo�raÞ þ
a2

r
�r

� �
: _e: ð53Þ

Substituting Eq. (53) into Eq. (51), one gets

_r ¼ q
r

C� q� Hr
r3

r2

a
ð�r� ðC : o�raÞÞ þ a2ð�r� �rÞ

� �� 	
: _e

ðloading caseÞ: ð54Þ

Energy consumption analysis

With the adopted regularized form of the CSDA, the
energy consumption during the formation of the disconti-
nuity is associated to the energy spent by the damage
model in a localization band, Xk = kS 2 X, of width
k! 0, with a median surface S, which undergoes inelastic
strains in softening regime until reaching a complete mate-
rial degradation.

The theorem of expended power states that, in the
absence of kinetic energy (quasistatic case), the external
power input in a solid, PX

ext, equals the stress power, i.e.

PX
ext ¼

Z
X

r : _edX|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
stress power

¼
Z

X

q
r
e : C : _edX ¼

Z
X

q
r

se

a2
_se dX; ð55Þ

where the constitutive Eq. (47) and the expression of se in
Eq. (47) have been used.

That part of the external power internally spent in the
formation of the discontinuity at the localization band
Xk = kS 2 X is then

PXk
ext ¼

Z
Xk

q
r

se

a2
_se dXk ¼ k

Z
S

q
r

se

a2
_se dS

¼ k
Z

S

q
a2

1

H
_qdS; ð56Þ

where linear softening law and loading situation, in which
r = se, have been considered (see Eqs. (48) and (47)).

Therefore, the corresponding energy spent along any
loading process leading the material from an unloaded ini-
tial state (q = r0 at t = 0) to a complete degradation state
(q = 0 at t =1) is given by

W S ¼
Z t1

0

PXk
ext dt ¼

Z t1

0

k
Z

S

q
a2

1

H
_qdS

� �
dt

¼
Z

S
k
Z 0

r0

q
a2

1

H
dq

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gf

dS

¼
Z

S

Z 0

r0

q
a2

1

H
dq

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Gf

dS ð57Þ

in which H ¼ H=k is the so-called intrinsic softening mod-
ulus (see reference for more details).

The kernel of the last integral of Eq. (57) is the energy
spent per unit surface area in the formation of the crack,
which is referred to as fracture energy, Gf, in the context
of the non-linear fracture mechanics.

If the intrinsic softening modulus, H , is considered a
material property independent of the loading process, the
fracture energy for this damage model depends on the
stress state, reflected by the factor a.

In case of monotonic loading in uniaxial tension (�r1 > 0,
�r2 ¼ �r3 ¼ 0, a = 1), the spent energy in Eq. (57) corre-
sponds to the mode I fracture energy:

GI
f ¼

1

H

Z 0

r0

qdq ¼ � r2
0

2H
¼ � r2

u

2EH
;

H ¼ � r2
u

2EGI
f

ð58Þ

and the compressive failure energy spent in a monotonic
loading in uniaxial compression (�r3 < 0, �r1 ¼ �r2 ¼ 0,
a = 1/n) can be written as

Gcomp ¼ n2 1

H

Z 0

r0

qdq ¼ n2GI
f : ð59Þ
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It is worth noting that the ratio n, for regular concrete, is
about 10, leading to a much more ductile behavior in com-
pression than in tension, in accordance with experimental
observations.
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