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INTEC (UNL−CONICET), Güemes 3450, 3000 Santa Fe, Argentina

*S Supporting Information

ABSTRACT: This paper presents a novel technique that enhances the general precedence, mixed-integer programming
approach for the optimal scheduling of process operations. It proves to effectively solve different types of industrial problems
dealing with particular sequence-dependent issues, requiring less computational effort than other optimization models. The new
formulation takes advantage of the general precedence modeling efficiency, overcoming one of its major limitations.

1. INTRODUCTION

Planning and scheduling process operations are key issues for
enterprise-wide optimization. These are major operational
activities of a company involving supply, manufacturing, and
distribution functions. One of the main challenges in
enterprise-wide optimization is the model development.1

Novel mathematical programming and logic-based techniques
are continuously developed to capture the complexity of
modern production and distribution systems. In particular,
three scheduling problems have received special attention from
researchers in the past two decades: (a) the short-term
scheduling of batch processes, (b) the vehicle routing and
scheduling problem, and (c) the multiproduct pipeline
scheduling problem.
Short-term scheduling problems arise in almost any type of

industrial production facility (pulp and paper, metals, oil and
gas, chemicals, food and beverages, pharmaceuticals, trans-
portation, service, military, etc.) where given tasks must be
processed on specified limited resources over a short period of
time, usually ranging from few days to couple of weeks. The
extensive range of scheduling problems motivated researchers
to develop alternative mixed-integer linear programming
(MILP) formulations to make production scheduling easier
and yield better solutions with lower computational effort.
Because of its increasing interest and still open challenges,
many review papers on scheduling have been published in the
past decade to analyze and discuss pros and cons of alternative
existing mathematical formulations, e.g., Meńdez et al.,2

Maravelias,3 and, more recently, Harjunkoski et al.4

In turn, the objective of the basic vehicle routing problem
(VRP) is to seek a set of delivery routes for a fleet of vehicles
housed at a central depot. Every vehicle route must start and
finish at the assigned depot, each customer is to be visited by a
single vehicle, and vehicle capacities must not be exceeded.
These are the constraints for the capacitated vehicle routing
problem (CVRP), whose objective is usually the minimization
of the travel distance.5 Several exact approaches based on MILP
mathematical formulations have been proposed in the literature
to deal with VRP problems and its variants. Regarding the
problem complexity, the VRP is NP-complete. This remains

true even if simplifying assumptions such as the triangle
inequality6 or Euclidean distances are fulfilled.
Finally, the objective of multiproduct pipeline logistics is to

ensure that the right oil-refined product is available for every
distribution terminal at the right time, at the lowest cost.7

Scheduling pumping and delivery operations in multiproduct
pipelines is a complex logistic problem. Limited tank capacities,
delivery dates, and refinery production plans are problem
constraints to be satisfied. However, one of the most
challenging issues is the interface generation. As different
products are shipped through the same line, usually without
separation devices, a product mixture is formed in the interface
of two consecutive batches. The product contamination
strongly depends on the ordered pair of species put in contact.
Optimizing the size and sequence of product batches
transported through pipelines requires accurate models and
efficient computational tools.
Precedence-based models have proved to be the most

effective choice when sequence-dependent changeover or
transportation times are to be considered. Among them, one
of the most efficient representations for tackling scheduling
problems is the general precedence (GP) continuous-time
approach, developed by Meńdez et al.8 In this type of MILP
model, the number of binary variables is significantly reduced,
with regard to other representations, namely discrete-time, slot-
based, and immediate precedence continuous-time models.
However, as remarked by Kopanos et al.,9 the GP model cannot
cope with sequence-dependent setup issues explicitly, and some
errors can often be found in the problem solutions. Global-
sequencing constraints (and the resulting changeover times
and/or costs) are active for all the pairs of tasks/nodes assigned
to the same processing/transportation unit, even when the pair
of tasks/nodes are not accomplished/visited one immediately
after the other.
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To overcome this drawback, but still taking advantage of the
GP model efficiency, this work presents a novel technique that
can effectively manage sequence-dependent issues in general-
ized scheduling and vehicle routing problems.

2. GENERAL PRECEDENCE FORMULATIONS OF
SCHEDULING PROBLEMS

In the field of exact optimization, the general (also known as
global) precedence approach has been widely used to efficiently
solve different types of scheduling problems. The key of this
modeling strategy relies on the fact that only one sequencing
variable is required for each of pair tasks (i,i′), allocated to the
same shared resource j. As the general precedence approach
shows slight variations in each of the scheduling problems
described in the previous section, we present the formulations
separately.
2.1. Short-Term Scheduling of Batch Processes. When

solving batch scheduling problems, the main constraints in the
GP model are the so-called sequencing inequalities. These big-
M constraints allow to compute the ending time of every task i
(Ci), as follows:
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Typically, the value given to the relaxation parameter M is
the planning horizon length (hmax). Moreover, every task i is
assigned to a single resource j and its completion time is greater
or equal to the task time f tij, as stated by eqs 3 and 4.

∑ = ∀Y i1
j

ij
(3)

≥ ∀C ft Y i j,i ij ij (4)

Generally, the time for performing the task i in the resource j
has two components: a fixed time ( f tij) and a variable time
(vti′i), which is dependent on the task i′ that takes place in
resource j immediately before task i. In this scheduling problem,
the assignment variable Yij takes a value of one (Yij = 1) if batch
i is processed in unit j, and zero (Yij = 0) otherwise. Then, if a
pair of tasks (i,i′) are assigned to the same resource j (Yij = Yi′j =
1), the sequencing variable Xii′ denotes that task i is performed
before (Xii′ = 1) or after (Xii′ = 0) task i′ in resource j.
Consequently, the general precedence sequencing variable is
only defined for each pair (i,i′), with i < i′. This generalized
concept simplifies the mathematical model and reduces the
number of sequencing variables by one-half when compared,
for instance, with the immediate precedence formulation.10

2.2. Vehicle Routing and Scheduling Problem. In
vehicle routing problems, the sequencing constraints are used
to determine the routes, that is the sequence and schedule of
vehicle stops at different locations. Generally, all vehicle routes
start and end at a central depot (i0). Let Yij be the allocation
variable stating that vehicle j is the one that visits node i in case
Yij = 1, and let Xii′ be the general sequencing variable, equal to
one (1) whenever the pair of nodes (i,i′) are on the same route,
and node i is visited earlier than i′. If the optimization goal is to
minimize the total distance traveled by all the vehicles (∑j
TDj), the model is subject to constraints 5−9.
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The non-negative continuous variable Di determines the
accumulated traveled distance to reach node i along the route
assigned to vehicle j. The parameter distii′ accounts for the
distance between nodes i and i′. The vehicle fleet is housed at
the central depot i0. In this case, the big-M parameter is M = |I|
maxi≠i′(distii′).

2.3. Multiproduct Pipeline Scheduling Problem. The
simplest version of the multiproduct pipeline scheduling
problem can be regarded as a pure-sequencing, single-machine
problem, in which the batch sizes are predefined by the pipeline
users, and the objective is to minimize the sum of the costs of
interface reprocessing. Assuming that the reprocessing cost of
the interface volume generated in the transition of batches i and
i′ is a known constant, namely cifii′, we introduce the variable
CFi to represent the accumulated interface cost, taking into
account all the batch injections up to the injection of the batch
i. In other words, CFi = cifi1,i2 + cifi2,i3 + ... + cifi−1,i if the batch
injection sequence is i1, i2, ..., i. In addition, the binary variable
Xii′ is equal to one (1) whenever lot i precedes lot i′ in the
injection sequence, and is null in the opposite case. As a result,
the GP-MILP formulation for this pipeline scheduling problem
seeks to minimize the total interface cost (CT), subject to
constraints 10−12.

≥ + − − ∀ ′ < ′′ ′ ′M X i i i iCF CF cif (1 ) , :i i ii ii (10)

≥ + − ∀ ′ < ′′ ′ ′MX i i i iCF CF cif , :i i i i ii (11)

≥ ∀ iCT CFi (12)

In eqs 10−11, the big-M parameter is defined by the expression
M = |P|maxi≠i′(cifii′)

3. ENHANCED FORMULATION OF THE GENERAL
PRECEDENCE APPROACH

Despite bringing significant improvement in the computational
performance, with regard to other precedence-based ap-
proaches, GP formulations evidence some drawbacks for
particular values of the sequence-dependent parameters
(generically, vtii′). As the sequencing constraints are activated
for all the pairs (i,i′) assigned to the same resource, the value of
parameter vtii′ can impact on the solution of the GP model,
ending up with a nonoptimal sequence. This error may occur
when (i) in batch scheduling problems, some changeover times
are greater than the batch processing times; (ii) in vehicle
routing problems, the distances between customers are not
Euclidean and the condition of the triangle inequality (distA−B +
distB−C ≥ distA−C) is not fulfilled; and (iii) in pipeline
scheduling problems, mixing products PA and PC generates a
much more costly interface than the sum of the costs of mixing
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PA with PB and PB with PC. For instance, mixing a batch of
diesel fuel with a batch of liquefied petroleum gases (LPG)
yields a very expensive interface that can be avoided if a batch
of gasoline is inserted between the fuel and the LPG.
To overcome this drawback, we propose a new formulation

aimed at enhancing the original general precedence approach.
Without any loss of generality, new sequencing constraints are
proposed for the batch scheduling problem in order to deal
with sequence-dependent set-up times and/or costs.
3.1. Batch-Scheduling Problems with Sequence-

Dependent Set-Up Times. To generalize the global
precedence approach accounting for particular values of the
sequence-dependent set-up times, eqs 1, 2 and 4 should be
rewritten as follows:
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In this case, the big-M parameter is defined as M = hmax + ∑ij
kij. The key is the inclusion of new constant parameters kij to

the sequencing inequalities, whose values are determined
through the following equation:

= − − − ∀
′≠ ″≠

″ ′ ″ ′k vt vt vt ft i jmax{0, max ( )} ,ij
i i i
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Because of the inclusion of constants kij in eqs 13−15,
variable Fi could not exactly represent the ending time of task i,
but an augmented value that includes the total amount of
constants kij accumulated up to execution of task i. Such an
accumulated value is represented by the continuous variable Wi
and is calculated by eqs 17−20.
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Figure 1. Schedule of Example 1 reported by the original version of the GP approach.

Figure 2. Optimal schedule for Example 1 using the enhanced GP approach.
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In eqs 18−20, M′ = ∑ij kij. The optimal value of variable Wi
allows one to obtain, by difference, the actual ending time (Ci)
of each task i, as stated by eq 21.

= − ∀C F W ii i i (21)

3.2. Batch-Scheduling Problems with Sequence-
Dependent Set-Up Costs. Assuming that the setup cost
between tasks i and i′ in machine j (csii′j) is known in advance,
eqs 22−24 are added to the model in order to minimize the
total changeover cost (∑jGTj).

≥ − − − ∀G W M Y i jGT (1 ) ,j i i ij (22)
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We introduce the variable Gi to represent the accumulated
changeover cost taking into account all the set-up costs up to
the execution of the task i. Note that the values of this variable
are augmented by the addition of constants kij, determined
through eq 25.

= − − ∀
′≠ ″≠

″ ′ ″ ′k i jmax{0, max (cs cs cs )} ,ij
i i i

i i j i ij ii j

(25)

In this case, the big-M parameter is defined as follows: M = |I|
maxi≠i′(csii′j) + ∑ijkij. As observed previously, the sum of
constants kij up to task i is represented by the continuous
variableWi. The lower and upper bounds on the value ofWi are
also established by eqs 17−20.

4. COMPUTATIONAL RESULTS
In this section, three case studies are solved in order to
compare the performance of the new formulation, with regard
to other exact optimization approaches presented in the
literature. All the models are solved in a DELL Precision
T5500 workstation, with a six-core Intel Xeon processor (2.67
GHz) using GAMS/GUROBI 4.5.1 as the MILP solver.
4.1. Example 1. Example 1 deals with the short-term

scheduling of a single-stage batch plant with parallel units. This
example is a modified instance of a case study previously
tackled by Cerda ́ et al.,10 which involves 20 orders or batches
and 4 units working in parallel. The order processing times are
given in Table S1 in the Supporting Information, while Table
S2 in the Supporting Information shows the transition times for
every pair of orders, independent of the selected equipment.
The optimization goal is to minimize the production schedule
makespan.
If Example 1 is solved to optimality using the original version

of the general precedence approach, the resulting makespan is

equal to 7.35 days (see Figure 1). Conversely, the new
approach proposed in this work yields the actual optimal
makespan of 7.2 days. The difference between both solutions is
due to the changeover times, which are active for all ordered
pairs of tasks assigned to the same processing unit, even when
both tasks are not performed one immediately after the other.
For instance, the transition time from order O1 to O9 is 0.85
days. However, if order O17 (whose length is 0.65 days) is
processed between O1 and O9, the order O9 can start 0.2 days
earlier, because the changeover times for the pairs O1−O17
and O17−O9 are null. The optimal schedule for Example 1 is
depicted in Figure 2. Example 1 has also been solved using
other approaches presented in the literature. A comparison of
the computational performance of all solving strategies is given
in Table 1. Note that the new formulation yields a CPU time
that is even shorter than the original GP model. An important
remark is that the number of binary variables remains the same.

4.2. Example 2. To assess the performance of the enhanced
GP approach in vehicle routing problems, in particular when
the Euclidean distance assumption is not fulfilled by the
problem data, a capacitated vehicle routing problem has been
considered in Example 2. The case study involves 15 nodes (14
customers and the central depot, N1) to be visited by three

Table 1. Computational Results: Comparison of Continuous-Time Solution Approaches for Example 1

model in
ref

objective
function

CPU time
(s)

number of
constraints

number of continuous
variables

number of binary
variables

enhanced general precedence 7.2 3.46 617 42 185
general precedence [8] 7.35 6.38 327 22 185
unit-specific general precedence [9] 7.2 8.46 2545 248 1826
time slots [11] 7.2 426 13 923 126 12 867
immediate precedence [10] 7.2 522 1339 22 492

Table 2. Optimal Solution for Example 2 Reported by the
Original and the Enhanced GP Approaches

Traveled Distance (km)

vehicle node visited GP approach enhanced GP approach

V1 N1 0 0
N14 211 211
N15 268 268
N3 321 321
N6 433 433
N8 475 467
N7 517 496
N1 609 576

V2 N1 0 0
N12 324 324
N9 419 419
N5 757 757
N2 984 984
N10 1273 1273
N11 1427 1427
N1 1780 1780

V3 N1 0 0
N4 91 91
N13 118 118
N1 188 188

total traveled distance 2577 2544
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vehicles (V1−V3). Every vehicle has a limited capacity, each one
being able to visit up to six customers. The distances (presented
in kilometers) between every pair of nodes are given in Table
S3 in the Supporting Information.
The distance matrix given in Table S3 in the Supporting

Information shows triangle inequality violations: that is to say,

the condition dii′ + di′i″ ≥ dii″ is not true for some tuples (i, i′,
i″). For instance, that is the case of nodes N3, N6, and N8.
When Example 2 is solved to optimality using the classical GP-
MILP formulation, the resulting objective function is equal to
2577 km. In contrast, the enhanced GP formulation yields the
actual optimal value of 2544 km. The vehicle routes achieved

Table 3. Computational Results: Comparison of Continuous-Time Solution Approaches for Example 2

model in
ref

objective
function

optimality GAP
(%)

CPU time
(s)

number of
constraints

number of continuous
variables

number of binary
variables

general precedence [8] 2577 1.30 651 18 139
enhanced general
precedence

2544 220 1281 32 139

time slotsa [11] 2562 33.4 1000 4875 55 5394
unit-specific general
precedencea

[9] 2596 62.00 1000 3227 648 1305

immediate precedencea [10] 2596 82.28 1000 1523 46 314
aModel adapted to the vehicle routing problem.

Figure 3. Optimal pipeline schedule for Example 3.

Table 4. Computational Results: Comparison of Continuous-Time Solution Approaches for Example 3

model in
ref

objective
function

CPU time
(s)

number of
constraints

number of continuous
variables

number of binary
variables

general precedencea [8] 56 0.13 65 10 28
enhanced general precedence 54 0.38 137 18 28
immediate precedencea [10] 54 1.59 92 11 72
unit-specific general
precedencea

[9] 54 9.61 233 66 112

time slots [12] 54 10.21 409 9 64
aModel adapted to the pipeline scheduling problem.
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with both approaches are reported in Table 2. Note that both
solutions comprise, in this case, the same routes. However, the
distance traveled by the vehicle V1 is not properly calculated
with the original GP approach. This problem is even more
critical when considering the visiting times. Table 3 summarizes
the solutions found by alternate continuous-time MILP
formulations, as well as their computational performance.
Note that the only formulation achieving the actual optimal
value in less than 1000 CPU s is the one proposed in this work.
In this example, although not providing the actual traveled
distance, the original GP approach converges to the solution
significantly faster than the other methods, including the new
one.
4.3. Example 3. Example 3 is a simple pipeline scheduling

problem in which the pumping of eight oil-refined product
batches must be optimally scheduled so that the total interface
cost is minimized. The p/p′ interface cost matrix is given in
Table S4 in the Supporting Information.
The optimal pipeline schedule found with the enhanced GP

approach is depicted in Figure 3. It comprises the injection of
batches P8100−P4200−P3200−P7300−P5100−P1200−P2100−P6200,
with the subscripts indicating the batch volumes (in terms of
102 m3). The total interface cost is $54 000.
In this example, the original GP approach yields a suboptimal

solution: P7300−P5100−P1200−P8100−P2100−P6200−P4200−
P3200, with a total interface cost of $56 000. As shown in
Table 4, the enhanced GP approach is the most efficient model,
yielding the actual optimal solution.

5. CONCLUSIONS

We propose an enhanced general precedence, mixed-integer
linear programming (MILP) approach for the optimal
scheduling of industrial problems such as batch processing,
fleet routing, and pipeline operation. Contrary to the original
version of the GP approach, the new model precisely accounts
for changeover times and costs, transportation distances, and
product interfaces, not increasing the number of binary
variables, and showing improved computational results. Three
case studies have been solved in order to compare the model
efficiency, with regard to other exact optimization approaches.
In all the cases, the enhanced GP formulation converges to the
actual optimal solution in less CPU times than other
approaches.
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