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Abstract. We present a new method for automatic detection of flare events from images in the optical
range. The method uses neural networks for pattern recognition and is conceived to be applied to full-
disk Hα images. Images are analyzed in real time, which allows for the design of automatic patrol
processes able to detect and record flare events with the best time resolution available without human
assistance. We use a neural network consisting of two layers, a hidden layer of nonlinear neurodes and
an output layer of one linear neurode. The network was trained using a back-propagation algorithm
and a set of full-disk solar images obtained by HASTA (Hα Solar Telescope for Argentina), which is
located at the Estación de Altura Ulrico Cesco of OAFA (Observatorio Astronómico Félix Aguilar),
El Leoncito, San Juan, Argentina. This method is appropriate for the detection of solar flares in the
complete optical classification, being portable to any Hα instrument and providing unique criteria
for flare detection independent of the observer.

1. Introduction

The development of an automatic procedure to detect solar flares is a challenging
task, since it is very difficult to take into account the complexity involved in the
human classification process. For instance, human detection is strongly dependent
on the observer’s capabilities. In principle, a human recognition process can be
reduced to a well-defined procedure or recipe using linear algorithms. However,
the machine should be told in advance, and in great detail, the exact series of steps
required to perform the algorithm. Also, the corresponding set of data should be
given in a very precise format.

On the other hand, neural networks are simple algorithms that can learn from a
human training set. They are robust in the presence of noise, and can deal with pre-
viously unrecognized patterns and generalize from the training set. In this way, nets
are good at perceptual tasks and associative recall. A neural network is a system
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designed to recognize patterns in a given set of inputs. Basically, it is an intercon-
nected assembly of simple processing elements, units or nodes, whose functionality
was originally inspired on the animal neuron. The architecture consists of an input
layer, a number of hidden layers, and an output layer. The processing ability of
the network is stored in the inter-unit connection weights, obtained by a process of
learning from a set of training patterns.

These kinds of algorithms based on a given number of weights, which are
optimized from a training set, have been used for a long time in astronomy. The
sunspot number is a clear example (Foukal, 1990). In 1848 the Swiss astronomer
Wolf, using data collected since the 17th century, introduced the criteria used until
today to measure the sunspot number. He defined the sunspot index number as
R = k(10g + f ), where f is the number of individual spots, g the number of
recognizable spot groups, and k is a correction factor that is intended to adjust for
differences between observers. He established an international network of obser-
vatories, each with its own weight k. Note also that the number of groups has a
weight of 10 against the number of individual spots. The most remarkable feature
seen in this index is that, in spite of its arbitrary definition, it is a very reliable
indicator of the Sun’s magnetic field activity. Also it is approximately proportional
to the total area covered by sunspots and to the energy flux emitted by the Sun at
the wavelength of 10.5 cm.

When used for pattern recognition, the goal is to produce an output which is
true if the pattern is present in the analyzed image, and false in any other case. One
of the challenges of using a neural network for pattern recognition is to determine
the relevant input variables (Looney, 1996; Therrien, 1989). Analyzing full images
takes a huge amount of memory and CPU time, so a number of features which are
believed to contain sufficient information to recognize the pattern is extracted from
the image using a linear algorithm. This features are used as the input vector for
the neural network.

In this paper we present a new method to automatically detect flare events in
the optical range. This method uses neural networks for pattern recognition and
is conceived to be applied to full-disk raw Hα images. Images are pre-analyzed
in real time, which allows for the design of automatic patrol processes, which can
detect and record flare events with the best time resolution achievable by the instru-
ment, without human assistance. Raw images are used because flat field and dark
corrections would consume valuable computing time. On the other hand, this extra
computing time is unnecessary most of the time, since one of the main advantages
of neural networks is that they can learn to recognize features in noisy datasets.

In spite of its potential importance, only a few applications of neural network
techniques have been developed to perform automatic detection of solar-related
events (Gothoskar and Khobragade, 1995) to detect solar wind activity using power
spectra at radio frequencies (Wang, 2000) to detect and classify proton events. As
far as we know, this paper presents the first application of neural networks to detect
solar events in optical images.
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We have applied this method to full-disk raw images obtained by HASTA
(Hα Solar Telescope for Argentina), which is located at OAFA (Observatorio
Astronómico Félix Aguilar), El Leoncito, San Juan, Argentina. The method is
appropriate for the detection of flares in the complete optical classification, being
portable to any Hα instrument and providing unique criteria for flare detection
independent of the observer.

Section 2 summarizes the technical characteristics of the HASTA telescope. In
Section 3 we describe the architecture of the neural network used for the present
analysis, and the back-propagation training algorithm, and in Section 4 we enumer-
ate the steps followed to build the training set. In Section 5 we show the results and
test our method using real-time observations made by HASTA. Finally, in Section 6
we summarize the main results obtained in the present paper.

2. The Instrument

The HASTA instrument, which had its first light in May 1998, was designed to
observe the Sun in the Hα spectral line, with good spatial resolution and a very high
cadence. Because of these characteristics, it is an excellent instrument to support
the analysis and modeling of flares and flare-related phenomena.

HASTA is located at El Leoncito, in the province of San Juan, Argentina (longi-
tude: −69.3◦, latitude: −31.8◦, altitude : 2370 m) and it consists of three technical
units: the telescope, the CCD camera and the computer (see Figure 1).

The telescope is the so-called ‘Triple Solar Telescope’, which was operated by
the University of München at Wendelstein Observatory in the Bavarian Alps until
1987. Although only one of its three tubes is being presently used, the other two
could be used to obtain images in other spectral wavelengths. This tube is a refrac-
tor telescope with an aperture of 110 mm of diameter and a focal length of 165 cm.
The primary lens collimates the sunlight, which goes through an attenuation filter
and then enters the Hα Lyot filter. The Lyot is a tunable filter optimized to perform
measurements at the center of the Hα line (6563 Å) with a bandwidth of 0.3 Å and
tuning range of 1 Å.

The telescope was built by Carl Zeiss Co. in the 1950s and in the 1990s was
adapted to make full-disk Hα observations including the tunable Lyot filter and the
CCD camera. The telescope’s mount is equatorial and it has an automatic tracking
system which allows to follow the Sun during an observing day. The Hα light is
reflected at 90◦ by a mirror, which directs the beam toward the CCD camera. A
camera lens set adjusts the full-disk image to the dimensions of the semiconductor
CCD array. The final image diameter is 6.33 mm and the telescope diffraction limit
at λ = 6563 Å is 1.5 arc sec, according to the Rayleigh criterion. The image scale
is approximately 2.07 arc sec per pixel. Further details of these instruments have
been reported elsewhere (Fernandez Borda et al., 2002; Bagalá et al., 1999).
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Figure 1. Logistic diagram of the HASTA instrument.

The CCD camera used for data acquisition is a SVGA-SensiCam with a CCD
array of 1280 (horizontal) × 1024 (vertical) pixels. Each pixel is 6.7 µm × 6.7 µm
and has a full-well capacity of 25000 e which allows to record all kind of impulsive
events without saturation using intregration times within the range of 50–100 ms.
The CCD presents a high quality level with a non-linearity of less than 1%.

The CCD camera is operated by a personal computer with a microprocessor
Intel Pentium II of 233 MHz and 128 Mb of RAM memory. The camera is con-
nected through an electronic interface to the PC and the data are downloaded to a
set of SCSI hard disks. The images are finally stored in CDs. The Universal Time is
provided through a GPS and the weather data are obtained from the weather station
of the Mirror Coronagraph for Argentina (MICA, Stenborg et al., 1999).

The instrument works in two different modes: the patrol mode, and the flare
mode. In the patrol mode, HASTA takes full-disk images every 2 min. When a solar
flare is detected, HASTA switches to the flare mode. In the flare mode, HASTA
takes full-disk images every 10 s. This high cadence could be improved further,
considering that the complete process of obtaining an image is approximately
2.2 s, which is the maximum image rate. To obtain a high-cadence sequence of Hα

images right after the flare starts, a circulating buffer was developed. This buffer
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holds twelve consecutive images with a cadence of 10 s, and is continuously being
refreshed during the patrol mode. When the flare mode is activated, these twelve
images are downloaded to the hard disk, which therefore provides two minutes of
high-cadence images containing the initial stages of the flare.

3. Neural Networks and the Back-Propagation Algorithm

A neural node is a model of an artificial neuron. Broadly speaking, it has N synap-
tic inputs and a synaptic output. Each input line has an associated weight, which
models the strength of the synapses. Signals in each input line are multiplied by
its associated weight, and the weighted signals are added. The output of the neu-
rode can be either 1 or −1 depending on whether or not the sum exceeds a given
threshold value. Such a neurode, with linear response in its output, is known as
a perceptron. Synaptic weights can be adjusted considering the effect of a given
input to have the correct output, providing a schematic idea of a general learning
rule (Looney, 1996, 1997; Werbos, 1994).

The output of the perceptron is a binary signal, since only one of two outcomes
are possible. To extend the signal range to real numbers, activation functions are
used in the output instead of a threshold. One function often used is the sigmoid

σ (s) = 1 − e−as

1 + e−as
= tanh

(as

2

)
, (1)

where σ is the output, s is the weighted sum over all the input nodes, and a controls
the width of the sigmoid. Hereafter we set the value of a to a = 1, as is standard
practice in the literature (Looney, 1997). We apply the term nonlinear neurodes to
nodes with an activation function like this one to determine its output.

Our net is an example of a two layer network (see Figure 2). Inputs are applied
to the left of the input layer, and the subsequent layers evaluate their node outputs
until the output layer is reached. This process is referred to as a forward pass.

The input nodes are not artificial neurons, and act as branching nodes. As men-
tioned in the Introduction, this input layer is not fed directly with raw images. To
speed up the classification and to make things manageable, the input nodes are
fed with a set of parameters or features, obtained from pre-processing the images
with a linear algorithm. This features are a set of NI normalized real numbers
which measure some properties of the images that are believed to contain sufficient
information to recognize the pattern.

The hidden layer (the middle layer in Figure 2) contains NH nonlinear neural
nodes, with an activation function given by a sigmoid centered at zero. The output
layer is a linear perceptron which is fed by the outputs of the hidden nodes and
makes the final decision. Its threshold is fixed at zero and the output is −1 or 1
depending on whether the desired event has been observed or not.

To train this network, we use a supervised scheme. This means that a set of
input feature vectors was constructed, together with the associated set of expected
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Figure 2. The architecture of our neural network.

output target vectors. An initial value for the weights is set. Then, the network
input layer is recursively fed with the selected features, and the output is compared
with the expected output targets. A difference in the result means that the net is
misclassifying and the weights must be adjusted. The question is, can we train
both layers (the hidden layer and the output node) in an iterative fashion? The idea
is to perform a gradient descent on the obtained error, considered as a function of
the weights in each node. To this end we use the back-propagation training rule.

In the forward pass, the neural network is fed with one of the input vectors and
the final output yo is calculated following

yj = σ

(
NI∑
i=1

ω
i,j

h xi

)
(2)

and

yo = �


 NH∑

j=1

ωj
oyj


 , (3)

where yj is the output at the j th hidden node, xi is the input feature at the ith node,
ω

i,j

h is the weight connecting the input node i with the hidden node j , and ω
j
o in

the weight connecting the j th hidden node with the output node (see Figure 2). �

is a step function with output +1 if its input is positive, and −1 in any other case.
If yo differs from the expected output target t , the backward pass is started. First,

the weights of the output node are adjusted using
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�ωj
o = αo


t −

NH∑
j ′=1

ωj ′
o yj


 yj , (4)

where αo is a free parameter which controls the learning rate of the output layer.
Note that the change in the weight is proportional to the difference between the
output of the node and the expected target, and the multiplication with yj weights
how much information enters by the j th input line.

Then, the weights of the hidden nodes are adjusted following

�ωh
i,j = αhσ

′
(

NI∑
i′=1

ω
i′,j
h xi

)
t −

NH∑
j ′=1

ωj ′
o yj


ωj

oxi, (5)

where αh is the learning rate of the hidden layer and σ ′ is the derivative of the
sigmoid function. Again, the change is proportional to the difference between the
output of the node and the expected target. But in this case, σ ′ relates to how
quickly the activation function can change the output (and therefore the error), and
the multiplication with xi weights the importance of the ith feature to determine
the correct output.

This scheme is iterated for each feature presented at the input layer, until the
error drops below a selected threshold.

4. The Training Set

To build the training set for the neural network, flares were selected by comparing
the HASTA database from 1 January 1999 to 30 June 2000 against the Hα flare
list in Solar Geophysical Data (SGD, Vol. 655–671, Part I). The selection criteria
sample the complete optical flare classification (Švestka, 1976), all possible posi-
tions on the solar disk, different atmospheric conditions and common instrumental
failures in order to avoid spurious detection of events.

Once both the topology of the network and the training algorithm have been
decided, we need to define the set of features to conform the input vector. The
selection of these features from the images is based on useful criteria used by ob-
servers as well as typical parameters that measure the observing conditions. Since
the analysis of high-resolution and high-cadence images does obviously consume
large amounts of memory and CPU time, it is essential to define a minimal set of
features which contain all the relevant information. Our experience with the analy-
sis of HASTA images, led us to decide the following set of seven features: (1) mean
brightness of the frame, (2) standard deviation of the brightness, (3) pixel of max-
imum brightness derivative between consecutive images, (4) absolute brightness
of that pixel, (5) radial position of that pixel, (6) variation of mean brightness
between consecutive images (weather), and (7) contrast between the point with
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maximum brightness derivative and its first neighbors. Features (1)–(4) are devoted
to identify not just the flare, but more specifically, the image corresponding to the
maximum activity for that particular flare. Feature (5), related to the distance of
the flare to disk center, allows the network to take projection and limb darkening
effects into account, without actually performing these corrections on the images,
which would consume a non-negligible amount of CPU time. Cloudiness and other
weather-related effects which can cause sudden variations in the total brightness
of consecutive images are considered in feature (6). Finally, feature (7) is aimed
at excluding dynamic spatial structures such as atmospheric turbulence or intense
plage activity as possible flaring regions.

The vector of features is extracted from the raw images using a linear algo-
rithm that we developed using IDL (Interactive Data Language, a package for data
processing from Research Systems Inc.). This linear algorithm is efficient enough
to allow the whole recognition process to run in real time. The identification of
features plus the forward pass runs in approximately 5 s, which is faster than the
integration time of the circulating buffer (approximately 10 s).

We also used the algorithm for feature identification to generate a GUI (Graphic
User Interface) for the development of the training set (see Figure 3), which allows
the training process of the neural network to become portable to other instruments.
We made a careful choice of both positive and negative events, trying to cover a
wide spectrum of patterns. Among the positive events, we included a wide variety
of flares with different morphologies and intensities. Once the image corresponding
to the maximum intensity for a given flare was identified (features (1)–(4)), we
discarded all the remaining images associated with that flare from the dataset. As
for the negative events, we included images with a total absence of flaring activity,
images with plage activity, images with sunspots and other types of structures
unrelated to flares.

From a total dataset of 361 events, we selected approximately 66% for the
training set (237 events) and the remaining 33% (124 events) for the test set.
One of the main advantages of neural network techniques is the relatively reduced
datasets required to build appropriate selection criteria. An algorithmic or statistical
approach would need a much larger number of examples in a very precise format,
since noisy data would mislead the criteria. On the other hand, a neural network
can deal with previously unseen patterns, and it is also robust in the presence of
noise.

5. The Training Results

We set an error threshold in the training process of 3%, which was attained after
approximately 103 iterations. Each iteration consists of a forward pass followed by
a back-propagation step, which corrects the weights of all neural connections seek-



AUTOMATIC SOLAR FLARE DETECTION 355

Figure 3. Graphic User Interface for the generation of the training set.

ing to minimize the error. The asymptotic values obtained for the weight factors,
are the ones to be used to classify future events.

The order of events in the training set is shuffled randomly for each iteration, to
reduce the risk of relaxing to local minima (Robbins and Monro, 1951). We confirm
the strong dependence of the network’s behavior with the number of nodes in the
hidden layer. As suggested in the literature (Huang and Huang, 1991), we obtain
that the most stable behavior and faster convergence arises for a number of nodes
between Ni and 2Ni , where Ni = 7 is the number of nodes at the input layer. We
also find that the best results arise for learning rates (α) between 0.01 and 0.04.
Therefore, we fix the number of nodes in the hidden layer as Nh = 11 and the
learning rate as α = 0.02.

After about 103 iterations for the training set of 237 events, we obtained the
results depicted by Figure 4. The error is defined as the sum of the squares of the
differences between the expected output target t and the actual output computed
by the network, which has been properly normalized to represent the fraction of
training errors. The reliability of the minimization process rests on the following
aspects: (a) the monotonic decrease of the error, (b) the very low dispersion in the
weight values once the error falls below the threshold, and (c) the independence
of the final state from the initial weights. We tested this network with the test
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Figure 4. Error as a function of the number of iterations.

set of 124 events, and found that the fraction of misclassified events in this set
was smaller than 5%. Considering a typical HASTA observing day of about eight
hours, the mean number of events observed per day (considering its variation along
the solar cycle), and the duration of individual events, such a low error implies a
misclassified event every several days (two to five days).

6. Discussion

In the present paper we present a new method to automatically detect flare events in
the optical range using neural networks for pattern recognition. It was designed to
be applied to full-disk raw Hα images. We applied the method to images obtained
by HASTA, using a training set of 237 events covering the period from 1 January
1999 to 30 June 2000.

After the training process was completed, the number of training errors was
below 3%. The test set produced less than 5% of misclassified events. In a regular
observing run, this means that an event will be misclassified every several days.

This method was proved useful for the automatic detection of flares in the com-
plete range of Hα importance. The software associated with the neural network is
friendly and easily portable to other observatories and instruments. Moreover, it is
fast enough to run in real time, and provides a unique criterion for flare detection,
which is independent of the observer.
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