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NEW COMPLEXITY RESULTS ON ROMAN {2}-DOMINATION

Lara Fernández1,2 and Valeria Leoni1,2,*

Abstract. The study of a variant of Roman domination was initiated by Chellali et al. [Discrete
Appl. Math. 204 (2016) 22–28]. Given a graph 𝐺 with vertex set 𝑉 , a Roman {2}-dominating function
𝑓 : 𝑉 → {0, 1, 2} has the property that for every vertex 𝑣 ∈ 𝑉 with 𝑓(𝑣) = 0, either there exists a
vertex 𝑢 adjacent to 𝑣 with 𝑓(𝑢) = 2, or at least two vertices 𝑥, 𝑦 adjacent to 𝑣 with 𝑓(𝑥) = 𝑓(𝑦) = 1.
The weight of a Roman {2}-dominating function is the value 𝑓(𝑉 ) =

∑︀
𝑣∈𝑉 𝑓(𝑣). The minimum weight

of a Roman {2}-dominating function is called the Roman {2}-domination number and is denoted by
𝛾{𝑅2}(𝐺). In this work we find several NP-complete instances of the Roman {2}-domination problem:
chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3
graphs, among others. A result by Chellali et al. [Discrete Appl. Math. 204 (2016) 22–28] shows that
𝛾{𝑅2}(𝐺) and the 2-rainbow domination number of 𝐺 coincide when 𝐺 is a tree, and thus, the linear
time algorithm for 𝑘-rainbow domination due to Brešar et al. [Taiwan J. Math. 12 (2008) 213–225] can
be followed to compute 𝛾{𝑅2}(𝐺). In this work we develop an efficient algorithm that is independent of
𝑘-rainbow domination and computes the Roman {2}-domination number on a subclass of trees called
caterpillars.
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1. Definitions and preliminaries

The notion of Roman {2}-domination was defined just a few years ago and is nowadays being widely studied.
Roman {2}-domination (also called Italian domination) was introduced by Chellali et al. as a variant of Roman
domination [7].

All graphs in this paper are undirected and simple. Let 𝐺 be a graph, and let 𝑉 (𝐺) and 𝐸(𝐺) denote its
vertex and edge sets, respectively. Whenever it is clear from the context, we simply write 𝑉 and 𝐸. For basic
definitions not included here, we refer the reader to [5].

For a graph 𝐺, two vertices of 𝑉 are adjacent in 𝐺 if there is an edge of 𝐸 between them. For 𝑣 ∈ 𝑉 , 𝑁𝐺(𝑣)
denotes the set of all the vertices adjacent to 𝑣 in 𝐺, and 𝑁𝐺[𝑣] denotes the closed neighborhood of 𝑣, i.e. 𝑁𝐺(𝑣)
together with 𝑣. The degree of 𝑣 ∈ 𝑉 is 𝑑(𝑣) = |𝑁𝐺(𝑣)|. For 𝐽 ⊆ 𝑉 , with 𝑁𝐺(𝐽) we denote

⋃︀
𝑣∈𝐽 𝑁𝐺(𝑣).

A pendant vertex is a vertex of degree one.
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Given a graph 𝐺 and 𝑆 ⊆ 𝑉 , 𝐺 ∖ 𝑆 denotes the subgraph of 𝐺 induced by 𝑉 ∖ 𝑆, i.e. the graph with vertex
set 𝑉 ∖𝑆 and such that two vertices of 𝑉 ∖𝑆 are adjacent in 𝐺∖𝑆 if and only if they are adjacent in 𝐺. In other
words, with 𝐺 ∖ 𝑆 we mean the deletion from 𝐺 of the vertices in 𝑆.

Given two graphs 𝐺 and 𝐻, the union of 𝐺 and 𝐻 is denoted by 𝐺 ∪𝐻 and refers to the graph with vertex
set 𝑉 (𝐺) ∪ 𝑉 (𝐻) and edge set 𝐸(𝐺) ∪ 𝐸(𝐻).

The 1-clique-sum of graphs 𝐺 and 𝐻, 𝐺⊕𝐻, is formed from their disjoint union by identifying a vertex from
𝐺 with a vertex from 𝐻.

A path is a connected graph whose vertices have all degree at most two. A path with 𝑛 vertices is denoted
by 𝑃𝑛.

A graph 𝐺 is a bipartite graph if its vertex set can be partitioned into two sets 𝐵1, 𝐵2 of pairwise nonadjacent
vertices.

A graph 𝐺 is chordal if for every cycle of length at least four there is a chord, i.e. an edge not in the cycle
whose endpoints lie in the cycle.

A bipartite graph 𝐺 is chordal bipartite if for every cycle of length at least six there is a chord. Clearly,
chordal bipartite graphs may not be chordal.

A star is a connected graph in which at most one vertex has degree greater than one. An 𝑛-star is a star
with 𝑛 + 1 vertices.

A tree is a connected acyclic graph.
A graph 𝐺 is a caterpillar if 𝐺 is a tree in which the deletion of all the pendant vertices (the leaves) results

in a path (the spine or central path).
Given a graph 𝐺, a Roman dominating function 𝑓 : 𝑉 → {0, 1, 2} has the property that every vertex 𝑣 ∈ 𝑉

with 𝑓(𝑣) = 0 is adjacent to at least one vertex 𝑢 with 𝑓(𝑢) = 2 [8].
Given a graph 𝐺, a Roman {2}-dominating function 𝑓 : 𝑉 → {0, 1, 2} has the property that for every vertex

𝑣 ∈ 𝑉 with 𝑓(𝑣) = 0, either there exists a vertex 𝑢 ∈ 𝑁𝐺(𝑣) with 𝑓(𝑢) = 2, or at least two vertices 𝑥, 𝑦 ∈ 𝑁𝐺(𝑣)
with 𝑓(𝑥) = 𝑓(𝑦) = 1 [7]. The weight of a Roman {2}-dominating function is the value 𝑓(𝑉 ) =

∑︀
𝑣∈𝑉 𝑓(𝑣).

The minimum weight of a Roman {2}-dominating function is called the Roman {2}-domination number and is
denoted by 𝛾{𝑅2}(𝐺) (also 𝛾𝐼(𝐺)). Roman {2}-dominating functions and the Roman {2}-domination number
are also called Italian functions and Italian domination number respectively. Since 2004, several papers have
been published on this topic where some new variations were introduced: weak Roman domination [9], maximal
Roman domination [1], mixed Roman domination [2], double Roman domination [3], among others.

A Roman {2}-dominating function 𝑓 can be represented by a triple (𝑉0, 𝑉1, 𝑉2), where 𝑉𝑖 is the subset of
vertices 𝑣 of 𝐺 such that 𝑓(𝑣) = 𝑖. Thus, we use the notation 𝑓 = (𝑉0, 𝑉1, 𝑉2).

Given a non-connected graph 𝐺, it is clear that a Roman {2}-dominating function of 𝐺 is the union of Roman
{2}-dominating functions of its connected components and even more, that the Roman {2}-domination number
of 𝐺 is the sum of the Roman {2}-domination numbers of its connected components.

In this work we will say that 𝑓 is a 𝛾{𝑅2}(𝐺)-function when 𝑓 is a Roman {2}-dominating function of 𝐺 with
minimum weight.

The decision problem associated with Roman {2}-domination, the Roman {2}-domination problem
(R2D), can be stated as follows:

Instance: A graph 𝐺, 𝑗 ∈ N.
Question: Is there a Roman {2}-dominating function with weight at most 𝑗?.

The first NP-complete result for R2D is presented in [7], proving that R2D is NP-complete even for bipartite
graphs by reducing the Exact-3-Cover problem. Other NP-complete results for R2D are shown in [12] (for star
convex bipartite graphs, comb convex bipartite graphs and bisplit graphs) also by reducing the Exact-3-Cover
problem, and in [13] for planar graphs by reducing the 3-Satisfiability problem. Linear algorithms for computing
𝛾{𝑅2}(𝐺) are presented in [13] for chain graphs, threshold graphs and unicyclic graphs.

A celebrated result by Courcelle et al. states that each graph property that is expressible in MSOL1 (resp.
MSOL2) can be solved in polynomial time for graphs with bounded treewidth (resp. cliquewidth) [8]. Note
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that this result is mainly of theoretical interest and does not lead to practical algorithms. Since the problem of
finding a minimum Roman {2}-dominating function can be expressed in MSOL1 [12], this motivates our search
of efficient algorithms for classes of graphs with this property, in particular for trees.

The Roman {2}-domination number on trees is studied in [6] and [10], but not from an algorithmic point
of view as our aim is. On the one hand, in [6] it is proved that 𝛾{𝑅2}(𝑇 ) = 𝛾𝑟2(𝑇 ) for a tree 𝑇 , where 𝛾𝑟2(𝑇 )
denotes the 2-rainbow domination number of 𝑇 , i.e. the minimum weight between all 2-rainbow dominating
functions. For a positive integer 𝑘, a k-rainbow dominating function of 𝐺 is a function 𝑓 from 𝑉 (𝐺) to the set
of all subsets of {1, 2, . . . , 𝑘} such that for any vertex 𝑣 with 𝑓(𝑣) = ∅ we have

⋃︀
𝑁𝐺(𝑣) 𝑓(𝑢) = {1, 2, . . . , 𝑘}.

There is a linear time algorithm that finds the 𝑘-rainbow number of a given tree [6]. On the other hand and
regarding bounds on trees, the following one is proved in [7] for any tree 𝑇 : 𝛾𝑅(𝑇 ) ≤ 4

3𝛾{𝑅2}(𝑇 ), where 𝛾𝑅(𝑇 )
denotes the Roman domination number of 𝑇 .

This work is organized as follows. We start by showing in Section 2, a reduction of the classical domination
problem to R2D. In this way we derive many new NP-complete graph classes for R2D. In Section 3, we show
an efficient algorithm for a very sparse class of graphs, a subclass of trees called caterpillars. We conclude the
paper with some final remarks in Section 4.

2. NP-complete results

We already know from [7, 12, 13] that R2D is NP-complete. The reductions in [7] (for bipartite graphs) and
[12] (for star convex bipartite graphs, comb convex bipartite graphs and bisplit graphs) come in both cases from
the Exact-3-Cover problem. In [13] the reduction comes from the 3-Satisfiability problem on planar graphs. In
this section we present a simple proof that just reduces the classical domination problem, that not only allows
us to give a unified alternative and simpler proof, but also an NP-complete proof of R2D for chordal graphs and
chordal bipartite graphs. As a by-product, from the large list of NP-complete graph classes for the domination
problem, we derive many NP-complete graph classes for R2D.

Theorem 2.1. The Roman {2}-domination problem is NP-complete for general graphs.

Proof. We will reduce the domination problem to the Roman {2}-domination problem. Given a graph 𝐺 on 𝑛
vertices, 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}, consider the graph 𝐺′ with vertex set 𝑉 (𝐺′) = 𝑉 (𝐺) ∪ {𝑤1, . . . , 𝑤𝑛} and edge
set 𝐸(𝐺′) = 𝐸(𝐺) ∪ {𝑣𝑖𝑤𝑖 : 𝑖 ∈ {1, . . . , 𝑛}}. Namely, we add 𝑛 leaves to 𝐺. We claim that 𝐺 has a dominating
set of cardinality at most 𝑠 if and only if 𝐺′ has a Roman {2}-dominating function of weight at most 𝑠 + 𝑛.

Suppose 𝐺 has a dominating set 𝐷 of cardinality at most 𝑠. Consider the function 𝑓 from 𝑉 (𝐺′) to {0, 1, 2}
defined by 𝑓(𝑢) = 1 if 𝑢 ∈ 𝐷, 𝑓(𝑢) = 0 if 𝑢 ∈ 𝑉 (𝐺) ∖𝐷, and 𝑓(𝑤𝑖) = 1, for 𝑖 ∈ {1, . . . , 𝑛}.

Take 𝑢 ∈ 𝑉 (𝐺′) with 𝑓(𝑢) = 0. By the definition of 𝑓 , 𝑢 ∈ 𝑉 (𝐺) ∖𝐷 and thus 𝑢 = 𝑣𝑖 for some 𝑖 ∈ {1, . . . , 𝑛}
and moreover, 𝑢 has a neighbor 𝑣 ∈ 𝐷 (since 𝐷 is a dominating set in 𝐺). Since 𝑓(𝑣) = 1 and 𝑓(𝑤𝑖) = 1, we
have 𝑓(𝑁𝐺′(𝑢)) = 2. Therefore, 𝑓 is a Roman {2}-dominating function of 𝐺′ with weight |𝐷|+ 𝑛 ≤ 𝑠 + 𝑛.

On the other hand, suppose 𝐺′ has a Roman {2}-dominating function 𝑓 of weight at most 𝑠 + 𝑛. For each
𝑣𝑖 ∈ 𝑉 (𝐺), we may assume that |𝑓(𝑤𝑖)| = 1 (if 𝑓(𝑤𝑖) = 2, we turn 𝑓(𝑤𝑖) to 1 and add 1 to 𝑓(𝑣𝑖); if 𝑓(𝑤𝑖) = 0,
we turn 𝑓(𝑤𝑖) to 1 and subtract 1 from 𝑓(𝑣𝑖)) to obtain a a Roman {2}-dominating function of weight at most
𝑠 + 𝑛. Now, consider the set 𝐷 = {𝑣 ∈ 𝑉 (𝐺) : 𝑓(𝑣) ̸= 0}.

For any vertex 𝑣𝑖 ∈ 𝑉 (𝐺) ∖𝐷, we have 𝑓(𝑣𝑖) = 0 and 𝑓(𝑁𝐺′(𝑣𝑖)) = 2. Since |𝑓(𝑤𝑖)| = 1, we have 𝑓(𝑢) ̸= 0
for some 𝑢 ∈ 𝑁𝐺(𝑣) which implies 𝑢 ∈ 𝐷. Therefore, 𝐷 is a dominating set of 𝐺. It is straightforward from our
assumption that the cardinality of 𝐷 is at most the weight of 𝑓 minus 𝑛, i.e. 𝑠 + 𝑛− 𝑛 = 𝑠. �

Corollary 2.2. R2D is NP-complete on every graph class that is closed under adding pendant vertices and for
which the dominating set problem is NP-complete. In particular, on chordal graphs, bipartite planar graphs,
chordal bipartite graphs and bipartite with maximum degree 3 graphs.
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3. Roman {2}-domination on caterpillars

As trees have bounded treewidth and, as mentioned in the introduction, the result by Courcelle et al. is
mainly of theoretical interest and does not lead to practical algorithms, in this section our aim is to find an
efficient algorithm for a specific subclass of trees, namely caterpillars.

We will show that for caterpillars, Roman {2}-dominating sets are very particular, and give an efficient
algorithm to compute the Roman {2}-domination number on them.

Recall that caterpillar is a tree where there is a path, called the central path, such that every vertex that is
not in the path is adjacent to a vertex of the path. Notice that a caterpillar is connected.

It is clear that an induced subgraph of a caterpillar may be non-connected. Each of the connected components
of a caterpillar can be a caterpillar or a path.

For a caterpillar 𝐺, a father is a vertex with at least 3 neighbors. Clearly, any father has two neighbors in
the central path and at least one pendant neighbor (a leaf). The children of a father is the set of leaves it is
adjacent to. Besides, we call 𝐹𝐺

1 , 𝐹𝐺
2 and 𝐹𝐺

>2 the subsets of the father set with exactly one child, exactly two
and more than two children in 𝐺, respectively.

In the sequel for a caterpillar 𝐺, its central path has at least three vertices, then 𝐺 has at least four vertices.
We start by proving a simple characterization of those caterpillars with Roman {2}-domination number equal

to two.

Lemma 3.1. Let 𝐺 be a caterpillar. Then 𝛾{𝑅2}(𝐺) = 2 if and only if 𝐺 is a star.

Proof. Clearly, if 𝐺 is a star then 𝛾{𝑅2}(𝐺) = 2.
Now let 𝐺 be a caterpillar with 𝛾{𝑅2}(𝐺) = 2 and let 𝑢, 𝑣 two distinct vertices of 𝐺. Then, there exist at most

two different Roman {2}-dominating functions, let’s say 𝑓 = (𝑉 ∖ {𝑢}, ∅, {𝑢}) and 𝑔 = (𝑉 ∖ {𝑢, 𝑣}, {𝑢, 𝑣}, ∅). We
will see that in fact 𝑔 cannot exist. Since 𝑓 is a Roman {2}-dominating function of 𝐺 and 𝑉 ∖{𝑢} is a nonempty
set, every vertex is adjacent to 𝑢 in 𝐺. Then since 𝐺 is a tree, thus triangle-free, no pair of vertices in 𝑉 ∖ {𝑢}
are pairwise adjacent. Thus 𝐺 is a star.

In the second case, for 𝑔 to be a Roman {2}-dominating function of 𝐺, it must happen that every vertex
in 𝑉 ∖ {𝑢, 𝑣} is adjacent to both 𝑢 and 𝑣. But in this case 𝐺 would be itself a 𝑃3 or, otherwise, would have a
4-vertex cycle. Both situations lead to a contradiction. �

The following reduction is not difficult to prove:

Proposition 3.2. There exists a linear time transformation that reduces R2D on a general caterpillar, to R2D
on a caterpillar without fathers with more than two children.

Proof. Let 𝐺 be a caterpillar with 𝐹𝐺
>2 ̸= ∅ and 𝐻 be the induced subgraph of 𝐺 obtained by deleting all but

two children of each vertex in 𝐹𝐺
>2.

Let 𝑓 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾{𝑅2}(𝐺)-function. If 𝐹𝐺
>2 ⊆ 𝑉2 and thus all the children of vertices in 𝐹𝐺

>2 are in
𝑉0, it turns out that the restriction of 𝑓 to 𝑉 (𝐻) is a Roman {2}-dominating function of 𝐻 of the same weight.
Otherwise, if there exists 𝑥 ∈ 𝐹𝐺

>2 that doesn’t belong to 𝑉2 and thus all its children are in 𝑉1, it turns out that
the restriction of 𝑓 to 𝑉 (𝐻) is a Roman {2}-dominating function of 𝐻 with weight not greater than the weight
of 𝑓 .

Now let 𝑔 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾{𝑅2}(𝐻)-function and 𝑦 be a vertex of 𝑉 (𝐻) that belongs also to 𝐹𝐺
>2. Notice

that 𝑦 has only two children in 𝐻. If 𝑦 ∈ 𝑉2, then its two children in 𝐻 are in 𝑉0. By assigning 0 to the children
of 𝑦 in 𝐺 that were deleted from 𝐺, we obtain a Roman {2}-dominating function of 𝐺 of the same weight.
Otherwise, if 𝑦 /∈ 𝑉2, and then its two children in 𝐻 are in 𝑉1, by assigning 0 to every children of 𝑦 in 𝐺, and 2
to 𝑦, we obtain a Roman {2}-dominating function of 𝐺 with weight not greater than the weight of 𝑔.

�

Proposition 3.2 reduces our study to caterpillars 𝐺 with 𝐹𝐺
>2 = ∅. First, we have:
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Lemma 3.3. Let 𝐺 be a caterpillar with 𝐹𝐺
2 ̸= ∅ and 𝐹𝐺

>2 = ∅. Then there exists a 𝛾{𝑅2}(𝐺)-function
(𝑉0, 𝑉1, 𝑉2) such that 𝐹𝐺

2 ⊆ 𝑉2 and 𝑁𝐺(𝐹𝐺
2 ) ∖ 𝐹𝐺

2 ⊆ 𝑉0.

Proof. Choose a 𝛾{𝑅2}(𝐺)-function 𝑔 = (𝑉0, 𝑉1, 𝑉2). If 𝐹𝐺
2 ∩ (𝑉0 ∪ 𝑉1) ̸= ∅, for a father 𝑥 in 𝐹𝐺

2 ∩ (𝑉0 ∪ 𝑉1) it
is clear from the definition of 𝑔 that its two children belong to 𝑉1. We can then turn to 2 the weight of 𝑥, to
zero the weights of its two children, and eventually to zero the weight of a vertex 𝑤 ∈

(︀
𝑁𝐺(𝑥) ∖ 𝐹𝐺

2

)︀
∩ (𝑉1 ∪ 𝑉2)

if
(︀
𝑁𝐺(𝐹𝐺

2 ) ∖ 𝐹𝐺
2

)︀
∩ (𝑉1 ∪ 𝑉2) ̸= ∅ and add at the same time the weight of 𝑤 to its other neighbor in the

central path. In this way we build a Roman {2}-dominating function with weight at most the weight of 𝑔, thus
minimum.

If 𝐹𝐺
2 ∩ (𝑉0 ∪ 𝑉1) = ∅ but

(︀
𝑁𝐺(𝐹𝐺

2 ) ∖ 𝐹𝐺
2

)︀
∩ (𝑉1 ∪ 𝑉2) ̸= ∅, take 𝑤 ∈

(︀
𝑁𝐺(𝑥) ∖ 𝐹𝐺

2

)︀
∩ (𝑉1 ∪ 𝑉2) for some

𝑥 ∈ 𝐹𝐺
2 . Since 𝑔 is minimum, it is clear that both 𝑥’s children are in 𝑉0. We can then add the weight of 𝑤

to its other neighbor in the central path and turn to 0 the weight of 𝑤, building in this way another Roman
{2}-dominating function with weight at most the weight of 𝑔, thus minimum. �

From Lemma 3.3 we can prove:

Proposition 3.4. Let 𝐺 be a caterpillar with 𝐹𝐺
2 ̸= ∅ and 𝐹𝐺

>2 = ∅ . If 𝐺′ := 𝐺 ∖
⋃︀

𝑥∈𝐹 𝐺
2

𝑁𝐺[𝑥] then

𝛾{𝑅2}(𝐺) = 𝛾{𝑅2}(𝐺′) + 2
⃒⃒
𝐹𝐺

2

⃒⃒
,

Proof. We will proceed by induction on
⃒⃒
𝐹𝐺

2

⃒⃒
.

– If 𝐹𝐺
2 = {𝑥}, then following Lemma 3.3 we can choose a 𝛾{𝑅2}(𝐺)-function 𝑓 = (𝑉0, 𝑉1, 𝑉2) such that 𝑥 ∈ 𝑉2

and 𝑁𝐺(𝑥) ⊆ 𝑉0. Let us denote 𝐺′ = 𝐺 ∖𝑁𝐺[𝑥]. It is not difficult to see that the restriction of 𝑓 to 𝐺′ is a
Roman {2}-dominating function of 𝐺′. Thus, 𝛾{𝑅2}(𝐺′) ≤ 𝛾{𝑅2}(𝐺) − 2. To prove the opposite inequality,
consider a 𝛾{𝑅2}(𝐺′)-function and extend it to 𝑉 (𝐺) by assigning weight 2 to 𝑥 and 0 to its four neighbors.
It turns out that the function built in this way is a Roman {2}-dominating function of 𝐺 with weight
𝛾{𝑅2}(𝐺′) + 2, implying that 𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝐺′) + 2.

– If
⃒⃒
𝐹𝐺

2

⃒⃒
≥ 2, then choose 𝑥 ∈ 𝐹𝐺

2 . Again, let us denote 𝐺′ = 𝐺 ∖𝑁𝐺[𝑥].

∙ If both neighbors of 𝑥 in the central path do not belong to 𝐹𝐺
2 , notice that 𝐹𝐺′

2 = 𝐹𝐺
2 ∖{𝑥}. The induction

hypothesis holds for 𝐺′, i.e. 𝛾{𝑅2}(𝐺′) = 𝛾{𝑅2}(𝐺′′) + 2(|𝐹𝐺
2 | − 1), where 𝐺′′ := 𝐺′ ∖

⋃︀
𝑦∈𝐹 𝐺′

2
𝑁𝐺′ [𝑦] =

𝐺 ∖
⋃︀

𝑦∈𝐹 𝐺
2

𝑁𝐺[𝑦].
Take a 𝛾{𝑅2}(𝐺′)-function (𝑉0, 𝑉1, 𝑉2). Then the function 𝑓 = (𝑉0 ∪𝑁𝐺(𝑥), 𝑉1, 𝑉2 ∪ {𝑥}) is a Roman
{2}-dominating function of 𝐺 with weight 𝛾{𝑅2}(𝐺′) + 2. Thus 𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝐺′) + 2. The induction

hypothesis implies 𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝐺′′) + 2
(︀⃒⃒

𝐹𝐺
2

⃒⃒
− 1

)︀
+ 2 = 𝛾{𝑅2}

(︁
𝐺 ∖

⋃︀
𝑦∈𝐹 𝐺

2
𝑁𝐺[𝑦]

)︁
+ 2|𝐹𝐺

2 |.
∙ If exactly one of the two neighbors of 𝑥 in the central path, let’s say 𝑤, belongs to 𝐹𝐺

2 , notice that
𝐹𝐺′

2 = 𝐹𝐺
2 ∖{𝑥, 𝑤} and that 𝐺′ has two isolated vertices (the children 𝑤1 and 𝑤2 of 𝑤 in 𝐺). The induction

hypothesis holds for 𝐺′, i.e. 𝛾{𝑅2}(𝐺′) = 𝛾{𝑅2}(𝐺′′) + 2(|𝐹𝐺
2 | − 2), where 𝐺′′ := 𝐺′ ∖

⋃︀
𝑦∈𝐹 𝐺′

2
𝑁𝐺′ [𝑦] =

(𝐺 ∖
⋃︀

𝑦∈𝐹 𝐺
2

𝑁𝐺[𝑦])∪ 2𝐾1 and 2𝐾1 is the graph with no edges and two vertices (𝑤1 and 𝑤2 in this case).
Take a 𝛾{𝑅2}(𝐺′)-function (𝑉0, 𝑉1, 𝑉2). Since 𝑤1 and 𝑤2 are isolated vertices in 𝐺′, then {𝑤1, 𝑤2} ⊆ 𝑉1.
Thus the function 𝑓 = (𝑉0 ∪𝑁𝐺(𝑥), 𝑉1, 𝑉2 ∪ {𝑥}) is a Roman {2}-dominating function of 𝐺 with weight
𝛾{𝑅2}(𝐺′) + 2. Thus 𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝐺′) + 2. In this case, the induction hypothesis valid for 𝐺′

implies 𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝐺′′) + 2
(︀⃒⃒

𝐹𝐺
2

⃒⃒
− 2

)︀
+ 2 ≤ 𝛾{𝑅2}

(︁(︁
𝐺 ∖

⋃︀
𝑦∈𝐹 𝐺

2
𝑁𝐺[𝑦]

)︁
∪ 2𝐾1

)︁
+ 2

⃒⃒
𝐹𝐺

2

⃒⃒
− 2 =

𝛾{𝑅2}

(︁
𝐺 ∖

⋃︀
𝑦∈𝐹 𝐺

2
𝑁𝐺[𝑦]

)︁
+ 2 + 2

⃒⃒
𝐹𝐺

2

⃒⃒
− 2, and the desired inequality holds.

∙ We omit the analysis for the case in which both neighbors of 𝑥 in the central path belong to 𝐹𝐺
2 since it

follows a similar reasoning.
To prove the opposite inequality, we follow the reasoning of the base case: due to Lemma 3.3, we can
choose a 𝛾{𝑅2}(𝐺)-function 𝑓 = (𝑉0, 𝑉1, 𝑉2) such that 𝐹𝐺

2 ⊆ 𝑉2 and 𝑁𝐺(𝐹𝐺
2 ) ∖ 𝐹𝐺

2 ⊆ 𝑉0. The restriction
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of 𝑓 to the subgraph 𝐺 ∖
⋃︀

𝑥∈𝐹 𝐺
2

𝑁𝐺[𝑥] is a Roman {2}-dominating function of 𝐺 ∖
⋃︀

𝑥∈𝐹 𝐺
2

𝑁𝐺[𝑥]. Thus,

𝛾{𝑅2}

(︁
𝐺 ∖

⋃︀
𝑥∈𝐹 𝐺

2
𝑁𝐺[𝑥]

)︁
≤ 𝛾{𝑅2}(𝐺)− 2|𝐹𝐺

2 |.

�

Now, Proposition 3.4 reduces even more our study. Proposition 3.7 below refers to special caterpillars 𝐺 with
𝐹𝐺

2 = ∅. In order to prove Proposition 3.7, we need to prove a simple fact valid for any graph.

Lemma 3.5. Let 𝐺 be a graph, 𝑣 ∈ 𝑉 and 𝑓 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾{𝑅2}(𝐺)-function with 𝑣 ∈ 𝑉0. Then
𝛾{𝑅2}(𝐺) ≥

∑︁
𝛾{𝑅2}(𝐺𝑘), where each 𝐺𝑘 is a connected component of 𝐺 ∖ {𝑣}.

Proof. For 𝑢 ∈ 𝑁𝐺(𝑣) ∩ 𝑉0 it happens that 𝑓(𝑁𝐺(𝑢)) = 𝑓 (𝑁𝐺(𝑢) ∖ {𝑣}) = 𝑓(𝑁𝐺∖{𝑣}(𝑢)) ≥ 2. Thus
(𝑉0 ∖ {𝑣}, 𝑉1, 𝑉2) is a Roman {2}-dominating function of 𝐺∖{𝑣} with same weight as 𝑓 . Thus, 𝛾{𝑅2} (𝐺 ∖ {𝑣}) ≤
𝛾{𝑅2}(𝐺), and since 𝛾{𝑅2} (𝐺 ∖ {𝑣}) =

∑︁
𝛾{𝑅2}(𝐺𝑘), the inequality follows. �

Remark 3.6. We need to remark the following facts concerning Roman {2}-domination in paths:

– For a path 𝑃𝑛 with 𝑛 ≥ 1, it is known that 𝛾{𝑅2}(𝑃𝑛) =
⌈︀

𝑛+1
2

⌉︀
[7]. Thus it is clear that

𝛾{𝑅2}(𝑃𝑛+1) =
{︂

𝛾{𝑅2}(𝑃𝑛) + 1 if 𝑛 is odd
𝛾{𝑅2}(𝑃𝑛) if 𝑛 is even.

– Denote by 𝑃𝑛 = 𝑢1, 𝑢2, . . . , 𝑢𝑛, for a path 𝑃𝑛 with 𝑛 ≥ 1.
∙ When 𝑛 is even, then there exists a 𝛾{𝑅2}(𝑃𝑛)-function 𝑓 = (𝑉0, 𝑉1, 𝑉2) such that either 𝑢𝑛−1 ∈ 𝑉1 (and

thus 𝑢𝑛 ∈ 𝑉1) or 𝑢𝑛−1 ∈ 𝑉2 (and thus 𝑢𝑛 ∈ 𝑉0).
∙ When 𝑛 ≥ 5 is odd, then a 𝛾{𝑅2}(𝑃𝑛)-function is unique and satisfies 𝑉2 = ∅ and {𝑢1, 𝑢𝑛} ⊂ 𝑉1.

– The Roman {2}-domination number of the 1-clique sum of paths 𝑃𝑛 and 𝑃𝑚 with 𝑛, 𝑚 ≥ 1 is equal to⌈︀
𝑛+𝑚

2

⌉︀
.

Now we can state and prove the following fact concerning caterpillars with a unique child. We consider the
number 0 as odd and denote indistinctly by 𝑃0, the empty graph or the path without vertices. In this case, we
define 𝛾{𝑅2}(𝑃0) := 0.

Proposition 3.7. Let 𝐺 be a caterpillar with 𝐹𝐺
2 = ∅, 𝑥 ∈ 𝐹𝐺

1 such that 𝐺′ := 𝐺 ∖𝑁𝐺[𝑥] is the union of two
paths 𝑃𝑛 and 𝑃𝑚, for non negative integers 𝑛 and 𝑚. Then,

(1) 𝛾{𝑅2}(𝐺) = 𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) + 1 for even 𝑛 and 𝑚,
(2) 𝛾{𝑅2}(𝐺) = 𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) + 2 otherwise.

Proof. Let 𝑃𝑛 := 𝑢1, 𝑢2, . . . , 𝑢𝑛 and 𝑃𝑚 := 𝑣𝑚, 𝑣𝑚−1, . . . , 𝑣1, where 𝑢𝑛 and 𝑣𝑚 are both at distance two from 𝑥
in the central path. Also, let 𝑢𝑛+1 ∈ 𝑁𝐺(𝑢𝑛) ∩𝑁𝐺(𝑥), 𝑣𝑚+1 ∈ 𝑁𝐺(𝑣𝑚) ∩𝑁𝐺(𝑥) and 𝑦 be the only child of 𝑥,
i.e. 𝑁𝐺(𝑥) = {𝑦, 𝑢𝑛+1, 𝑣𝑛+1}.

Take a 𝛾{𝑅2}(𝑃𝑛 ∪ 𝑃𝑚)-function (𝑉0, 𝑉1, 𝑉2). Clearly, (𝑉0 ∪𝑁𝐺(𝑥), 𝑉1, 𝑉2 ∪ {𝑥}) is a Roman {2}-dominating
function of 𝐺, implying

𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) + 2.

In particular, when 𝑛 and 𝑚 are both even, from Remark 3.6 we can assume that {𝑢𝑛−1, 𝑣𝑚−1} ⊆ 𝑉1, and thus
{𝑢𝑛, 𝑣𝑚} ⊆ 𝑉1. Then (𝑉0 ∪ {𝑥, 𝑢𝑛, 𝑣𝑚} , (𝑉1 ∖ {𝑢𝑛, 𝑣𝑚}) ∪𝑁𝐺(𝑥), ∅) is a Roman {2}-dominating function of 𝐺,
implying

𝛾{𝑅2}(𝐺) ≤ 𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) + 1.

To see the reverse inequalities, let 𝑔 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾{𝑅2}(𝐺)-function and consider all the possible cases
for 𝑥.
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Figure 1. A decomposition for a caterpillar 𝐶 with 𝐹𝐶
2 = 𝐹𝐶

>2 = ∅.

– If 𝑥 ∈ 𝑉2, since 𝑔 is minimum we can assume w.l.o.g. that 𝑁𝐺(𝑥) ⊂ 𝑉0. Thus, (𝑉0 ∖𝑁𝐺(𝑥), 𝑉1, 𝑉2 ∖ {𝑥}) is a
Roman {2}-dominating function of 𝑃𝑛 ∪ 𝑃𝑚. Therefore, 𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) is at most 𝛾{𝑅2}(𝐺)− 2.

– If 𝑥 ∈ 𝑉1 then 𝑦 ∈ 𝑉1. We can then move the weight from 𝑦 to 𝑥 to obtain another Roman {2}-dominating
function of 𝐺 with weight 𝛾{𝑅2}(𝐺) and follow the reasoning of the previous case.

– If 𝑥 ∈ 𝑉0, then 𝑦 ∈ 𝑉1 and from Lemma 3.5, 𝛾{𝑅2}(𝐺) ≥ 𝛾{𝑅2}(𝑃𝑛+1) + 𝛾{𝑅2}(𝑃𝑚+1) + 1.
Following Remark 3.6 we have

𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) ≤

⎧⎨⎩𝛾{𝑅2}(𝐺)− 1 if 𝑛 and 𝑚are even
𝛾{𝑅2}(𝐺)− 2 if 𝑛−𝑚 is odd
𝛾{𝑅2}(𝐺)− 3 if 𝑛 and 𝑚are odd,

implying

𝛾{𝑅2}(𝑃𝑛) + 𝛾{𝑅2}(𝑃𝑚) ≤
{︂

𝛾{𝑅2}(𝐺)− 1 if 𝑛 and 𝑚 are even
𝛾{𝑅2}(𝐺)− 2 in any other case.

The result follows. �

Corollary 3.8. Let 𝐺 and 𝐻 be two caterpillars with 𝐹𝐺
2 = 𝐹𝐻

2 = ∅, 𝑥 ∈ 𝐹𝐺
1 such that 𝐺′ := 𝐺 ∖𝑁𝐺[𝑥] is the

union of two paths 𝑃𝑛 and 𝑃𝑚, 𝑦 ∈ 𝐹𝐻
1 such that 𝐻 ′ := 𝐻 ∖ 𝑁𝐻 [𝑦] is the union of two paths 𝑃𝑟 and 𝑃𝑠, for

non negative integers 𝑛, 𝑚, 𝑟 and 𝑠. Then, for the 1-clique of 𝐺 and 𝐻 obtained by identifying the last vertex
of 𝑃𝑚 with the first vertex of 𝑃𝑟 we have:

(1) 𝛾{𝑅2}(𝐺⊕𝐻) = 𝛾{𝑅2}(𝐺) + 𝛾{𝑅2}(𝐻)− 2 when both, 𝑛 and 𝑠 are even, and 𝑚 and 𝑟 have distinct parity,
(2) 𝛾{𝑅2}(𝐺⊕𝐻) = 𝛾{𝑅2}(𝐺) + 𝛾{𝑅2}(𝐻)− 1, otherwise.

In all, for a given general caterpillar, from the results in this section we can restrict its Roman {2}-domination
study to a caterpillar subgraph 𝐶 with 𝐹𝐶

2 = 𝐹𝐶
>2 = ∅. Clearly, 𝐶 is the 1-clique sum of a certain number of

caterpillars as those in Proposition 3.7, and some isolated vertices. Consider such a decomposition with minimum
number of isolated vertices (see Fig. 1). Now Proposition 3.7, Corollary 3.8 and Lemma 3.5 derive into an efficient
algorithm that computes the Roman {2}-domination number of the given caterpillar. Thus we can state:

Theorem 3.9. For any caterpillar, the Roman {2}-domination number can be obtained efficiently.

For the graph 𝐶 in Figure 1, 𝛾{𝑅2}(𝐶) = 20.

4. Final remarks

A future line of work is to continue studying Roman {2}-domination on subclasses of trees, for instance in
lobsters which generalize caterpillars.

On the other hand, the following result appears in [7] (Prop. 8). For every graph 𝐺, there exists a 𝛾{𝑅2}(𝐺)-
function 𝑓 = (𝑉0, 𝑉1, 𝑉2) such that either 𝑉2 = ∅ or every vertex of 𝑉2 has at least three private neighbors in 𝑉0

with respect to the set 𝑉1 ∪ 𝑉2. A vertex 𝑢 is said to be a private neighbor of 𝑣 with respect to 𝐷 if 𝑣 /∈ 𝐷 and
𝑁𝐺(𝑢) ∩𝐷 = {𝑣}.

We notice that there is a mistake in the mentioned result, as the following counterexample shows: Consider
a graph on 5 vertices not a 𝑃5 consisting in a 𝑃4 together with a pendant vertex. The Roman {2}-domination
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number for this graph is 3, but the thesis of Proposition 8 in [7] does not hold for this graph. In fact, the only
minimum Roman {2}-dominating function for it assigns the value 2 to the vertex of degree three, 0 to its three
neighbors and 1 to the remaining pendant vertex. The vertex of degree 3 has then only 2 private neighbors with
respect to 𝑉1 ∪ 𝑉2.

We think that a correct restatement of Proposition 8 in [7] is the following: For every graph 𝐺, there exists
a 𝛾{𝑅2}(𝐺)-function 𝑓 = (𝑉0, 𝑉1, 𝑉2) such that either 𝑉2 = ∅ or every vertex of 𝑉2 has at least three private
neighbors in 𝑉0 with respect to the set 𝑉2. We hope that this result would help in making a breakthrough in
the study of Roman {2}-domination on lobsters and also on other subclasses of trees, or in trees in general.
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